Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Investigation and Sample Collection
2.2.1. Investigation of Tree Layer and Determination of Forest Age
2.2.2. Investigation of Shrubs, Herbs, Litters, and Woody Debris
2.2.3. Soil Sampling
2.3. Determination of C and N Content
2.4. Biomass Calculation
2.5. C Density Calculation
2.6. Data Statistics and Analysis
3. Results
3.1. Ecosystem C Density and Its Distribution Pattern
3.2. C Density of Forest Ecosystem Components and Their Distribution Patterns
3.2.1. Vegetation C Density and Its Distribution Pattern
3.2.2. Plant Debris C Density and Its Distribution Pattern
3.2.3. Soil C Density and Its Distribution Pattern
3.3. C Sink of Tree and Woody Debris
3.4. Driving Factors of Ecosystem C Density
4. Discussion
4.1. Impact of Forest Succession on Stand C Density and Its Distribution
4.2. Driving Factors of Stand C Density During Forest Succession
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Pan, Y.; Plante, A.F.; Johnson, A.; Cole, J.; Birdsey, R. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin. For. Ecol. Manag. 2016, 374, 1–10. [Google Scholar] [CrossRef]
- An, X.; Zhang, M.; Zhang, H.; Liu, Y. Spatiotemporal changes and driving mechanisms of carbon stocks in the Yangtze River Basin of China over the past 20 years. Adv. Space Res. 2025, 75, 53–73. [Google Scholar] [CrossRef]
- Meeussen, C.; Govaert, S.; Vanneste, T.; Haesen, S.; Van Meerbeek, K.; Bollmann, K.; Brunet, J.; Calders, K.; Cousins, S.A.; Diekmann, M. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 2021, 759, 143497. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Luo, Y.; Bradford, J.B.; Poorter, H.; Perry, C.H.; Oleksyn, J. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl. Acad. Sci. USA 2014, 111, 13721–13726. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Luo, Y.; Finzi, A.C. Carbon and nitrogen dynamics during forest stand development: A global synthesis. New Phytol. 2011, 190, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, X.; Xin, Q.; Wu, J.; Xu, X.; Pei, F.; Li, X.; Du, G.; Cai, Y.; Lin, K. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. 2019, 124, 789–806. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Yan, S.; Chen, H.; Yang, J.; Wen, Y. Intra-annual cumulative effects and mechanisms of climatic factors on global vegetation biomes’ growth. Remote Sens. 2024, 16, 779. [Google Scholar] [CrossRef]
- Potter, C.S.; Klooster, S.; Brooks, V. Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales. Ecosystems 1999, 2, 36–48. [Google Scholar] [CrossRef]
- Wu, C.; Wang, T. Evaluating cumulative drought effect on global vegetation photosynthesis using numerous GPP products. Front. Environ. Sci. 2022, 10, 908875. [Google Scholar] [CrossRef]
- Fang, J.; Kato, T.; Guo, Z.; Yang, Y.; Hu, H.; Shen, H.; Zhao, X.; Kishimoto-Mo, A.W.; Tang, Y.; Houghton, R.A. Evidence for environmentally enhanced forest growth. Proc. Natl. Acad. Sci. USA 2014, 111, 9527–9532. [Google Scholar] [CrossRef] [PubMed]
- Shaver, G.R.; Canadell, J.; Chapin, F.S.; Gurevitch, J.; Harte, J.; Henry, G.; Ineson, P.; Jonasson, S.; Melillo, J.; Pitelka, L. Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis: Ecosystem responses to global warming will be complex and varied. Ecosystem warming experiments hold great potential for providing insights on ways terrestrial ecosystems will respond to upcoming decades of climate change. Documentation of initial conditions provides the context for understanding and predicting ecosystem responses. Bioscience 2000, 50, 871–882. [Google Scholar]
- Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 683–712. [Google Scholar] [CrossRef]
