Assessing Spatiotemporal Distribution of Air Pollution in Makkah, Saudi Arabia, During the Hajj 2023 and 2024 Using Geospatial Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Air Quality Dataset
2.2.2. Meteorological Dataset
2.3. Methods
2.3.1. Conversion of Satellite-Derived Pollutant Column Densities to Near-Surface Concentrations
- = estimated near-surface concentration (μg m−3)
- = satellite-retrieved column amount (mol m−2)
- = molecular weight of the pollutant (g mol−1)
- = conversion factor from grams to micrograms
- = assumed mixing layer height (1000 m)
2.3.2. Spatial Resampling and Surface Interpolation of Air Quality Data
2.3.3. Statistical and Correlation Analyses
Pearson Correlation Computation
- and are the individual observations,
- and are the sample means, and
- is the number of paired observations.
Significance Testing
3. Results and Discussion
3.1. Temporal and Spatial Analysis of Air Quality Before and During Hajj Season
3.2. Inter-Annual Variability in Air Quality Correlations Before and During Hajj
3.3. The Impact of Weather Variables on Air Quality During the Hajj Season 2024
3.4. Event-Driven Aerosol Hotspots During Hajj in Makkah 2024
3.5. Limitations, Implications, and Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alghamdi, M.A.; Khoder, M.; Abdelmaksoud, A.S.; Harrison, R.M.; Hussein, T.; Lihavainen, H.; Hämeri, K. Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Air Qual. Atmos. Health 2014, 7, 467–480. [Google Scholar] [CrossRef]
- Nayebare, S.R.; Aburizaiza, O.S.; Siddique, A.; Carpenter, D.O.; Hussain, M.M.; Zeb, J.; Khwaja, H.A. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF). Environ. Pollut. 2018, 243, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Farahat, A.; Chauhan, A.; Al Otaibi, M.; Singh, R.P. Air quality over major cities of Saudi Arabia during hajj periods of 2019 and 2020. Earth Syst. Environ. 2021, 5, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Vision, S. Vision 2030 Kingdom Saudi Arabia. 2017. Available online: https://www.vision2030.gov.sa/media/rc0b5oy1/saudi_vision203.pdf (accessed on 1 December 2024).
- Simpson, I.J.; Aburizaiza, O.S.; Siddique, A.; Barletta, B.; Blake, N.J.; Gartner, A.; Blake, D.R. Air quality in Mecca and surrounding holy places in Saudi Arabia during Hajj: Initial survey. Environ. Sci. Technol. 2014, 48, 8529–8537. [Google Scholar] [CrossRef]
- Alasmari, A. Meningococcal Vaccination and Travel Health in Hajj Pilgrims–A Study of Pilgrims to Mecca, Saudi Arabia. Doctoral Thesis, London School of Hygiene & Tropical Medicine, London, UK, 2020. [Google Scholar]
- Habeebullah, T.M. An analysis of air pollution in Makkah-A view point of source identification. Environ. Asia 2013, 2, 11–17. [Google Scholar]
- Almaliki, A.H.; Derdour, A.; Ali, E. Air Quality Index (AQI) Prediction in Holy Makkah based on machine learning methods. Sustainability 2023, 15, 13168. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H. Urban Air Pollution Monitoring by Ground-Based Stations and Satellite Data; Springer: Berlin/Heidelberg, Germany, 2019; Volume 10. [Google Scholar]
- Zhou, B.; Zhang, S.; Xue, R.; Li, J.; Wang, S. A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring. J. Environ. Sci. 2023, 123, 3–14. [Google Scholar] [CrossRef]
- Guanter, L.; Aben, I.; Tol, P.; Krijger, J.M.; Hollstein, A.; Köhler, P.; Landgraf, J. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 2015, 8, 1337–1352. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, H.; Zhang, X.; Gao, Y.; Zheng, X.; Liu, X. Study on calculation and validation of tropospheric ozone by ozone monitoring instrument–microwave limb sounder over China. Int. J. Remote Sens. 2020, 41, 9101–9120. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Abonomi, A.; De Lacy, T.; Pyke, J. Environmental impact of the hajj. Int. J. Relig. Tour. Pilgr. 2022, 10, 12. [Google Scholar]
- Ahmed, O.B.; Habeebullah, T.M. Health Impacts of Air Pollution During a Short-Term Event (Hajj). 2024. Available online: https://www.researchgate.net/profile/Omar-Ahmed-34/publication/378714432_Health_Impacts_of_Air_Pollution_during_a_short-term_event_Hajj/links/65e6d5bdadc608480a01a40e/Health-Impacts-of-Air-Pollution-during-a-short-term-event-Hajj.pdf (accessed on 5 August 2025).
