Projected Drought Risk to Vegetation Productivity Across the Mongolian Plateau Under CMIP6 Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)
- (1)
- Calculation of potential evapotranspiration:
- (2)
- The climatic water balance for month j is calculated as the difference between precipitation and potential evapotranspiration.
- (3)
- The cumulative difference between precipitation and PET over different time scales was calculated, denoted as . The variable represents the cumulative water deficit over a time scale of k months, calculated as the sum of the deficits from the current month j and the preceding k − 1 month in year i. The resulting time series was then fitted to a log-logistic probability distribution to obtain the standardized SPEI values.When p ≤ 0.5, , and when p > 0.5, , where p is the cumulative probability of at a given time scale, = 2.515517, = 0.802853, = 0.010328, = 1.432788, = 0.189269, and = 0.001308. The SPEI on a 12-month time scale was used to characterize drought in the present study. As the SPEI represents standardized anomalies relative to a long-term climatology, no additional detrending was applied, unlike NPP, which required detrending to isolate climate-driven interannual variability. The drought severity was classified according to the SPEI, as shown in Table 3.
2.3.2. Carnegie–Ames–Stanford Approach (CASA) Model
2.3.3. Assessment of Drought Risk of NPP
3. Results
3.1. Model Evaluation
3.2. Spatiotemporal Dynamics of SPEI and NPP over the Mongolia Plateau
3.3. Future Changes in Drought Risk on the Mongolian Plateau
3.4. Relative Changes in Future Drought Risk on the Mongolian Plateau
3.5. Analysis of Dominant Factors Influencing Drought Vulnerability
4. Discussion
4.1. Future Trends of Drought over the Mongolia Plateau
4.2. Assessment of Drought Risk on the Mongolia Plateau
4.3. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, L.; Zhao, X.; Gao, X.; Jia, R.; Yang, M.; Yang, X.; Wu, Y.; Siddique, K.H.M. Effect of natural factors and management practices on agricultural water use efficiency under drought: A meta-analysis of global drylands. J. Hydrol. 2021, 594, 125977. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Bole, Y.; Guga, S.; Riao, D.; Zhang, J.; Tong, Z.; Liu, X. Emergency constraint-based CMIP6 predictions for future droughts on the Mongolian Plateau. J. Hydrol. 2024, 645, 132156. [Google Scholar] [CrossRef]
- Sabzevari, Y.; Eslamian, S.; Pamula, A.S.P.; Bazrkar, M.H. Drought Trend Analysis Using Standardized Precipitation Evapotranspiration Index in Cold-Climate Regions. Atmosphere 2025, 16, 482. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Shinoda, M. Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat. Hazards 2012, 66, 995–1008. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; Wang, M. Comparative study on bivariate statistical characteristics of drought in Shandong using SPI and SPEI. Sci. Rep. 2025, 15, 11268. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, C.; Su, J.; Gou, J.; Hu, J.; Zhao, X.; Xu, Y. A new high-resolution multi-drought-index dataset for mainland China. Earth Syst. Sci. Data 2025, 17, 837–853. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Begueria, S.; Trigo, R.; Lopez-Moreno, J.I.; Azorin-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Mondal, S.; Mishra, A.K.; Leung, R.; Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 2023, 14, 144. [Google Scholar] [CrossRef]
- Wei, W.; Wang, J.; Wang, X.; Yan, P.; Xie, B.; Zhou, J.; Liu, T.; Lu, D. The response of global terrestrial water storage to drought based on multiple climate scenarios. Atmos. Res. 2024, 303, 107331. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, R.; Yu, Z.; Zhu, S.; Qie, X.; Wu, J.; Li, P. Revisiting the porter hypothesis within the economy-environment-health framework: Empirical analysis from a multidimensional perspective. J. Environ. Manag. 2024, 349, 119557. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhao, C.Y.; Zhang, X.X. Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China. Agric. For. Meteorol. 2019, 278, 107660. [Google Scholar] [CrossRef]