- Niu, S.; Chen, W.; Liáng, L.L.; Sierra, C.A.; Xia, J.; Wang, S.; Heskel, M.; Patel, K.F.; Bond-Lamberty, B.; Wang, J. Temperature responses of ecosystem respiration. Nat. Rev. Earth Environ. 2024, 5, 559–571. [Google Scholar] [CrossRef]
- Heimann, M.; Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 2008, 451, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Bao, A.; Jiapaer, G.; Jiang, L.; De Maeyer, P. Phenology-based seasonal terrestrial vegetation growth response to climate variability with consideration of cumulative effect and biological carryover. Sci. Total Environ. 2022, 817, 152805. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.U.; Vitousek, P.M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 1998, 68, 121–149. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, L.; Zhou, Y.; Ji, B.; Zhou, G.; Fang, H.; Yin, J.; Deng, X. Quantifying driving factors of vegetation carbon stocks of Moso bamboo forests using machine learning algorithm combined with structural equation model. For. Ecol. Manag. 2018, 429, 406–413. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.; Taylor, A.R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct. Ecol. 2017, 31, 419–426. [Google Scholar] [CrossRef]
- Joswig, J.S.; Wirth, C.; Schuman, M.C.; Kattge, J.; Reu, B.; Wright, I.J.; Sippel, S.D.; Rüger, N.; Richter, R.; Schaepman, M.E. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022, 6, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Y.; Wen, H.; Zhang, X.; Yu, J.; Wang, Q.; Han, S.; Wang, W. Biomass carbon sink stability of conifer and broadleaf boreal forests: Differently associated with plant diversity and mycorrhizal symbionts? Environ. Sci. Pollut. Res. 2023, 30, 115337–115359. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wan, S.; Piao, S.; Xia, J.; Ning, Y.; Zheng, M.; Hui, D.; Ru, J.; Han, J.; Feng, J. Global change and China’s terrestrial carbon sink: A quantitative review of 30 years’ ecosystem manipulative experiments. Ecol. Monogr. 2025, 95, e70005. [Google Scholar] [CrossRef]
- Gao, F.; Lu, K.X.; Qiao, Z.; Ma, F.K.; Jiang, Q.O. Assessment and predication of carbon neutrality in the eastern margin ecotone of Qinghai-Tibet Plateau. Acta Ecol. Sin. 2022, 42, 9442–9455. [Google Scholar]
- Cao, J.J.; Yang, S.R.; Zhou, J.J.; Zhang, L.L.; Hu, Z.Y.; Zhang, Q. The existence value of Qinghai-Tibetan Plateau: A case study on Maqu grassland. Acta Ecol. Sin. 2017, 37, 6415–6421. [Google Scholar] [CrossRef]
- Xu, T.W.; Zhao, X.Q.; Zhang, X.L.; Wang, X.G.; Geng, Y.Y.; Hu, L.Y.; Zhao, N.; Mao, S.J.; Liu, H.J.; Kang, S.P.; et al. Sustainable development of ecological grass-based livestock husbandry in Qinghai-Tibet Plateau alpine area: Principle, technology and practice. Acta Ecol. Sin. 2020, 40, 6324–6337. [Google Scholar]
- Wuyts, B.; Champneys, A.R.; House, J.I. Amazonian forest-savanna bistability and human impact. Nat. Commun. 2017, 8, 15519. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.W.; Luo, T.X.; Wu, S.T. Root biomass and underground C and N storage of primitive Korean pine and broad-leaved climax forest in Changbai Mountains at its different succession stages. J. Appl. Ecol. 2005, 16, 1195–1199. [Google Scholar]
- Lei, G.; Zhang, H.; Chang, F.; Pu, Y.; Zhu, Y.; Yang, M.; Zhang, W. Biomarkers of modern plants and soils from Xinglong Mountain in the transitional area between the Tibetan and Loess Plateaus. Quat. Int. 2010, 218, 143–150. [Google Scholar] [CrossRef]
- Han, C. The Soil Fertility Maintenance and Water Conservation Functions of the Forest Ecosystems in the Xinglong Mountain, China. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2020. [Google Scholar]