- Mitra, B.; Hridoy, A.E.E.; Mahmud, K.; Uddin, M.S.; Talha, A.; Das, N.; Rahman, M.M. Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations. Remote Sens. 2024, 16, 381. [Google Scholar] [CrossRef]
- General Authority for Statistics (GASTAT). Population Estimates—Kingdom of Saudi Arabia—2022. Available online: https://www.stats.gov.sa/en (accessed on 10 December 2024).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Morillas, C.; Alvarez, S.; Serio, C.; Masiello, G.; Martinez, S. TROPOMI NO2 Sentinel-5P data in the Community of Madrid: A detailed consistency analysis with in situ surface observations. Remote Sens. Appl. Soc. Environ. 2024, 33, 101083. [Google Scholar] [CrossRef]
- Faisal, M.; Jaelani, L.M. Spatio-temporal analysis of nitrogen dioxide (NO2) from Sentinel-5P imageries using Google Earth Engine changes during the COVID-19 social restriction policy in jakarta. Nat. Hazards Res. 2023, 3, 344–352. [Google Scholar] [CrossRef]
- Bodah, B.W.; Neckel, A.; Maculan, L.S.; Milanes, C.B.; Korcelski, C.; Ramírez, O.; Oliveira, M.L. Sentinel-5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J. Clean. Prod. 2022, 357, 131960. [Google Scholar] [CrossRef]
- Levelt, P.F.; Stein Zweers, D.C.; Aben, I.; Bauwens, M.; Borsdorff, T.; De Smedt, I.; Verhoelst, T. Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–53. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Thépaut, J.N. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 2016, 124, 281–289. [Google Scholar] [CrossRef]
- Liu, P.; Chen, X. Tropospheric Atmospheric Heterogeneities of ALOS-2 Interferograms in the Greater Bay Area. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11777–11793. [Google Scholar] [CrossRef]
- King, A.P.; Eckersley, R.J. Descriptive statistics II: Bivariate and multivariate statistics. In Statistics for Biomedical Engineers and Scientists; Academic Press: London, UK, 2019; pp. 23–56. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Alsaqr, A.M. Remarks on the use of Pearson’s and Spearman’s correlation coefficients in assessing relationships in ophthalmic data. Afr. Vis. Eye Health 2021, 80, 10. [Google Scholar] [CrossRef]
- Weber, M.M.; Stevens, R.D.; Diniz-Filho, J.A.F.; Grelle, C.E.V. Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 2017, 40, 817–828. [Google Scholar] [CrossRef]
- Tedoldi, D.; Kim, B.; Sandoval, S.; Forquet, N.; Tassin, B. Common mistakes and solutions for a better use of correlation-and regression-based approaches in environmental sciences. In Environmental Modelling & Software; Elsevier: Amsterdam, The Netherlands, 2025; p. 106526. [Google Scholar]
- Deng, J.; Deng, Y.; Cheong, K.H. Combining conflicting evidence based on Pearson correlation coefficient and weighted graph. Int. J. Intell. Syst. 2021, 36, 7443–7460. [Google Scholar] [CrossRef]
- Pasha, M.J.; Alharbi, B.H. Characterization of size–fractionated PM10 and associated heavy metals at two semi–arid holy sites during Hajj in Saudi Arabia. Atmos. Pollut. Res. 2015, 6, 162–172. [Google Scholar] [CrossRef]
- Morsy, E.; Habeebullah, T.M.; Othman, A. Assessing the air quality of megacities during the COVID-19 pandemic lockdown: A case study from Makkah City, Saudi Arabia. Arab. J. Geosci. 2021, 14, 548. [Google Scholar] [CrossRef]
- Al-Jeelani, H.A. Evaluation of air quality in the Holy Makkah during Hajj season 1425 H. J. Appl. Sci. Res. 2009, 5, 115–121. [Google Scholar]