- Cao, D.; Zhang, J.; Han, J.; Zhang, T.; Yang, S.; Wang, J.; Prodhan, F.A.; Yao, F. Projected Increases in Global Terrestrial Net Primary Productivity Loss Caused by Drought Under Climate Change. Earth’s Fut. 2022, 10, e2022EF002681. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, K.; Zhang, P.; Liu, G.; Liu, M.; Chen, X.; Willems, P. Spatiotemporal evolution of drought status and its driving factors attribution in China. Sci. Total Environ. 2025, 958, 178131. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Liu, D.; Wang, T.; Yang, T.; Yan, Z.; Liu, Y.; Zhao, Y.; Piao, S. Deciphering impacts of climate extremes on Tibetan grasslands in the last fifteen years. Sci. Bull. 2019, 64, 446–454. [Google Scholar] [CrossRef]
- Gu, X.; Guo, E.; Yin, S.; Wang, Y.; Mandula, N.; Wan, Z.; Yun, X.; Li, H.; Bao, Y. Differentiating cumulative and lagged effects of drought on vegetation growth over the Mongolian Plateau. Ecosphere 2022, 13, e4289. [Google Scholar] [CrossRef]
- Peng, J.; Wu, C.; Zhang, X.; Wang, X.; Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Change Biol. 2019, 25, 2174–2188. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef]
- Ji, Y.; Fu, J.; Lu, Y.; Liu, B. Three-dimensional-based global drought projection under global warming tendency. Atmos. Res. 2023, 291, 106812. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, X.; Lu, C.; Zhang, Y.; Luo, P.; Guo, P.; Huo, A.; Zhou, M. Quantitative assessment of spatiotemporal dynamics in vegetation NPP, NEP and carbon sink capacity in the Weihe River Basin from 2001 to 2020. J. Clean. Prod. 2023, 428, 139384. [Google Scholar] [CrossRef]
- He, Q.; Ju, W.; Dai, S.; He, W.; Song, L.; Wang, S.; Li, X.; Mao, G. Drought Risk of Global Terrestrial Gross Primary Productivity Over the Last 40 Years Detected by a Remote Sensing-Driven Process Model. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005944. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Yang, F.; Han, B.; Chen, S.; Liu, Y.; Yang, X.; He, T.; Chen, X.; Liu, C.; et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015. J. Arid Land 2019, 12, 1–17. [Google Scholar] [CrossRef]
- Chen, T.; Werf, G.R.; Jeu, R.A.M.; Wang, G.; Dolman, A.J. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 2013, 17, 3885–3894. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef]
- Jha, S.; Srivastava, R. Impact of drought on vegetation carbon storage in arid and semi-arid regions. Remote Sens. Appl. Soc. Environ. 2018, 11, 22–29. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, S.; Leng, G. Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2. J. Geogr. Sci. 2020, 30, 1219–1232. [Google Scholar] [CrossRef]
- van Oijen, M.; Beer, C.; Cramer, W.; Rammig, A.; Reichstein, M.; Rolinski, S.; Soussana, J.-F. A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events. Environ. Res. Lett. 2013, 8, 015032. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Ibrahim, M.; Ni, J. The Role of Climate Change and Its Sensitivity on Long-Term Standardized Precipitation Evapotranspiration Index, Vegetation and Drought Changing Trends over East Asia. Plants 2024, 13, 399. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Chen, Y.; Liu, Y.; Hu, Y.; Sun, F.; Kayumba, P. Projected Meteorological Drought over Asian Drylands under Different CMIP6 Scenarios. Remote Sens. 2021, 13, 4409. [Google Scholar] [CrossRef]
- Li, K.; Tong, Z.; Liu, X.; Zhang, J.; Tong, S. Quantitative assessment and driving force analysis of vegetation drought risk to climate change:Methodology and application in Northeast China. Agric. For. Meteorol. 2020, 282–283, 107865. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Ao, Z. Identification of critical drought thresholds affecting vegetation on the Mongolian Plateau. Ecol. Indic. 2024, 166, 112507. [Google Scholar] [CrossRef]
