Climate Change and Occupational Risks in Outdoor Workers: A Systematic Review of the Health Effects of Extreme Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Data Extraction
3. Results
3.1. Heat-Related Symptoms
3.2. Heat-Related Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crowley, R.A. Climate Change and Health: A Position Paper of the American College of Physicians. Ann. Intern. Med. 2016, 164, 608–610. [Google Scholar] [CrossRef]
- What Is Climate Change?|United Nations. Available online: https://www.un.org/en/climatechange/what-is-climate-change (accessed on 17 July 2023).
- Climate Change. Available online: https://www.who.int/health-topics/climate-change (accessed on 19 July 2023).
- Nordhaus, W.D. Geography and Macroeconomics: New Data and New Findings. Proc. Natl. Acad. Sci. USA 2006, 103, 3510–3517. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Gospodinov, N.; Gaffney, I.L.; Ng, S. The Economic Impact of Low- and High-Frequency Temperature Changes. arXiv 2025, arXiv:2505.08950. [Google Scholar] [CrossRef]
- Dong, J.; Tol, R.S.J.; Wang, J. The Effects of Climate and Weather on Economic Output: Evidence from Global Subnational Data. arXiv 2025, arXiv:2505.17946. [Google Scholar] [CrossRef]
- Gibb, K.; Beckman, S.; Vergara, X.P.; Heinzerling, A.; Harrison, R. Extreme Heat and Occupational Health Risks. Annu. Rev. Public Health 2024, 45, 315–335. [Google Scholar] [CrossRef]
- Hunt, A.P.; Brearley, M.; Hall, A.; Pope, R. Climate Change Effects on the Predicted Heat Strain and Labour Capacity of Outdoor Workers in Australia. Int. J. Environ. Res. Public Health 2023, 20, 5675. [Google Scholar] [CrossRef]
- Formica, S.; Sfodera, F. The Great Resignation and Quiet Quitting Paradigm Shifts: An Overview of Current Situation and Future Research Directions. J. Hosp. Mark. Manag. 2022, 31, 899–907. [Google Scholar] [CrossRef]
- Borrelli, I.; Santoro, P.E.; Gualano, M.R.; Moscato, U.; Rossi, M.F. Assessing the Great Resignation Phenomenon: Voluntary Resignation of Young Italian Workers during the COVID-19 Pandemic. Ann. Ig. Med. Prev. E Comunita. 2024, 36, 88–98. [Google Scholar] [CrossRef]
- Xu, M.; Dust, S.B.; Liu, S. COVID-19 and the Great Resignation: The Role of Death Anxiety, Need for Meaningful Work, and Task Significance. J. Appl. Psychol. 2023, 108, 1790–1811. [Google Scholar] [CrossRef]
- Rossi, M.F.; Beccia, F.; Gualano, M.R.; Moscato, U. Quiet Quitting: The Need to Reframe a Growing Occupational Health Issue. Soc. Work 2024, 69, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Chirico, F.; Taino, G. Climate Change and Occupational Health of Outdoor Workers: An Urgent Call to Action for European Policymakers. Environ. Dis. 2018, 3, 77–79. [Google Scholar] [CrossRef]
- Ferrari, G.N.; Leal, G.C.L.; Thom de Souza, R.C.; Galdamez, E.V.C. Impact of Climate Change on Occupational Health and Safety: A Review of Methodological Approaches. Work Read. Mass. 2023, 74, 485–499. [Google Scholar] [CrossRef]
- Aristei, L.; D’Ambrosio, F.; Villani, L.; Rossi, M.F.; Daniele, A.; Amantea, C.; Damiani, G.; Laurenti, P.; Ricciardi, W.; Gualano, M.R.; et al. Public Health Regulations and Policies Dealing with Preparedness and Emergency Management: The Experience of the COVID-19 Pandemic in Italy. Int. J. Environ. Res. Public Health 2022, 19, 1091. [Google Scholar] [CrossRef]
- Carlon, O. Cambiamenti Climatici: Una Minaccia al Benessere Delle Persone e Alla Salute del Pianeta. Agire ora Può Mettere al Sicuro il Nostro Futuro. IPCC—Focal Point Italy. 2022. Available online: https://ipccitalia.cmcc.it/cambiamenti-climatici-una-minaccia-al-benessere-delle-persone-e-alla-salute-del-pianeta-agire-ora-puo-mettere-al-sicuro-il-nostro-futuro/ (accessed on 20 June 2025).
- Gubernot, D.M.; Anderson, G.B.; Hunting, K.L. Characterizing Occupational Heat-Related Mortality in the United States, 2000–2010: An Analysis Using the Census of Fatal Occupational Injuries Database. Am. J. Ind. Med. 2015, 58, 203–211. [Google Scholar] [CrossRef]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ Health and Productivity under Occupational Heat Strain: A Systematic Review and Meta-Analysis. Lancet Planet. Health 2018, 2, e521–e531. [Google Scholar] [CrossRef] [PubMed]
- Copernicus: High Temperatures Trigger Seasonal Ozone Pollution Across Europe. Available online: https://atmosphere.copernicus.eu/copernicus-high-temperatures-trigger-seasonal-ozone-pollution-across-europe (accessed on 13 June 2025).