- Habeebullah, T.M.; Munir, S.; Morsy, E.A.; Mohammed, A.M. Spatial and temporal analysis of air pollution in Makkah, the Kingdom of Saudi Arabia. In Proceedings of the 5th International Conference on Environmental Science and Technology, San Antonio, TX, USA, 12–16 July 2010; Volume 4618, pp. 65–70. [Google Scholar]
- Fallatah, A.; Imam, A. Detecting Land Surface Temperature Variations Using Earth Observation at the Holy Sites in Makkah, Saudi Arabia. Sustainability 2023, 15, 13355. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Munir, S.A.I.D.; Habeebullah, T.M. Characterization of atmospheric aerosols in Makkah. Int. J. Agric. Environ. Res. 2015, 1, 1–18. [Google Scholar]
- Chowdhury, S.R.; ALKHAMMAS, F.; ALMSHAR, Z.; ALMADI, H. Air pollution from vehicles in Makkah, Saudi Arabia: Challenges and sustainable solutions. Mater. Res. Proc. 2025, 48, 634–642. [Google Scholar] [CrossRef]
- Tayan, O. A proposed model for optimizing the flow of pilgrims between Holy sites during Hajj using traffic congestion control. Proc. Int. J. Eng. Technol. 2010, 10, 55–59. [Google Scholar]
- Dasari, H.P.; Desamsetti, S.; Langodan, S.; Karumuri, R.K.; Singh, S.; Hoteit, I. Atmospheric conditions and air quality assessment over NEOM, kingdom of Saudi Arabia. Atmos. Environ. 2020, 230, 117489. [Google Scholar] [CrossRef]
- Rahman, J.; Thu, M.; Arshad, N.; Van der Putten, M. Mass gatherings and public health: Case studies from the Hajj to Mecca. Ann. Glob. Health 2017, 83, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Nayebare, S.R.; Aburizaiza, O.S.; Khwaja, H.A.; Siddique, A.; Hussain, M.M.; Zeb, J.; Blake, D.R. Chemical characterization and source apportionment of PM2. 5 in Rabigh, Saudi Arabia. Aerosol Air Qual. Res. 2016, 16, 3114–3129. [Google Scholar] [CrossRef]
- Munir, S.; Habeebullah, T.M.; Seroji, A.R.; Morsy, E.A.; Mohammed, A.M.; Saud, W.A.; Awad, A.H. Modeling particulate matter concentrations in Makkah, applying a statistical modeling approach. Aerosol Air Qual. Res. 2013, 13, 901–910. [Google Scholar] [CrossRef]
- Othman, N.; Jafri, M.Z.M.; San, L.H. Estimating particulate matter concentration over arid region using satellite remote sensing: A case study in Makkah, Saudi Arabia. Mod. Appl. Sci. 2010, 4, 131. [Google Scholar] [CrossRef]
- Lihavainen, H.; Alghamdi, M.A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A.S.; Al-Jeelani, H.; Shabbaj, I.I.; Almehmadi, F.M. Aerosol Optical Properties at Rural Background Area in Western Saudi Arabia. Atmos. Res. 2017, 197, 370–378. [Google Scholar] [CrossRef]
- Khoder, M.I. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ. 2007, 41, 554–566. [Google Scholar] [CrossRef]
- Shabbaj, I.I.; Alghamdi, M.A.; Shamy, M.; Hassan, S.K.; Alsharif, M.M.; Khoder, M.I. Risk assessment and implication of human exposure to road dust heavy metals in Jeddah, Saudi Arabia. Int. J. Environ. Res. Public Health 2018, 15, 36. [Google Scholar] [CrossRef]
- McCabe, M.; AlShalan, M.; Hejazi, M.; Beck, H.; Maestre, F.T.; Guirado, E.; Gallouzi, I.E. Climate Futures Report: Saudi Arabia in a 3 Degrees Warmer World. 2023. Available online: https://www.researchgate.net/publication/374632030_Climate_Futures_Report_Saudi_Arabia_in_a_3-degrees_warmer_world (accessed on 10 December 2024).
