Investigation of Engine Exhaust Conversion and N2O/NH3 Generation on Pd-Based Catalyst
Abstract
1. Introduction
2. Methodology
2.1. Small-Sample Catalyst
2.2. Feed Gas
2.3. Design of Experiment
2.4. Estimation of Catalytic Performance
3. Results and Discussion
3.1. Conversion Efficiency of Regulated Pollutant
3.1.1. Effect of O2 Concentration on Conversion Efficiency
3.1.2. Effect of H2O Concentration on Conversion Efficiency
3.1.3. Effect of H2 Concentration on Conversion Efficiency
3.2. Generation of N2O and NH3
3.2.1. Generation Pathway
3.2.2. Effect of Feed Gas Composition on N2O and NH3
Effect of O2 Concentration on N2O and NH3
Effect of H2O Concentration on N2O and NH3
Effect of H2 Concentration on N2O and NH3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | |
NG | natural gas |
TWC | three-way catalyst |
QCL | quantum cascade laser |
WGS | water–gas shift |
SR | stream reforming |
Nomenclature | |
λ | excess air ratio |
c | concentration |
η | conversion efficiency |
Subscript | |
in | inlet |
out | outlet |
References
- Wang, Y.F.; Li, K.P.; Xu, X.M.; Zhang, Y.R. Transport energy consumption and saving in China. Renew. Sustain. Energy Rev. 2014, 29, 642–655. [Google Scholar] [CrossRef]
- Meng, Z.; Peng, Y.; Wu, J.; Wu, X.; Yan, K.; Li, B.; Zhang, B. Exergy analysis of China’s transportation sector. Sustain. Energy Technol. Assess. 2023, 57, 103154. [Google Scholar] [CrossRef]
- Fayyazbakhsh, A.; Bell, M.L.; Zhu, X.; Mei, X.; Koutný, M.; Hajinajaf, N.; Zhang, Y. Engine emissions with air pollutants and greenhouse gases and their control technologies. J. Clean. Prod. 2022, 376, 134260. [Google Scholar] [CrossRef]
- Divekar, P.; Han, X.; Zhang, X.; Zheng, M.; Tjong, J. Energy efficiency improvements and CO2 emission reduction by CNG use in medium- and heavy-duty spark-ignition engines. Energy 2022, 263, 125769. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Li, R.; Ge, Y.; Hao, L.; Tan, J. Tracing the regulated emissions of field-aged gasoline/natural gas bi-fuel taxis from new to 160,000 km: Deterioration and environmental implications. Fuel 2024, 362, 130863. [Google Scholar] [CrossRef]
- Muñoz, P.; Franceschini, E.A.; Levitan, D.; Rodriguez, C.R.; Humana, T.; Correa Perelmuter, G. Comparative analysis of cost, emissions and fuel consumption of diesel, natural gas, electric and hydrogen urban buses. Energy Convers. Manag. 2022, 257, 115412. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Saleh, K.; Wandel, A.P.; Fattah, I.M.R.; Yusaf, T.; Alrazen, H.A. Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: A review. Fuel 2024, 362, 130844. [Google Scholar] [CrossRef]
- Guo, J.; Ge, Y.; Hao, L.; Tan, J.; Li, J.; Feng, X. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems. Atmos. Environ. 2014, 99, 1–9. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Ge, Y.; Hao, L.; Tan, J.; Zhang, M.; Lyu, L.; Wang, Y.; Li, R.; Xu, Y. Alleviating the thermal aging of three-way catalyst applied to natural gas engine based on organic Rankine cycle. Appl. Therm. Eng. 2023, 231, 120926. [Google Scholar] [CrossRef]
- Holder, R.; Bollig, M.; Anderson, D.R.; Hochmuth, J.K. A discussion on transport phenomena and three-way kinetics of monolithic converters. Chem. Eng. Sci. 2006, 61, 8010–8027. [Google Scholar] [CrossRef]
- Fornasiero, P.; Kašpar, J.; Sergo, V.; Graziani, M. Redox behavior of high-surface-area Rh-, Pt-, and Pd-loaded Ce0.5Zr0.5O2 mixed oxide. J. Catal. 1999, 182, 56–69. [Google Scholar]
- Lou, D.; Ren, Y.; Li, X.; Zhang, Y.; Sun, X. Effect of Operating Conditions and TWC Parameters on Emissions Characteristics of a Stoichiometric Natural Gas Engine. Energies 2020, 13, 4905. [Google Scholar] [CrossRef]