- Ren, J.; Guo, X.; Tong, S.; Bao, Y.; Bao, G.; Huang, X. Risk posed to vegetation net primary productivity by drought on the Mongolian Plateau. J. Geogr. Sci. 2023, 33, 2175–2192. [Google Scholar] [CrossRef]
- He, B.; Tuya, W.; Qinchaoketu, S.; Nanzad, L.; Yong, M.; Kesi, T.; Sun, C. Climate Change Characteristics of Typical Grassland in the Mongolian Plateau from 1978 to 2020. Sustainability 2022, 14, 16529. [Google Scholar] [CrossRef]
- Cao, X.; Feng, Y.; Shi, Z. Spatio-temporal Variations in Drought with Remote Sensing from the Mongolian Plateau During 1982–2018. Chin. Geogr. Sci 2020, 30, 1081–1094. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Moghaddam, S.M.; Azadi, H.; Mahmoudi, H.; Lahooti, S.; Sudar, S.; Pekovic, S.; Janečková, K. Facing up to drought events: Understanding the potentials and challenges within farming systems. Reg. Environ. Change 2024, 24, 119. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived from ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Sanjjava, A.; Qin, Z.; Zhou, Y.; Xu, G. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. Int. J. Climatol. 2015, 35, 4293–4306. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- Kou, Y.; Tong, S.; Mei, L.; Bao, Y. Future changes of dry-wet climate regions and its contributing climatic factors in China based on CMIP6 models. Int. J. Climatol. 2023, 43, 3570–3589. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Qin, Z.; Xin, X.; Bao, Y.; Bayarsaikan, S.; Zhou, Y.; Chuntai, B. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 84–93. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, J.; Wang, R.; Zhang, M.; Bao, Y.; Guo, E.; Wang, Y. Analysis for Spatio-Temporal Variation Characteristics of Droughts in Different Climatic Regions of the Mongolian Plateau Based on SPEI. Sustainability 2019, 11, 5767. [Google Scholar] [CrossRef]
- Li, Y.; Tong, S.; Bao, Y.; Guo, E.; Bao, Y. Prediction of Droughts in the Mongolian Plateau Based on the CMIP5 Model. Water 2020, 12, 2774. [Google Scholar] [CrossRef]
- Tong, S.; Lai, Q.; Zhang, J.; Bao, Y.; Lusi, A.; Ma, Q.; Li, X.; Zhang, F. Spatiotemporal drought variability on the Mongolian Plateau from 1980-2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Sci. Total Environ. 2018, 615, 1557–1565. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Yin, C.; Luo, M.; Meng, F.; Sa, C.; Yuan, Z.; Bao, Y. Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sens. 2022, 14, 3383. [Google Scholar] [CrossRef]
- Ji, R.; Tan, K.; Wang, X.; Pan, C.; Xin, L. Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020. Remote Sens. 2021, 13, 4480. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Zhu, X.; Shen, Z.; Yu, H. Drought risk assessment in China: Evaluation framework and influencing factors. Geogr. Sustain. 2020, 1, 220–228. [Google Scholar] [CrossRef]
- Ma, J.; Gao, J. Cascading effects of drought in Xilin Gol temperate grassland, China. Sci. Rep. 2023, 13, 10926. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, S.; Dai, E.; Zhao, D.; Ren, P.; Zhang, X. NPP vulnerability of the potential vegetation of China to climate change in the past and future. J. Geogr. Sci. 2016, 27, 131–142. [Google Scholar] [CrossRef]
- Mei, L.; Tong, S.; Yin, S.; Bao, Y.; Wang, Y.; Guo, E.; Li, F.; Huang, X.; Alateng, T.; Liu, D.; et al. Assessing water use efficiency reactivity to meteorological, hydrological, and agricultural droughts on the Mongolian Plateau. Int. J. Digit. Earth 2024, 17, 2398056. [Google Scholar] [CrossRef]
- He, J.; Letu, H.; Lei, Y.; Guo, E.; Bao, S.; Zhang, Y.; Tana, G.; Bao, Y. Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020. Remote Sens. 2022, 14, 685. [Google Scholar] [CrossRef]
- Guo, X.; Tong, S.; Ren, J.; Ying, H.; Bao, Y. Dynamics of Vegetation Net Primary Productivity and Its Response to Drought in the Mongolian Plateau. Atmosphere 2021, 12, 1587. [Google Scholar] [CrossRef]
