Spatial Polarisation of Extreme Temperature Responses and Its Future Persistence in Guangxi, China: A Multiscale Analysis over 1940–2023
Abstract
1. Introduction
2. Data Sources and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Methodology
2.3.1. Pearson’s Correlation Coefficient and Root Mean Square Error
2.3.2. Extreme Temperature Index
2.3.3. Analysis of Sudden Changes in Extreme Temperatures and Spatial Analysis
2.3.4. Extreme Temperature Cycle Analysis
2.3.5. Extreme Temperature Exploratory Spatio-Temporal Data Analysis (ESTDA)
2.3.6. Re-Scaled Extreme Variance Analysis (R/S)
2.3.7. Methodological Frameworks and Software
3. Results and Analysis
3.1. ERA5 Reanalysis Dataset Adaptation Analysis
3.2. Characteristics of Temporal and Spatial Changes of Extreme Temperature Index in the Recent 80a
3.2.1. Characteristics of Extreme Temperature Index Changes in the Last 80a
3.2.2. Characteristics of the Spatial Distribution of the Extreme Temperature Index
3.3. Exploratory Spatio-Temporal Data Analysis (ESTDA)
3.3.1. LISA Time Path
3.3.2. LISA Space-Time Migration (Spatial Markov Chain)
3.4. Analysis of Future Trends
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China Meteorological News. IPCC Sixth Assessment Report Working Group II Report Released; China Meteorological News: Beijing, China, 2022. [Google Scholar]
- Zhou, B.; Qian, J. Interpreting the IPCC AR6 report: Changes in extreme weather and climate events. Prog. Clim. Change Res. 2021, 17, 713–718. [Google Scholar]
- Wang, H.; Sun, J.; Chen, L.; Ma, J.H.; Duan, M.K. Global warming and accelerating climate extremes: A review of major advances in climate research in China in 2024. J. Atmos. Sci. 2025, 48, 1–7. [Google Scholar]
- Yuan, Y.; Liao, Z.; Zhou, B.; Zhai, P. Progress in the study of high-impact regional extreme events and attribution in China under the background of increasing global warming. Prog. Clim. Change Res. 2025, 21, 44–55. [Google Scholar]
- Xu, X.; Wang, X.; Zhang, S.; Yang, Y.; Li, Z. Characteristics of spatial and temporal variations of global land drought and its future trends. Plateau Meteorol. 2025, 44, 1–15. [Google Scholar]
- Shi, Y.; Xu, Y.; Chao, Q.; Zhang, M.; Han, Z.; Wang, R. Future climate change prediction in the western route of south-to-north water transfer project area based on CMIP6 multi-model. Prog. Clim. Change Res. 2025, 21, 1–14. [Google Scholar]
- Wang, Y.; Li, S.; Wu, L.; Cai, W.; Geng, T. Enhanced response of multi-year intergenerational variability to global warming in the Atlantic Ocean. Sci. Bull. 2025, 70, 2616–2618. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, Y.; Li, Z. Response of temperature change to global warming in Guangxi from 1961 to 2010. J. Nat. Resour. 2013, 28, 1707–1717. [Google Scholar]
- Wang, S.; Luo, Y.; Zhao, Z.; Wen, X.; Huang, J. Paleoclimate modelling. Prog. Clim. Change Res. 2013, 9, 305–308. [Google Scholar]
- Zhou, B.; Yang, T.; Zhou, B.; Sun, J.; Wang, Q.; Zhai, P. Progress of regional climate change prediction in China. J. Meteorol. 2025, 83, 716–728. [Google Scholar]
- China Meteorological Administration. China Climate Bulletin 2022; Meteorological Publishing House: Beijing, China, 2023.