- Khan, M.; Tariq, S.; Haq, Z.U.; Rashid, M. Understanding the spatiotemporal distribution of aerosols and their association with natural and anthropogenic factors over Saudi Arabia using multi-sensor remote sensing data. Air Qual. Atmos. Health 2024, 17, 2365–2394. [Google Scholar] [CrossRef]
- Abdalmogith, S.S.; Harrison, R.M. An analysis of spatial and temporal properties of daily sulfate, nitrate and chloride concentrations at UK urban and rural sites. J. Environ. Monit. 2006, 8, 691–699. [Google Scholar] [CrossRef]
- Hussein, T.; Alghamdi, M.A.; Khoder, M.; AbdelMaksoud, A.S.; Al-Jeelani, H.; Goknil, M.K.; Hämeri, K. Particulate matter and number concentrations of particles larger than 0.25 µm in the urban atmosphere of Jeddah, Saudi Arabia. Aerosol Air Qual. Res. 2014, 14, 1383–1391. [Google Scholar] [CrossRef]
- Mashat, B.H. Bacterial and Chemical Contamination Associated Carpet Dust in the Holy Mosque, Makkah Al-Mukarramah. J. King Abdulaziz Univ. 2016, 26, 83–91. [Google Scholar]
- Seroji, A.R. Particulates in the atmosphere of Makkah and Mina Valley during the Ramadan and Hajj seasons of 2004 and 2005. In Air Pollution XIX; Brebbia, C.A., Longhurst, J.W.S., Popov, V., Eds.; Wessex Institute of Technology: Hampshire, UK, 2011; pp. 319–327. [Google Scholar]
- Alwadei, M.M. Air Pollution Climatology of Particulate Matter in Dammam, Saudi Arabia: Composition, Sources and Toxicity. Doctoral Thesis, University of Birmingham, Birmingham, UK, 2022. [Google Scholar]
- Al-Rashdi, A.; Ebqa’ai, M.; Harb, M.; Faidi, F. A solid phase extraction procedure for the determination of heavy metals in street dust from Dammam, Kingdom of Saudi Arabia and Estimation of the health risk. J. Mater. Environ. Sci 2017, 8, 2050–2061. [Google Scholar]
- Al-Hemoud, A.; Al-Dousari, A.; Al-Shatti, A.; Al-Khayat, A.; Behbehani, W.; Malak, M. Health impact assessment associated with exposure to PM10 and dust storms in Kuwait. Atmosphere 2018, 9, 6. [Google Scholar] [CrossRef]
- Parker, S.; Steffen, R.; Rashid, H.; Cabada, M.M.; Memish, Z.A.; Gautret, P.; Mahomed, O. Sacred journeys and pilgrimages: Health risks associated with travels for religious purposes. J. Travel Med. 2024, 31, taae122. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, T.; Xiao, W.; Zhao, S.; Tie, X. Weather-climate anomalies and regional transport contribute to air pollution in northern China during the COVID-19 lockdown. J. Geophys. Res. Atmos. 2022, 127, e2021JD036345. [Google Scholar] [CrossRef]
- Shaheed, S.H.; Ghawi, A.H.; Al-Obaedi, J.T.S. Air pollution assessment at University of Al-Qadisiyah associated with traffic from neighbouring roads. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1895, p. 012034. [Google Scholar]
- Perrino, C.; Canepari, S.; Catrambone, M.; Dalla Torre, S.; Rantica, E.; Sargolini, T. Influence of natural events on the concentration and composition of atmospheric particulate matter. Atmos. Environ. 2009, 43, 4766–4779. [Google Scholar] [CrossRef]
- Osra, F.A.; Alzahrani, J.S.; Alsoufi, M.S.; Osra, O.A.; Mirza, A.Z. Environmental and economic sustainability in the Hajj system. Arab. J. Geosci. 2021, 14, 2121. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.H.; Siddique, Z. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. Int. J. Hydrogen Energy 2025, 102, 1026–1044. [Google Scholar] [CrossRef]