- Gang, C.; Zhang, Y.; Wang, Z.; Chen, Y.; Yang, Y.; Li, J.; Cheng, J.; Qi, J.; Odeh, I. Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in response to future climate change. Glob. Planet. Change 2017, 148, 153–165. [Google Scholar] [CrossRef]
- Bejagam, V.; Sharma, A. Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecol. Inform. 2022, 70, 101732. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Xiong, J.; Ye, C.; Yong, Z.; Wang, Y.; He, D.; Xu, S. Relationships between climate change, phenology, edaphic factors, and net primary productivity across the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102708. [Google Scholar] [CrossRef]
- Dabanli, I. Drought Risk Assessment by Using Drought Hazard and vulnerability indexes. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1–15. [Google Scholar] [CrossRef]
- Yu, J.; Kim, J.E.; Lee, J.-H.; Kim, T.-W. Development of a PCA-Based Vulnerability and Copula-Based Hazard Analysis for Assessing Regional Drought Risk. KSCE J. Civ. Eng. 2021, 25, 1901–1908. [Google Scholar] [CrossRef]
- Li, G.; Yu, L.; Liu, T.; Bao, Y.; Yu, J.; Xin, B.; Bao, L.; Li, X.; Chang, X.; Zhang, S. Spatial and temporal variations of grassland vegetation on the Mongolian Plateau and its response to climate change. Front. Ecol. Evol. 2023, 11, 1067209. [Google Scholar] [CrossRef]
Model Name | Country | Grid (Lon × Lat) | |
---|---|---|---|
1 | ACCESS-CM2 | Australia | 0.25° × 0.25° |
2 | ACCESS-ESM1-5 | Australia | 0.25° × 0.25° |
3 | EC-Earth3 | Europe | 0.25° × 0.25° |
4 | EC-Earth3-Veg-LR | Europe | 0.25° × 0.25° |
5 | MPI-ESM1-2-HR | Germany | 0.25° × 0.25° |
6 | MPI-ESM1-2-LR | Germany | 0.25° × 0.25° |
7 | MRI-ESM2-0 | Japan | 0.25° × 0.25° |
Model Name | Country | Lattice Points | |
---|---|---|---|
1 | ACCESS-ESM1-5 | Australia | 192 × 145 |
2 | CanESM5 | Canada | 128 × 64 |
3 | CMCC-ESM2 | Italy | 288 × 192 |
4 | EC-Earth3-Veg | Europe | 512 × 256 |
5 | EC-Earth3-Veg-LR | Europe | 320 × 160 |
6 | INM-CM4-8 | Russia | 180 × 120 |
7 | MPI-ESM1-2-LR | Germany | 192 × 96 |
Grade | Type | SPEI Value |
---|---|---|
0 | Normal | more than −0.5 |
1 | Mild drought | (−1.00, −0.5] |
2 | Moderate drought | (−1.50, −1.00] |
3 | Severe drought | (−2.00, −1.50] |
4 | Extreme drought | less than −2.00 |
Emission Scenarios | Distance of the Center of Gravity Shift from 2021 to 2100 (Km) | Direction of Migration (Azimuth) | |
---|---|---|---|
Drought | SSP1-2.6 | 213.69 | Southeast (175°) |
probability | SSP2-4.5 | 1514.13 | Southwest (245°) |
SSP5-8.5 | 1130.3 | Southeast (140°) | |
Drought | SSP1-2.6 | 836.19 | Southeast (117°) |
vulnerability | SSP2-4.5 | 255.87 | Southeast (166°) |
SSP5-8.5 | 653.39 | Southeast (122°) | |
Drought | SSP1-2.6 | 1023 | Southeast (131°) |
risk | SSP2-4.5 | 426.22 | Southwest (210°) |
SSP5-8.5 | 1677.20 | Southeast (134°) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Tong, S.; Ren, J.; Bao, G.; Huang, X.; Bao, Y.; Altantuya, D. Projected Drought Risk to Vegetation Productivity Across the Mongolian Plateau Under CMIP6 Scenarios. Atmosphere 2025, 16, 1023. https://doi.org/10.3390/atmos16091023
Yang X, Tong S, Ren J, Bao G, Huang X, Bao Y, Altantuya D. Projected Drought Risk to Vegetation Productivity Across the Mongolian Plateau Under CMIP6 Scenarios. Atmosphere. 2025; 16(9):1023. https://doi.org/10.3390/atmos16091023
Chicago/Turabian StyleYang, Xueliang, Siqin Tong, Jinyuan Ren, Gang Bao, Xiaojun Huang, Yuhai Bao, and Dorjsuren Altantuya. 2025. "Projected Drought Risk to Vegetation Productivity Across the Mongolian Plateau Under CMIP6 Scenarios" Atmosphere 16, no. 9: 1023. https://doi.org/10.3390/atmos16091023
APA StyleYang, X., Tong, S., Ren, J., Bao, G., Huang, X., Bao, Y., & Altantuya, D. (2025). Projected Drought Risk to Vegetation Productivity Across the Mongolian Plateau Under CMIP6 Scenarios. Atmosphere, 16(9), 1023. https://doi.org/10.3390/atmos16091023