- Ren, Y.; Lou, D.; Tan, P.; Zhang, Y.; Sun, X. Emission reduction characteristics of after-treatment system on natural gas engine: Effects of platinum group metal loadings and ratios. J. Clean. Prod. 2021, 298, 126833. [Google Scholar] [CrossRef]
- Bao, D. Dynamics and correlation of platinum-group metals spot prices. Resour. Policy 2020, 68, 101772. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, S.; Zhang, X.; Gong, M.; Chen, Y. Performance of Pd/CeO2-ZrO2-Al2O3 catalyst for motorcycle. J. Rare Earths 2009, 27, 728–732. [Google Scholar] [CrossRef]
- Qian, Y.; Wei, X.; Sun, Y.; Tang, F.; Meng, S.; Qiu, L.; Wang, T.; Ye, B.; Pan, T.; Zhang, Y. Investigation of the formation characteristics of N2O and NH3 for stoichiometric natural gas engines with Pd-only catalyst. Fuel 2022, 329, 125223. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. Sci. Eng. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Raj, A. Methane Emission Control A review of mobile and stationary source emissions abatement technologies for natural gas engines. Johns. Matthey Technol. Rev. 2016, 60, 228–235. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Isocyanic acid and ammonia in vehicle emissions. Transp. Res. Part D-Transp. Environ. 2016, 49, 259–270. [Google Scholar] [CrossRef]
- Jeong, J.W.; Baek, S.; Park, S.; Lee, S.; Lim, Y.; Lee, K. Trends in NOx and NH3 emissions caused by three-way catalysts. Fuel 2024, 366, 131282. [Google Scholar] [CrossRef]
- Lyu, L.; Sun, W.; Feng, P.; Wang, H.; Hao, L.; Tan, J.; Wang, X.; Song, C.; Li, H.; Li, Z.; et al. NH3 and N2O emission durability of the heavy-duty diesel engine with DOC, DPF, SCR, and ASC through the accelerated aging method. Fuel 2023, 339, 126950. [Google Scholar] [CrossRef]
- Wang, X.; Ge, Y.; Gong, H.; Yang, Z.; Tan, J.; Hao, L.; Su, S. Ammonia emissions from China-6 compliant gasoline vehicles tested over the WLTC. Atmos. Environ. 2019, 199, 136–142. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Unregulated emissions from light-duty hybrid electric vehicles. Atmos. Environ. 2016, 136, 134–143. [Google Scholar] [CrossRef]
- Fang, L.J.; Song, W.T.; Yang, Y.Q.; Ye, G. Inventory of Anthropogenic Ammonia Emissions in Beijing-Tianjin-Hebei and Its Surrounding Areas from 2008 to 2020. Res. Environ. Sci. 2023, 36, 500–509. [Google Scholar]
- Fenn, M.E.; Bytnerowicz, A.; Schilling, S.L.; Vallano, D.M.; Zavaleta, E.S.; Weiss, S.B.; Morozumi, C.; Geiser, L.H.; Hanks, K. On-road emissions of ammonia: An underappreciated source of atmospheric nitrogen deposition. Sci. Total Environ. 2018, 625, 909–919. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of cold temperature on Euro 6 passenger car emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Shao, S.; Li, G. Ammonia emissions of a natural gas engine at the stoichiometric operation with TWC. Appl. Therm. Eng. 2018, 130, 1363–1372. [Google Scholar] [CrossRef]
- Zhu, H.; McCaffery, C.; Yang, J.; Li, C.; Karavalakis, G.; Johnson, K.C.; Durbin, T.D. Characterizing emission rates of regulated and unregulated pollutants from two ultra-low NOx CNG heavy-duty vehicles. Fuel 2020, 277, 118192. [Google Scholar] [CrossRef]
- Li, M.; Tian, H.; Wei, Z.; Zhang, Q.; Shen, B. Ammonia and nitrous oxide emissions of a stoichiometric natural gas engine operating with high caloric value and low caloric value fuels. Fuel 2021, 285, 119166. [Google Scholar] [CrossRef]
