Occurrence and Mitigation of PM2.5, NO2, CO and CO2 in Homes Due to Cooking and Gas Stoves
Abstract
1. Introduction
- (1)
- How common is poor air quality in homes with gas stoves?
- (2)
- Which pollutants are of greatest concern?
- (3)
- Do normal mitigation methods improve air quality in homes?
- (4)
- Which mitigation methods provide the best tools to improve indoor air quality (IAQ)?
2. Methods
2.1. Part 1: Volunteer Home Study
2.2. Part 2: Home Characterization Study
- Natural ventilation, diffusion and/or reaction on the room materials.
- A stove exhaust fan.
- A commercial catalytic O3 scrubber unit (CDA250) to test for NO2 removal.
- A commercial HEPA air purifier (Coway Airmega AP-1512HH Mighty).
- By quantifying the time for 50% removal of a given pollutant.
- By averaging the decay (ΔX/X(t)) for each time step over the measurement period.
3. Results
3.1. Part 1: Volunteer Home Study
3.2. Results Part 2: Home Characterization Study
- Natural ventilation, diffusion and/or reaction on the room materials.
- A stove exhaust fan.
- A commercial catalytic O3 scrubber unit (CDA250).
- A commercial HEPA air purifier (Coway Airmega AP-1512HH Mighty).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, B.C.; Pass, R.Z.; Delp, W.W.; Lorenzetti, D.M.; Maddalena, R.L. Pollutant concentrations and emission rates from natural gas cooking burners without and with range hood exhaust in nine California homes. Build. Environ. 2017, 122, 215–229. [Google Scholar] [CrossRef]
- Lebel, E.D.; Finnegan, C.J.; Ouyang, Z.; Jackson, R.B. Methane and NOx Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes. Environ. Sci. Technol. 2022, 56, 2529–2539. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.A.; Creekmore, A. Emissions and exposure to NOx, CO, CO2 and PM2.5 from a gas stove using reference and low-cost sensors. Atmos. Environ. 2024, 331, 120564. [Google Scholar] [CrossRef]
- Kashtan, Y.S.; Nicholson, M.; Finnegan, C.; Ouyang, Z.; Lebel, E.D.; Michanowicz, D.R.; Shonkoff, S.B.C.; Jackson, R.B. Gas and Propane Combustion from Stoves Emits Benzene and Increases Indoor Air Pollution. Environ. Sci. Technol. 2023, 57, 9653–9663. [Google Scholar] [CrossRef] [PubMed]
- Kim Oanh, N.T.; Huy, L.N.; Maneepatra, W.; Winijkul, E.; Giandomenico, A.; Tantrakarnapa, K.; Co, H.X.; Cuong, D.M.; Tsou, M.-C.M.; Hien, T.T.; et al. Comparative analysis of PM2.5 levels in various microenvironments associated with common cooking practices in selected Asian countries. Air Qual. Atmos. Health 2024, 17, 2967–2984. [Google Scholar] [CrossRef]
- Huboyo, H.S.; Tohno, S.; Cao, R. Indoor PM2.5 Characteristics and CO Concentration Related to Water-Based and Oil-Based Cooking Emissions Using a Gas Stove. Aerosol Air Qual. Res. 2011, 11, 401–411. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Database: Cooking Fuels and Technologies. Available online: https://www.who.int/data/gho/data/themes/air-pollution/cooking-fuel-and-technology-database-by-fuel-category (accessed on 28 April 2025).
- U.S. Energy Information Administration, U.S.E.I.A. Residential Energy Consumption Survey (RECS). 2020 REVS Survey Data. Available online: https://www.eia.gov/consumption/residential/data/2020/#fueluses (accessed on 13 July 2025).
- Environmental Protection Agency (EPA). Sources of Combustion Products. Available online: https://www.epa.gov/indoor-air-quality-iaq/sources-combustion-products (accessed on 28 April 2025).