- Kobza, J.; Dul, L.; Geremek, M. The Influence of NOx, Temperature, Wind and Total Radiation on the Level of Ozone Concentration in the Upper Silesian Agglomeration. Front. Public Health 2024, 12, 1485333. [Google Scholar] [CrossRef]
- Schulte, P.A.; Chun, H. Climate Change and Occupational Safety and Health: Establishing a Preliminary Framework. J. Occup. Environ. Hyg. 2009, 6, 542–554. [Google Scholar] [CrossRef]
- Modonese, A.; Gobba, F. Occupational risk related to natural optical radiation exposure and skin cancers. G. Ital. Med. Lav. Ergon. 2020, 42, 329–331. [Google Scholar]
- de Troya Martín, M.; Aguilar, S.; Aguilera-Arjona, J.; Rivas-Ruiz, F.; Rodríguez-Martínez, A.; de Castro-Maqueda, G.; Cambil-Martín, J.; de Gálvez-Aranda, V.; Blázquez-Sánchez, N. Risk Assessment of Occupational Skin Cancer among Outdoor Workers in Southern Spain: Local Pilot Study. Occup. Environ. Med. 2023, 80, 14–20. [Google Scholar] [CrossRef]
- Ruppert, L.; Ofenloch, R.; Surber, C.; Diepgen, T. Occupational Risk Factors for Skin Cancer and the Availability of Sun Protection Measures at German Outdoor Workplaces. Int. Arch. Occup. Environ. Health 2016, 89, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.G.; Cooper, G.S. Occupational Exposures and Risk of Systemic Lupus Erythematosus. Autoimmunity 2005, 38, 497–506. [Google Scholar] [CrossRef] [PubMed]
- WMO Bulletin: Heatwaves Worsen Air Quality and Pollution. Available online: https://public.wmo.int/news/media-centre/wmo-bulletin-heatwaves-worsen-air-quality-and-pollution (accessed on 13 June 2025).
- Schulte, P.A.; Jacklitsch, B.L.; Bhattacharya, A.; Chun, H.; Edwards, N.; Elliott, K.C.; Flynn, M.A.; Guerin, R.; Hodson, L.; Lincoln, J.M.; et al. Updated Assessment of Occupational Safety and Health Hazards of Climate Change. J. Occup. Environ. Hyg. 2023, 20, 183–206. [Google Scholar] [CrossRef] [PubMed]
- D’Ovidio, M.C.; Annesi-Maesano, I.; D’Amato, G.; Cecchi, L. Climate Change and Occupational Allergies: An Overview on Biological Pollution, Exposure and Prevention. Ann. Ist. Super. Sanita. 2016, 52, 406–414. [Google Scholar] [CrossRef]
- Berhane, K.; Kumie, A.; Samet, J. Health Effects of Environmental Exposures, Occupational Hazards and Climate Change in Ethiopia: Synthesis of Situational Analysis, Needs Assessment and the Way Forward. Ethiop. J. Health Dev. YaItyopya Tena Lemat Mashet. 2016, 30, 50–56. [Google Scholar]
- Raulf, M.; Annesi-Maesano, I. Occupational Allergy and Climate Change. Curr. Opin. Allergy Clin. Immunol. 2025, 25, 83–87. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The Impact of Patient, Intervention, Comparison, Outcome (PICO) as a Search Strategy Tool on Literature Search Quality: A Systematic Review. J. Med. Libr. Assoc. JMLA 2018, 106, 420–431. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2014; Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 20 June 2025).