- Kamga, C.; Miller, B.; Spertus, J.; Douglass, L.; Ross, B.; Eickemeyer, P. A Study of the Feasibility of Pneumatic Transport of Municipal Solid Waste and Recyclables in Manhattan Using Existing Transportation Infrastructure (No. C-10-21); New York State Energy Research and Development Authority: New York, NY, USA, 2013. [Google Scholar]
- Yezli, S.; Ehaideb, S.; Yassin, Y.; Alotaibi, B.; Bouchama, A. Escalating climate-related health risks for Hajj pilgrims to Mecca. J. Travel Med. 2024, 31, taae042. [Google Scholar] [CrossRef] [PubMed]
- Lihavainen, H.; Alghamdi, M.A.; Hyvärinen, A.P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A.S.; Hämeri, K. Aerosols physical properties at Hada Al Sham, western Saudi Arabia. Atmos. Environ. 2016, 135, 109–117. [Google Scholar] [CrossRef]
- Ding, J.; Dai, Q.; Zhang, Y.; Xu, J.; Huangfu, Y.; Feng, Y. Air humidity affects secondary aerosol formation in different pathways. Sci. Total Environ. 2021, 759, 143540. [Google Scholar] [CrossRef]
- Tsiouri, V.; Kakosimos, K.E.; Kumar, P. Concentrations, sources and exposure risks associated with particulate matter in the Middle East Area—A review. Air Qual. Atmos. Health 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Rushdi, A.I.; Al-Mutlaq, K.F.; Al-Otaibi, M.; El-Mubarak, A.H.; Simoneit, B.R. Air quality and elemental enrichment factors of aerosol particulate matter in Riyadh City, Saudi Arabia. Arab. J. Geosci. 2013, 6, 585–599. [Google Scholar] [CrossRef]
- Rehan, M.; Munir, S. Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia. Toxics 2022, 10, 376. [Google Scholar] [CrossRef]
- Anil, I.; Alagha, O. The impact of COVID-19 lockdown on the air quality of Eastern Province, Saudi Arabia. Air Qual. Atmos. Health 2021, 14, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Orif, M.I.; El-Shahawi, M.S.; Ismail, I.M.; Rushdi, A.; Alshemmari, H.; El-Sayed, M.A. An extensive assessment on the distribution pattern of organic contaminants in the aerosols samples in the Middle East. Open Chem. 2022, 20, 1566–1574. [Google Scholar] [CrossRef]
- Vithanage, M.; Mayakaduwage, S.S.; Gunarathne, V.; Rajapaksha, A.U.; Ahmad, M.; Abduljabbar, A.; Ok, Y.S. Animal carcass burial management: Implications for sustainable biochar use. Appl. Biol. Chem. 2021, 64, 91. [Google Scholar] [CrossRef]
- Al-Dabbous, A.N.; Kumar, P. Source apportionment of airborne nanoparticles in a Middle Eastern city using positive matrix factorization. Environ. Sci. Process. Impacts 2015, 17, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Maciejczyk, P. Source apportionment and elemental composition of PM2. 5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2012, 3, 331–340. [Google Scholar] [CrossRef]
- Habeebullah, T.M. Assessment of ground-level ozone pollution with monitoring and modelling approaches in Makkah, Saudi Arabia. Arab. J. Geosci. 2020, 13, 1164. [Google Scholar] [CrossRef]
- Amato, F.; Padoan, E. Road dust emissions: Impact on air quality and health and possible mitigation. In Scientific Research Abstracts; Digilabs: Bari, Italy, 2018; Volume 8, p. 5. [Google Scholar]