- Roy, I.; Haigh, J.D. Solar cycle signals in sea level pressure and sea surface temperature. J. Geophys. Res. 2010, 115, 116. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, X.; Li, W.; Lu, Y.; Zhu, W. Characteristics of climate change in China over the past 80 years and its formation mechanism. J. Meteorol. 2004, 5, 634–646. [Google Scholar]
- Hu, Y. A study of extreme temperature trends in China considering data homogeneity and autocorrelation. Meteorol. Sci. Technol. 2025, 53, 211–221. [Google Scholar]
- China Meteorological Administration Climate Change Center (CMACC). China Blue Book on Climate Change. Energy Conserv. Environ. Prot. 2024, 7, 1. [Google Scholar]
- Yin, H.; Sun, Y. Characterisation of extreme temperature and precipitation in China based on the ETCCDI index in 2017. Adv. Clim. Change Res. 2019, 15, 363–373. [Google Scholar]
- Chu, X.; Wu, W.; Yang, X.; Wang, H. Extreme climate change and future trend prediction in the Tumen River Basin over the past 60 a. Water Resour. Hydropower Technol. 2024, 55, 24–37. (In English) [Google Scholar]
- Chen, X.; Li, H.; Huang, W. Characteristics of spatial and temporal variations of extreme heat events in South China and analysis of influencing factors. Prog. Clim. Change Res. 2018, 14, 445–456. [Google Scholar]
- Qin, W.; Li, Y. Analysis of the causes of meteorological disasters of high temperature and heat wave in Guangxi in 2010. Meteorol. Res. Appl. 2011, 32, 13–16. [Google Scholar]
- Zhang, W.; Zhou, T.; Zhang, L. Evaluation of air temperature from ERA5 reanalysis over the Tibetan Plateau and its surrounding regions. J. Geophys. Res. Atmos. 2021, 126, e2020JD033786. [Google Scholar]
- Liu, Y.; Chen, H.; Wang, S. Spatiotemporal Analysis of Extreme Temperature Events over China: A Review. Int. J. Climatol. 2020, 40, 1429–1445. [Google Scholar]
- Liu, T.; Zhu, X.; Zhang, S.; Xu, K.; Guo, R. Applicability of ERA5 reanalysis of surface air temperature data in China. J. Trop. Meteorol. 2023, 39, 78–88. [Google Scholar]
- Jang, D.; Kim, N.; Choo, H. Kriging Interpolation for Constructing Database of the Atmospheric Refractivity in Korea. Remote Sens. 2024, 16, 2379. [Google Scholar] [CrossRef]
- Wang, R.; Cao, Y. Characterisation of climate change analysis of tourism in Ili River Valley—Based on Mann-Kendall test. Knowl. Econ. 2024, 3, 9–12. [Google Scholar]
- Xu, X.; Yu, S.; Liu, Z.; Su, L.; Gao, F. Temporal and spatial distribution characteristics of extreme temperature index in the ecological demonstration area and surrounding areas of Northwest Sichuan. Plateau Meteorol. 2025, 1–15. [Google Scholar] [CrossRef]
- Hao, S.; Sun, C.; Song, Q. Evaluation of water ecological footprint and water ecological stress in China based on ESTDA model. J. Ecol. 2021, 41, 4651–4662. [Google Scholar]
- Liu, X.; Xiao, L.; Gao, G.; Cheng, Y.; Li, L. Characteristics of spatial and temporal evolution of extreme temperature index and its influencing factors in Guizhou Province from 1960 to 2020. Water Resour. Hydropower Technol. 2025, 56, 39–50, (In English and Chinese). [Google Scholar]
- Guangxi Zhuang Autonomous Region Bureau of Statistics. Guangxi Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023; pp. 4–5.
- Luo, S.; He, W.; Yang, T.; Deng, Y.; Lv, Y.; Wu, K.; Meng, Q. Geological significance and formation mechanism of geomorphological development features in the Xianggui Corridor. China Karst 2021, 40, 750–759. [Google Scholar]
- Guangxi Zhuang Autonomous Region Climate Centre. Guangxi Climate Change Monitoring Report (1961–2020); Guangxi Zhuang Autonomous Region Climate Centre: Nanning, China, 2024; pp. 56–61. [Google Scholar]
- Department of Water Resources of Guangxi Zhuang Autonomous Region. Guangxi Flood and Drought Disaster Defence Bulletin (2022); Department of Water Resources of Guangxi Zhuang Autonomous Region: Nanning, China, 2024; pp. 16–20.