- Han, C.; Zhang, C.; Liu, Y.; Li, Y.; Zhou, T.; Khan, S.; Chen, N.; Zhao, C. The capacity of ion adsorption and purification for coniferous forests is stronger than that of broad-leaved forests. Ecotoxicol. Environ. Saf. 2021, 215, 112137. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Ling, L.; Chai, C.S.; Tao, J.X.; Li, G.L.; Zhang, G.Z.; Wang, D.F.; Qi, J.L.; Xue, R. Litterfall dynamics of typical forest communities at different succession stages in Xinglong Mountain of Gansu Province, China. J. Nanjing For. Univ. 2017, 41, 27–30. [Google Scholar]
- Wei, Q.; Ling, L.; Zhang, G.Z.; Chai, C.S.; Wang, D.F.; Tao, J.X.; Xue, R. Structure characteristics of dominant tree species population in different succession stages of forest community in Xinglong Mountain. J. Nanjing For. Univ. 2015, 39, 59–66. [Google Scholar]
- Zhu, J.; Hu, H.; Tao, S.; Chi, X.; Li, P.; Jiang, L.; Ji, C.; Zhu, J.; Tang, Z.; Pan, Y. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Yin, G.; Tang, X. Carbon Stocks of Forest Ecosystems in China: Biomass Equation; Science Press: Beijing, China, 2018. [Google Scholar]
- Yang, Y.; Mohammat, A.; Feng, J.; Zhou, R.; Fang, J. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 2007, 84, 131–141. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, K.; Wang, S.; Liu, H.; Zhao, H.; Qiao, X.; Hou, D.; Li, S. Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agric. Ecosyst. Environ. 2016, 235, 91–100. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Change Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Gong, C.; Wang, S.L.; Zeng, Z.Q.; Deng, S.J.; Chen, J.P.; Long, K.S. Carbon storage and its distribution pattern of evergreen broad-leaved forests at different succession stages in mid-subtropical China. J. Ecol. 2011, 30, 1935. [Google Scholar]
- Zhou, X.L.; Cai, Q.; Xiong, X.Y.; Fang, W.J.; Zhu, J.X.; Zhu, J.L.; Fang, J.Y.; Ji, C.J. Ecosystem carbon stock and within-system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China. Chin. J. Plant Ecol. 2018, 42, 703–712. [Google Scholar]
- Fang, J.Y.; Zhu, J.X.; Li, P. Canbon Budgets of Forest Ecosystem in China; Science Press: Beijing, China, 2021. [Google Scholar]
- Zhang, Q.Z.; Wang, C.K. Carbon density and distribution of six Chinese temperate forests. Sci. China Life Sci. 2010, 53, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yi, M.J.; Son, Y.; Park, P.S.; Lee, K.H.; Son, Y.M.; Kim, R.H.; Jeong, M.J. Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. J. Plant Biol. 2011, 54, 33–42. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, M.A. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric. For. Meteorol. 2006, 140, 51–63. [Google Scholar] [CrossRef]
- Ming, A.G.; Jia, H.Y.; Tian, Z.W.; Tao, Y.; Lu, L.H.; Cai, D.X.; Shi, Z.M.; Wang, W.X. Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages. J. Appl. Ecol. 2014, 25, 940. [Google Scholar]
- Genet, H.; Bréda, N.; Dufrene, E. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol. 2010, 30, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Hoover, C.M.; Smith, J.E. Aboveground live tree carbon stock and change in forests of conterminous United States: Influence of stand age. Carbon Balance Manag. 2023, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Bradford, J.B.; Kastendick, D.N. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA. Can. J. For. Res. 2010, 40, 401–409. [Google Scholar] [CrossRef]
- Sigurdsson, B.D.; Magnusson, B.; Elmarsdottir, A.; Bjarnadottir, B. Biomass and composition of understory vegetation and the forest floor carbon stock across Siberian larch and mountain birch chronosequences in Iceland. Ann. For. Sci. 2005, 62, 881–888. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.; Khanna, P. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- He, W.Q.; Chen, L.; Pang, D.B.; Cao, M.H.; Zhang, Y.Q.; Li, X.B. Effects of altered litter inputs on soil physicochemical properties in forest ecosystems. Acta Ecol. Sin. 2024, 44, 1755–1763. [Google Scholar]