- Gruenwald, T.; Seals, B.A.; Knibbs, L.D.; Hosgood, H.D. Population Attributable Fraction of Gas Stoves and Childhood Asthma in the United States. Int. J. Environ. Res. Public Health 2023, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Lu, W. Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2018, 25, 15133–15145. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, N.; Tang, H.; Gao, X.; Zhang, Y.; Kan, H.; Deng, F.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: A systematic review and meta-analysis. Indoor Air 2022, 32, e13170. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, P.; Spengler, J.; Vallarino, J.; Santanam, S.; Satish, U.; Allen, J. Environmental perceptions and health before and after relocation to a green building. Build. Environ. 2016, 104, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, Y.; Nicholson, M.; Finnegan, C.J.; Ouyang, Z.; Garg, A.; Lebel, E.D.; Rowland, S.T.; Michanowicz, D.R.; Herrera, J.; Nadeau, K.C.; et al. Nitrogen dioxide exposure, health outcomes, and associated demographic disparities due to gas and propane combustion by U.S. stoves. Sci. Adv. 2024, 10, eadm8680. [Google Scholar] [CrossRef] [PubMed]
- Singer, B.C.; Delp, W.W.; Price, P.N.; Apte, M.G. Performance of installed cooking exhaust devices. Indoor Air 2012, 22, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wallace, L.A.; Dobbin, N.A.; You, H.; Kulka, R.; Shin, T.; St-Jean, M.; Aubin, D.; Singer, B.C. Effect of venting range hood flow rate on size-resolved ultrafine particle concentrations from gas stove cooking. Aerosol Sci. Technol. 2018, 52, 1370–1381. [Google Scholar] [CrossRef]
- Xiang, J.; Hao, J.; Austin, E.; Shirai, J.; Seto, E. Residential cooking-related PM2.5: Spatial-temporal variations under various intervention scenarios. Build. Environ. 2021, 201, 108002. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-F.; Hsu, C.-H.; Chang, Y.-J.; Lee, C.-H.; Lee, D.L. Efficacy of HEPA Air Cleaner on Improving Indoor Particulate Matter 2.5 Concentration. Int. J. Environ. Res. Public Health 2022, 19, 11517. [Google Scholar] [CrossRef] [PubMed]
- Paulin, L.M.; Diette, G.B.; Scott, M.; McCormack, M.C.; Matsui, E.C.; Curtin-Brosnan, J.; Williams, D.L.; Kidd-Taylor, A.; Shea, M.; Breysse, P.N.; et al. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations. Indoor Air 2014, 24, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Riederer, A.M.; Krenz, J.E.; Tchong-French, M.I.; Torres, E.; Perez, A.; Younglove, L.R.; Jansen, K.L.; Hardie, D.C.; Farquhar, S.A.; Sampson, P.D.; et al. Effectiveness of portable HEPA air cleaners on reducing indoor PM2.5 and NH3 in an agricultural cohort of children with asthma: A randomized intervention trial. Indoor Air 2021, 31, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Matthaios, V.N.; Rooney, D.; Harrison, R.M.; Koutrakis, P.; Bloss, W.J. NO2 levels inside vehicle cabins with pollen and activated carbon filters: A real world targeted intervention to estimate NO2 exposure reduction potential. Sci. Total Environ. 2023, 860, 160395. [Google Scholar] [CrossRef] [PubMed]
- Kante, K.; Deliyanni, E.; Bandosz, T.J. Interactions of NO2 with activated carbons modified with cerium, lanthanum and sodium chlorides. J. Hazard. Mater. 2009, 165, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, B.; Gonzalez-Lopez, E.; Rossin, J.A.; Bandosz, T.J. Effect of Reduction Treatment on Copper Modified Activated Carbons on NOx Adsorption at Room Temperature. Langmuir 2011, 27, 5354–5365. [Google Scholar] [CrossRef] [PubMed]
- Sager, U.; Däuber, E.; Bathen, D.; Asbach, C.; Schmidt, F.; Tseng, J.-C.; Pommerin, A.; Weidenthaler, C.; Schmidt, W. Influence of the degree of infiltration of modified activated carbons with CuO/ZnO on the separation of NO2 at ambient temperatures. Adsorpt. Sci. Technol. 2016, 34, 307–319. [Google Scholar] [CrossRef]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Kumar, S.P.N.; Zimmerman, N.; Kara, L.B.; Presto, A.A.; Subramanian, R. Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 2019, 12, 903–920. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef]
- Tryner, J.; Phillips, M.; Quinn, C.; Neymark, G.; Wilson, A.; Jathar, S.H.; Carter, E.; Volckens, J. Design and testing of a low-cost sensor and sampling platform for indoor air quality. Build. Environ. 2021, 206, 108398. [Google Scholar] [CrossRef] [PubMed]