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Choi, G.; Collins, D.; Ren, G.; Trewin, B.; Baldi, M.; Fukuda, Y.; Afzaal, M.; Pianmana, T.; Gomboluudev, P.; Huong, P.T.T.; et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol. 2009, 29, 1906–1925. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) user manual. Environ. Can. Clim. Res. Branch 2004, 22, 13–14. [Google Scholar]
- Gavrilov, M.B.; Marković, S.B.; Janc, N.; Nikolić, M.; Valjarević, A.; Komac, B.; Zorn, M.; Punišić, M.; Bačević, N. Assessing average annual air temperature trends using the Mann-Kendall test in Kosovo. Acta Geogr. Slov. 2018, 58, 7–25. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, C.; Li, X.; Liu, H. Study on the evolution of spatio-temporal pattern and convergence of the development level of water ecological civilisation in Huaihe River ecological and economic belt. Yangtze River Basin Resour. Environ. 2023, 32, 2158–2172. [Google Scholar]
- Mu, X.; Zhang, C.; Ding, Z.; Guo, X. Identification of spatial and temporal dynamics and detection of drivers of tourism eco-efficiency in the Yellow River Basin. Geogr. Geogr. Inf. Sci. 2024, 40, 149–159. [Google Scholar]
- Li, X.; Li, C. An empirical study on the correlation between urban morphology and heat island effect—A case study of prefecture-level administrative regions in China. Mod. Urban Res. 2025, 1, 50–57. [Google Scholar]
- Huang, L.; He, Y.; Ruan, W. Assessment and prediction of extreme climate indices in Southwest China based on the CMIP6 climate model. J. Yunnan Univ. 2024, 46, 686–696. [Google Scholar]
- Huang, X.; Wu, W.; Xu, J.; Li, S.; Jiang, Y.; Du, B.; Wang, L. Evaluation of the applicability of ERA5-Land precipitation reanalysis data in southwest China. Highl. Meteorol. 2023, 42, 1562–1575. [Google Scholar]
Classification | Code | Definition Name | Definition | Name |
---|---|---|---|---|
Extreme Index | TXx | Extreme Monthly Maximum Temperature | Maximum value of Tmax time series in a given month | °C |
TNn | Extreme Monthly Minimum Temperature | Minimum value of Tmin time series in a given month | °C | |
Warm index | SU25 | Number of Summer Days | Annual count when daily maximum temperature > 25 °C | d |
WSDI | Number of Warm Continuous Days | Annual number of days with at least 6 consecutive days when Tmax > 90th percentile | d | |
TN90p | Number of warm night days | Number of days when Tmin is greater than 90% of its time series threshold value | d | |
TX90p | Number of warm days | Number of days with Tmax greater than 90% of its time series threshold | d | |
Cold index | FD0 | Frost days | Number of days with daily minimum temperature < 0 °C during the year | d |
CSDI | Cold duration days | Annual number of days with at least 6 consecutive days when Tmin < 10th percentile | d | |
TN10p | Cold night days | Number of days with Tmin less than 10% of its time series threshold | d | |
TX10p | Cold days | Number of days when Tmax is less than the 10% threshold | d |
Category No. | Space-Time Jump Mode | Symbolic Representation |
---|---|---|
Category A | Self-constant-neighbourhood constant | , , |
Category B | Self-variation-neighbourhood constancy | , , |
Category C | Self-constant-neighbourhood change | , , |
Category D | Self-varying-neighbourhood-varying | , |
Climate Index | TX10p ** | TX90p ** | TN10p ** | TN90p ** | FD0 | SU25 ** | TXx ** | TNn ** | WSDI * | CSDI * |
---|---|---|---|---|---|---|---|---|---|---|
Rate of change | −0.0414 d/10a | 0.1035 d/10a | −0.0519 d/10a | 0.1036 d/10a | −0.0108 d/10a | 0.2044 d/10a | 0.0216 °C/10a | 0.0133 °C/10a | 0.0512 d/10a | −0.0355 d/10a |