- Zheng, T.; Lu, B.; Harle, G.; Yang, D.; Wang, C.; Zhao, Y. A comparative study of Rh-only, Pd-only and Pd/Rh catalysts. Appl. Catal. A Gen. 2020, 602, 117649. [Google Scholar] [CrossRef]
- Wang, C.; Xia, W.; Yang, D.; Zheng, T.; Rong, Y.; Du, J.; Wu, B.; Zhao, Y. Understanding ammonia and nitrous oxide formation in typical three-way catalysis during the catalyst warm-up period. J. Hazard. Mater. 2022, 438, 129553. [Google Scholar] [CrossRef]
- Wang, C.; Xia, W.; Zhao, Y. New insight into hydroxyl-mediated NH3 formation on the Rh-CeO2 catalyst surface during catalytic reduction of NO by CO. Chin. J. Catal. 2017, 38, 1399–1405. [Google Scholar] [CrossRef]
- Nevalainen, P.; Kinnunen, N.M.; Kirveslahti, A.; Kallinen, K.; Maunula, T.; Keenan, M.; Suvanto, M. Formation of NH3 and N2O in a modern natural gas three-way catalyst designed for heavy-duty vehicles: The effects of simulated exhaust gas composition and ageing. Appl. Catal. A-Gen. 2018, 552, 30–37. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Guan, N.; Li, L. Methane Activation and Utilization: Current Status and Future Challenges. Energy Technol. 2019, 8, 1900826. [Google Scholar] [CrossRef]
- RJ, B.S.; Loganathan, M.; Shantha, M.S. A Review of the Water Gas Shift Reaction Kinetics. Int. J. Chem. React. Eng. 2010, 8, 4. [Google Scholar] [CrossRef]
- Peng, X.; Jin, Q.B. Molecular simulation of methane steam reforming reaction for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 7569–7585. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Diameter × length | 118.4 × 100 | mm |
Mesh number | 750 | / |
Precious metal | Pd | / |
Washcoat | γ-Al2O3, Ce0.5Zr0.5O2 | / |
Support | Cordierite | / |
Lambda | O2 (ppm) | CO2 (%) | CO (ppm) | CH4 (ppm) | NO (ppm) | H2O (%) | H2 (ppm) |
---|---|---|---|---|---|---|---|
0.9705 | 1000 | 8 | 4500 | 1500 | 1000 | 8 | - |
0.9863 | 3000 | 8 | 4500 | 1500 | 1000 | 8 | - |
0.9941 | 4000 | 8 | 4500 | 1500 | 1000 | 8 | - |
1.0020 | 5000 | 8 | 4500 | 1500 | 1000 | 8 | - |
1.0176 | 7000 | 8 | 4500 | 1500 | 1000 | 8 | - |
H2O (%) | CO2 (%) | CO (ppm) | CH4 (ppm) | NO (ppm) | O2 (ppm) | H2 (ppm) |
---|---|---|---|---|---|---|
0 | 8 | 4500 | 1500 | 1000 | - | - |
8 | 8 | 4500 | 1500 | 1000 | - | - |
16 | 8 | 4500 | 1500 | 1000 | - | - |
H2 (ppm) | H2O (%) | CO2 (%) | CO (ppm) | CH4 (ppm) | NO (ppm) | O2 (ppm) |
---|---|---|---|---|---|---|
0 | 8 | 8 | 4500 | 1500 | 1000 | - |
500 | 8 | 8 | 4500 | 1500 | 1000 | - |
1000 | 8 | 8 | 4500 | 1500 | 1000 | - |
1500 | 8 | 8 | 4500 | 1500 | 1000 | - |
H2 (ppm) | H2O (%) | CO2 (%) | CO (ppm) | CH4 (ppm) | NO (ppm) |
---|---|---|---|---|---|
0 | 8 | 8 | 4500 | 1500 | 1000 |
1500 | 8 | 8 | 4500 | 1500 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, X.; Tan, J.; Dong, C.; Hou, L.; Feng, J.; Ge, Y. Investigation of Engine Exhaust Conversion and N2O/NH3 Generation on Pd-Based Catalyst. Atmosphere 2025, 16, 1038. https://doi.org/10.3390/atmos16091038
Wang C, Wang X, Tan J, Dong C, Hou L, Feng J, Ge Y. Investigation of Engine Exhaust Conversion and N2O/NH3 Generation on Pd-Based Catalyst. Atmosphere. 2025; 16(9):1038. https://doi.org/10.3390/atmos16091038
Chicago/Turabian StyleWang, Chongyao, Xin Wang, Jianwei Tan, Chen Dong, Liangxiao Hou, Jianyong Feng, and Yunshan Ge. 2025. "Investigation of Engine Exhaust Conversion and N2O/NH3 Generation on Pd-Based Catalyst" Atmosphere 16, no. 9: 1038. https://doi.org/10.3390/atmos16091038
APA StyleWang, C., Wang, X., Tan, J., Dong, C., Hou, L., Feng, J., & Ge, Y. (2025). Investigation of Engine Exhaust Conversion and N2O/NH3 Generation on Pd-Based Catalyst. Atmosphere, 16(9), 1038. https://doi.org/10.3390/atmos16091038