- Krishna, M.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate more important than soils for predicting forest biomass at the continental scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.; Zhou, G.; Xu, X.; Liu, E.; Zhou, Y.; Zhang, F.; Li, C.; Fang, H.; Chen, L. Structural development and carbon dynamics of Moso bamboo forests in Zhejiang Province, China. For. Ecol. Manag. 2018, 409, 479–488. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 2015, 103, 1245–1252. [Google Scholar] [CrossRef]
- Bormann, F.H.; Likens, G.E. Pattern and Process in a Forested Ecosystem: Disturbance, Development and the Steady State Based on the Hubbard Brook Ecosystem Study; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Krankina, O.N.; Harmon, M. Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Pollut. 1995, 82, 227–238. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, G. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 2008, 28, 3937–3947. [Google Scholar]
- Huang, Y.H.; Li, Y.L.; Xiao, Y.; Wenigmann, K.O.; Zhou, G.Y.; Zhang, D.Q.; Wenigmann, M.; Tang, X.L.; Liu, J.X. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China. For. Ecol. Manag. 2011, 261, 1170–1177. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin, Germany, 2008. [Google Scholar]
Succession Stage | Stand Types | Dominant Species | Mean DBH (cm) | Mean Tree Height (m) | Stand Age (a) | Stand Density (No. hm−2) | Canopy Density | Altitude (m) |
---|---|---|---|---|---|---|---|---|
S1 | Broadleaf mixed forest | P. davidiana,
B. platyphylla | 15.58 | 11.92 | 71 | 970 | 0.85 | 2285 |
S2 | Coniferous–broadleaf mixed forest | B. platyphylla, P. wilsonii | 17.67 | 10.19 | 63 | 920 | 0.85 | 2376 |
S3 | Middle-aged P. wilsonii forest | P. wilsonii | 17.00 | 12.67 | 86 | 1286 | 0.9 | 2406 |
S4 | Near-mature P. wilsonii forest | P. wilsonii | 36.47 | 22.09 | 145 | 377 | 0.65 | 2440 |
Driving Factors | The Succession Stages of Forests | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
Mean DBH (cm) | 15.58 ± 0.19 b | 17.67 ± 0.81 b | 17.00 ± 0.88 b | 36.47 ± 0.71 a |
Mean height (m) | 11.72 ± 0.15 b | 10.19 ± 0.38 c | 12.67 ± 0.65 b | 22.09 ± 0.43 a |
Litter input (g/(m2 a)) | 465.18 ± 2.90 b | 494.07 ± 12.78 b | 612.24 ± 58.99 a | 475.63 ± 21.78 b |
Litter C/N | 29.03 ± 1.04 c | 34.18 ± 1.00 b | 39.34 ± 1.19 a | 41.25 ± 1.68 a |
Soil0–20cm C/N | 10.87 ± 0.43 b | 11.02 ± 0.10 b | 11.90 ± 0.38 b | 12.96 ± 0.19 a |
Soil20–100cm C/N | 10.67 ± 0.20 | 11.48 ± 0.76 | 10.48 ± 0.75 | 11.41 ± 0.70 |
Soil0–20cm TC (%) | 8.39 ± 0.91 | 9.50 ± 0.62 | 8.95 ± 0.59 | 7.55 ± 0.69 |
Soil20–100cm TC (%) | 3.31 ± 0.28 ab | 2.89 ± 0.41 ab | 2.12 ± 0.41 b | 4.09 ± 0.82 a |
Soil0–20cm TN (%) | 0.76 ± 0.05 a | 0.86 ± 0.05 a | 0.75 ± 0.03 a | 0.58 ± 0.05 b |
Soil20–100cm TN (%) | 0.31 ± 0.02 ab | 0.26 ± 0.04 ab | 0.20 ± 0.04 b | 0.35 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, W.; Chen, Z.; Ma, Q.; Ling, L.; Zhong, Y. Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus. Atmosphere 2025, 16, 890. https://doi.org/10.3390/atmos16070890
Zong W, Chen Z, Ma Q, Ling L, Zhong Y. Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus. Atmosphere. 2025; 16(7):890. https://doi.org/10.3390/atmos16070890
Chicago/Turabian StyleZong, Wenzhen, Zhengni Chen, Quanlin Ma, Lei Ling, and Yiming Zhong. 2025. "Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus" Atmosphere 16, no. 7: 890. https://doi.org/10.3390/atmos16070890
APA StyleZong, W., Chen, Z., Ma, Q., Ling, L., & Zhong, Y. (2025). Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus. Atmosphere, 16(7), 890. https://doi.org/10.3390/atmos16070890