- Miech, J.A.; Stanton, L.; Gao, M.; Micalizzi, P.; Uebelherr, J.; Herckes, P.; Fraser, M.P. In situ drift correction for a low-cost NO2 sensor network. Environ. Sci. Atmos. 2023, 3, 894–904. [Google Scholar] [CrossRef]
- Whitehill, A.R.; Long, R.W.; Urbanski, S.P.; Colón, M.; Habel, A.; Landis, M.S. Evaluation of Cairpol and Aeroqual Air Sensors in Biomass Burning Plumes. Atmosphere 2022, 13, 877. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A.; Kler, J.S.; Hernke, M.T.; Braun, R.K.; Meyer, K.C.; Funk, W.E. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2019, 2, 691–701. [Google Scholar] [CrossRef]
- Satish, U.; Mendell Mark, J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk William, J. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Spicer, C.W.; Coutant, R.W.; Ward, G.F.; Joseph, D.W.; Gaynor, A.J.; Billick, I.H. Rates and mechanisms of NO2 removal from indoor air by residential materials. Environ. Int. 1989, 15, 643–654. [Google Scholar] [CrossRef]
- Ault, A.P.; Grassian, V.H.; Carslaw, N.; Collins, D.B.; Destaillats, H.; Donaldson, D.J.; Farmer, D.K.; Jimenez, J.L.; McNeill, V.F.; Morrison, G.C.; et al. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem 2020, 6, 3203–3218. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Deng, H.; Lakey, P.S.J.; Jiang, H.; Mekic, M.; Wang, X.; Shiraiwa, M.; Gligorovski, S. Unexpectedly High Indoor HONO Concentrations Associated with Photochemical NO2 Transformation on Glass Windows. Environ. Sci. Technol. 2020, 54, 15680–15688. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Zhou, L.; Zhao, W.; Yuan, W.; Yang, B.; Zhang, L.; Huang, W.; Long, S.; Xu, J.; Shen, H.; et al. Significant Cross-Contamination Caused by Cooking Fume Transport between Dwelling Units in Multilayer Buildings. Environ. Sci. Technol. 2025, 59, 9665–9675. [Google Scholar] [CrossRef] [PubMed]
- Schachter, E.N.; Rohr, A.; Habre, R.; Koutrakis, P.; Moshier, E.; Nath, A.; Coull, B.; Grunin, A.; Kattan, M. Indoor air pollution and respiratory health effects in inner city children with moderate to severe asthma. Air Qual. Atmos. Health 2020, 13, 247–257. [Google Scholar] [CrossRef]
PM2.5 (n = 3 per Sensor) | CO2 (n = 3 per Sensor) | CO (n = 1 per Sensor) | NO2 (n = 3 per Sensor) | |
---|---|---|---|---|
Calibration (min, max) | 0.58, 0.77 | 0.80, 0.84 | 1.3, 1.5 | 0.55, 0.98 |
Intercepts (min, max) | −7.97, 0.97 µg m−3 | −55, 201 ppm | 0.1, 0.6 ppm | −11, 63 ppb |
Minutes per Day Cooking | PM2.5 (35 µg m−3) | CO2 (2000 ppm) | CO (9.4 ppm) | NO2 (100 ppb) | Any Threshold | |
---|---|---|---|---|---|---|
No mitigation (n = 14) | 47.7 | 24.9 | 8.1 | 0.6 | 15.0 | 37.6 |
With mitigation (n = 17) | 64.3 | 31.0 | 2.7 | 0.2 | 7.3 | 38.4 |
PM2.5 | CO2 | CO | NO2 | Any Threshold | |
---|---|---|---|---|---|
No mitigation (n = 14) | 0.82 | 0.12 | 0.007 | 0.26 | 1.03 |
With mitigation (n = 17) | 0.55 | 0.04 | 0.003 | 0.11 | 0.68 |
% reduction | 32 | 68 | 53 | 56 | 34 |
PM2.5 | NO2 | NO | CO2 | |
---|---|---|---|---|
Natural ventilation, diffusion and/or reaction on room materials (n = 3) | 0.03 | 0.02 | not tested | 0.02 |
Exhaust fan (n = 3) | 0.13 | 0.16 | 0.13 | 0.13 |
CDA250 (ozone scrubber) (n = 3) | not tested | 0.09 | 0.03 | 0.04 |
Coway HEPA (n = 3) | 0.13 | 0.03 | not tested | 0.01 |
Mitigation Method | Coway HEPA | CDA250 | Ventilation Fan 3 |
---|---|---|---|
Pollutants | PM2.5 | NO2 | all |
Room volume (m3) | 46 | 46 | 46 |
Measured scrubber efficiency | 0.92 | 0.65 | 0.93 |
Flow rate (m3/min) | 6.8 | 7.1 | 7.9 |
CADR from flow and scrubber efficiency 1 (m3/min) | 6.2 | 4.6 | 7.1 |
CADR from decay tests 2 (m3/min) | 5.9 | 4.1 | 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaffe, D.; Nirschl, D.; Birman, S. Occurrence and Mitigation of PM2.5, NO2, CO and CO2 in Homes Due to Cooking and Gas Stoves. Atmosphere 2025, 16, 882. https://doi.org/10.3390/atmos16070882
Jaffe D, Nirschl D, Birman S. Occurrence and Mitigation of PM2.5, NO2, CO and CO2 in Homes Due to Cooking and Gas Stoves. Atmosphere. 2025; 16(7):882. https://doi.org/10.3390/atmos16070882
Chicago/Turabian StyleJaffe, Daniel, Devon Nirschl, and Stephanie Birman. 2025. "Occurrence and Mitigation of PM2.5, NO2, CO and CO2 in Homes Due to Cooking and Gas Stoves" Atmosphere 16, no. 7: 882. https://doi.org/10.3390/atmos16070882
APA StyleJaffe, D., Nirschl, D., & Birman, S. (2025). Occurrence and Mitigation of PM2.5, NO2, CO and CO2 in Homes Due to Cooking and Gas Stoves. Atmosphere, 16(7), 882. https://doi.org/10.3390/atmos16070882