Trend | Decline | Rise | Decline | Rise | Decline | Rise | Rise | Rise | Rise | Decline |
Year of mutation | 1943 | 2006 | 1942 | 2015 | 1942 | 1950 | 2013 | 2017 | 1947 | 1943 |
First main cycle | 13a | 21a | 12a | 21a | 15a | 19a | 21a | 21a | 20a | 13a |
Index | (t/t + 1) | HH | HL | LH | LL | SF | SC | Index | (t/t + 1) | HH | HL | LH | LL | SF | SC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TX10p | HH | A(0) | C(0) | B(0) | D(0) | 0.3571 | 0.6429 | SU25 | HH | A(4) | C(1) | B(0) | D(0) | 0.2143 | 0.7857 |
HL | C(0) | A(3) | D(0) | B(1) | HL | C(0) | A(2) | D(0) | B(0) | ||||||
LH | B(0) | D(0) | A(3) | C(2) | LH | B(0) | D(0) | A(1) | C(2) | ||||||
LL | D(0) | B(2) | C(0) | A(3) | LL | D(0) | B(0) | C(0) | A(4) | ||||||
TX90p | HH | A(0) | C(0) | B(0) | D(4) | 0.4286 | 0.5714 | TXx | HH | A(4) | C(0) | B(1) | D(0) | 0.2143 | 0.7857 |
HL | C(1) | A(0) | D(0) | B(0) | HL | C(0) | A(2) | D(2) | B(0) | ||||||
LH | B(0) | D(1) | A(0) | C(2) | LH | B(1) | D(1) | A(2) | C(0) | ||||||
LL | D(3) | B(2) | C(1) | A(0) | LL | D(0) | B(1) | C(0) | A(0) | ||||||
TN10P | HH | A(1) | C(0) | B(1) | D(0) | 0.4286 | 0.5714 | TNn | HH | A(5) | C(0) | B(0) | D(0) | 0.1429 | 0.8571 |
HL | C(0) | A(4) | D(0) | B(1) | HL | C(2) | A(0) | D(0) | B(0) | ||||||
LH | B(0) | D(0) | A(2) | C(1) | LH | B(0) | D(0) | A(1) | C(0) | ||||||
LL | D(1) | B(2) | C(1) | A(0) | LL | D(0) | B(0) | C(0) | A(6) | ||||||
TN90p | HH | A(0) | C(1) | B(0) | D(3) | 0.5 | 0.5 | WSDI | HH | A(0) | C(0) | B(0) | D(4) | 0.3571 | 0.6429 |
HL | C(0) | A(1) | D(0) | B(0) | HL | C(0) | A(0) | D(0) | B(1) | ||||||
LH | B(0) | D(0) | A(1) | C(1) | LH | B(0) | D(1) | A(0) | C(1) | ||||||
LL | D(2) | B(2) | C(3) | A(0) | LL | D(3) | B(1) | C(2) | A(1) | ||||||
FD0 | HH | A(2) | C(1) | B(0) | D(0) | 0.1429 | 0.8571 | CSDI | HH | A(0) | C(1) | B(1) | D(1) | 0.3571 | 0.6429 |
HL | C(0) | A(2) | D(0) | B(0) | HL | C(0) | A(1) | D(1) | B(1) | ||||||
LH | B(0) | D(0) | A(3) | C(1) | LH | B(0) | D(4) | A(1) | C(0) | ||||||
LL | D(0) | B(0) | C(0) | A(5) | LL | D(1) | B(1) | C(1) | A(0) |
Extreme Temperature Index | TXX | TNN | SU25 | WSDI | TN90P | TX90P | FD0 | CSDI | TN10P | TX10P |
---|---|---|---|---|---|---|---|---|---|---|
Past Trends | rise | rise | rise | rise | rise | rise | decline | decline | decline | decline |
Hurst | 0.77 | 0.87 | 0.86 | 0.73 | 0.78 | 0.76 | 0.84 | 0.68 | 0.85 | 0.92 |
Future Trend | rise | rise | rise | rise | rise | rise | decline | decline | decline | decline |
Goodness of Fit | 0.97 | 0.98 | 0.96 | 0.99 | 0.88 | 0.94 | 0.96 | 0.94 | 0.99 | 0.98 |
Cycle length | 7a | 15a | 15a | 21a | 15a | 15a | 12a | 6a | 15a | 16a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Tang, X. Spatial Polarisation of Extreme Temperature Responses and Its Future Persistence in Guangxi, China: A Multiscale Analysis over 1940–2023. Atmosphere 2025, 16, 1046. https://doi.org/10.3390/atmos16091046
Hu S, Tang X. Spatial Polarisation of Extreme Temperature Responses and Its Future Persistence in Guangxi, China: A Multiscale Analysis over 1940–2023. Atmosphere. 2025; 16(9):1046. https://doi.org/10.3390/atmos16091046
Chicago/Turabian StyleHu, Siyi, and Xiangling Tang. 2025. "Spatial Polarisation of Extreme Temperature Responses and Its Future Persistence in Guangxi, China: A Multiscale Analysis over 1940–2023" Atmosphere 16, no. 9: 1046. https://doi.org/10.3390/atmos16091046
APA StyleHu, S., & Tang, X. (2025). Spatial Polarisation of Extreme Temperature Responses and Its Future Persistence in Guangxi, China: A Multiscale Analysis over 1940–2023. Atmosphere, 16(9), 1046. https://doi.org/10.3390/atmos16091046