- Hassan, H.; Saraga, D.; Kumar, P.; Kakosimos, K.E. Vehicle-induced fugitive particulate matter emissions in a city of arid desert climate. Atmos. Environ. 2020, 229, 117450. [Google Scholar] [CrossRef]
Dataset | Variables | Period (During) | Period (Before) | Temporal Resolution | Spatial Resolution | Source |
---|---|---|---|---|---|---|
Sentinel-5P | NO2, Aerosol, CO, SO2, HCHO | 26 June to 1 July 2023; 14–19 June 2024 | 26 March to 1 April 2023; 14–19 March 2024 | 2 Days | ~1.1 km | https://developers.google.com/earth-engine/datasets/catalog/sentinel-5p (accessed on 12 December 2024) |
ERA5-Land | Wind Speed and Direction, Temperature, Relative Humidity | 26 June to 1 July 2023; 14–19 June 2024 | - | Hourly | ~11 km | https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY (accessed on 5 August 2025) |
Var1 | Var2 | r_Before | r_During |
---|---|---|---|
Aerosol | NO2 | 0.7 | 0.19 |
Aerosol | CO | 0.62 | −0.29 |
Aerosol | SO2 | −0.28 | 0.11 |
Aerosol | HCHO | −0.23 | −0.17 |
NO2 | CO | 0.61 | 0.22 |
NO2 | SO2 | 0.16 | 0.11 |
NO2 | HCHO | −0.09 | 0.08 |
HCHO | SO2 | 0.49 | −0.23 |
HCHO | CO | −0.17 | −0.33 |
SO2 | CO | 0.05 | 0.42 |
Var1 | Var2 | r_Before | r_During |
---|---|---|---|
Aerosol | NO2 | 0.09 | −0.25 |
Aerosol | CO | −0.25 | −0.21 |
Aerosol | SO2 | −0.07 | −0.39 |
Aerosol | HCHO | −0.23 | −0.5 |
NO2 | CO | −0.42 | 0.01 |
NO2 | SO2 | −0.74 | 0.35 |
NO2 | HCHO | −0.57 | 0.04 |
HCHO | SO2 | 0.42 | 0.29 |
HCHO | CO | 0.59 | 0.15 |
SO2 | CO | 0.48 | 0.25 |
Variables | Windspeed | Wind Direction | Temperature | Humidity | Aerosol_ | HCHO | NO2 | SO2 | CO |
---|---|---|---|---|---|---|---|---|---|
Wind speed | 1 | ||||||||
Wind direction | 0.479 | 1 | |||||||
Temperature | −0.746 | −0.788 | 1 | ||||||
Humidity | 0.455 | 0.273 | −0.656 | 1 | |||||
Aerosol_ | −0.041 | −0.096 | −0.040 | 0.374 | 1 | ||||
HCHO | 0.088 | −0.208 | 0.056 | −0.180 | −0.495 | 1 | |||
NO2 | 0.347 | 0.449 | −0.380 | 0.052 | −0.249 | 0.042 | 1 | ||
SO2 | 0.058 | 0.036 | −0.090 | 0.107 | −0.390 | 0.294 | 0.347 | 1 | |
CO | 0.345 | 0.395 | −0.377 | 0.111 | −0.211 | 0.149 | 0.006 | 0.249 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albalawi, E.; Alzubaidi, H. Assessing Spatiotemporal Distribution of Air Pollution in Makkah, Saudi Arabia, During the Hajj 2023 and 2024 Using Geospatial Techniques. Atmosphere 2025, 16, 1025. https://doi.org/10.3390/atmos16091025
Albalawi E, Alzubaidi H. Assessing Spatiotemporal Distribution of Air Pollution in Makkah, Saudi Arabia, During the Hajj 2023 and 2024 Using Geospatial Techniques. Atmosphere. 2025; 16(9):1025. https://doi.org/10.3390/atmos16091025
Chicago/Turabian StyleAlbalawi, Eman, and Halima Alzubaidi. 2025. "Assessing Spatiotemporal Distribution of Air Pollution in Makkah, Saudi Arabia, During the Hajj 2023 and 2024 Using Geospatial Techniques" Atmosphere 16, no. 9: 1025. https://doi.org/10.3390/atmos16091025
APA StyleAlbalawi, E., & Alzubaidi, H. (2025). Assessing Spatiotemporal Distribution of Air Pollution in Makkah, Saudi Arabia, During the Hajj 2023 and 2024 Using Geospatial Techniques. Atmosphere, 16(9), 1025. https://doi.org/10.3390/atmos16091025