- Karthick, S.; Kermanshachi, S.; Loganathan, K. Effect of Cold Temperatures on Health and Safety of Construction Workers. In Tran-SET 2022; ASCE: Reston, VA, USA, 2022; pp. 237–247. [Google Scholar] [CrossRef]
- Han, S.-R.; Wei, M.; Wu, Z.; Duan, S.; Chen, X.; Yang, J.; Borg, M.A.; Lin, J.; Wu, C.; Xiang, J. Perceptions of Workplace Heat Exposure and Adaption Behaviors among Chinese Construction Workers in the Context of Climate Change. BMC Public Health 2021, 21, 2160. [Google Scholar] [CrossRef]
- Phanprasit, W.; Rittaprom, K.; Dokkem, S.; Meeyai, A.C.; Boonyayothin, V.; Jaakkola, J.J.K.; Näyhä, S. Climate Warming and Occupational Heat and Hot Environment Standards in Thailand. Saf. Health Work 2021, 12, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V.; Shanmugam, R.; Kamalakkannan, L.P. Heat-Health Vulnerabilities in the Climate Change Context—Comparing Risk Profiles between Indoor and Outdoor Workers in Developing Country Settings. Environ. Res. Lett. 2021, 16, 085008. [Google Scholar] [CrossRef]
- Mansor, Z.; Rosnah, I.; Ismail, N.H.; Hashim, J.H. Effects of Hydration Practices on the Severity of Heat-Related Illness among Municipal Workers during a Heat Wave Phenomenon. Med. J. Malays. 2019, 74, 275–280. [Google Scholar]
- Suter, M.K.; Miller, K.A.; Anggraeni, I.; Ebi, K.L.; Game, E.T.; Krenz, J.; Masuda, Y.J.; Sheppard, L.; Wolff, N.H.; Spector, J.T. Association between Work in Deforested, Compared to Forested, Areas and Human Heat Strain: An Experimental Study in a Rural Tropical Environment. Environ. Res. Lett. 2019, 14, 084012. [Google Scholar] [CrossRef]
- Riley, K.; Wilhalme, H.; Delp, L.; Eisenman, D.P. Mortality and Morbidity during Extreme Heat Events and Prevalence of Outdoor Work: An Analysis of Community-Level Data from Los Angeles County, California. Int. J. Environ. Res. Public Health 2018, 15, 580. [Google Scholar] [CrossRef]
- Meade, R.D.; D’Souza, A.W.; Krishen, L.; Kenny, G.P. The Physiological Strain Incurred during Electrical Utilities Work over Consecutive Work Shifts in Hot Environments: A Case Report. J. Occup. Environ. Hyg. 2017, 14, 986–994. [Google Scholar] [CrossRef]
- Rahman, J.; Fakhruddin, S.H.M.; Rahman, A.K.M.F.; Halim, M.A. Environmental Heat Stress Among Young Working Women: A Pilot Study. Ann. Glob. Health 2016, 82, 760–767. [Google Scholar] [CrossRef]
- Xiang, J.; Hansen, A.; Pisaniello, D.; Bi, P. Workers’ Perceptions of Climate Change Related Extreme Heat Exposure in South Australia: A Cross-Sectional Survey. BMC Public Health 2016, 16, 549. [Google Scholar] [CrossRef]
- Venugopal, V.; Chinnadurai, J.S.; Lucas, R.A.I.; Kjellstrom, T. Occupational Heat Stress Profiles in Selected Workplaces in India. Int. J. Environ. Res. Public Health 2015, 13, 89. [Google Scholar] [CrossRef]
- Bethel, J.W.; Harger, R. Heat-Related Illness among Oregon Farmworkers. Int. J. Environ. Res. Public Health 2014, 11, 9273–9285. [Google Scholar] [CrossRef]
- Luo, H.; Turner, L.R.; Hurst, C.; Mai, H.; Zhang, Y.; Tong, S. Exposure to Ambient Heat and Urolithiasis among Outdoor Workers in Guangzhou, China. Sci. Total Environ. 2014, 472, 1130–1136. [Google Scholar] [CrossRef]
- Santoro, P.E.; Borrelli, I.; Gualano, M.R.; Amantea, C.; Tumminello, A.; Daniele, A.; Rossi, M.F.; Moscato, U. Occupational hazards and gender differences: A narrative review. J. Sex-Gend.-Specif. Med. 2022, 8, 154–162. [Google Scholar]
- Dinuoscio, C. Heat Stress and Strain. ACGIH. 2022. Available online: https://www.acgih.org/heat-stress-and-strain-2/ (accessed on 20 June 2025).
- Jacklitsch, B.; Jon Williams, W.; Musolin, K.; Coca, A.; Kim, J.H.; Turner, N. Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments—Revised Criteria 2016; NIOSH: Atlanta, GA, USA, 2023. [CrossRef]
- ISO 7243:2017; Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/67188.html (accessed on 19 January 2024).
- Europe Faces the Growing Threat of Heat Stress. Euractiv. 2023. Available online: https://www.euractiv.com/section/eet/opinion/europe-faces-the-growing-threat-of-heat-stress/ (accessed on 20 June 2025).
- Park, J.; Kim, Y.; Oh, I. Factors Affecting Heat-Related Diseases in Outdoor Workers Exposed to Extreme Heat. Ann. Occup. Environ. Med. 2017, 29, 30. [Google Scholar] [CrossRef]
- Levi, M.; Kjellstrom, T.; Baldasseroni, A. Impact of Climate Change on Occupational Health and Productivity: A Systematic Literature Review Focusing on Workplace Heat. Med. Lav. 2018, 109, 163–179. [Google Scholar] [CrossRef]
- Cohen, J.; Agel, L.; Barlow, M.; Garfinkel, C.I.; White, I. Linking Arctic Variability and Change with Extreme Winter Weather in the United States. Science 2021, 373, 1116–1121. [Google Scholar] [CrossRef]
- Karthick, S.; Kermanshachi, S.; Pamidimukkala, A.; Namian, M. A Review of Construction Workforce Health Challenges and Strategies in Extreme Weather Conditions. Int. J. Occup. Saf. Ergon. 2023, 29, 773–784. [Google Scholar] [CrossRef]
- Ray, M.; King, M.; Carnahan, H. A Review of Cold Exposure and Manual Performance: Implications for Safety, Training and Performance. Saf. Sci. 2019, 115, 1–11. [Google Scholar] [CrossRef]
- Farbu, E.H.; Höper, A.C.; Brenn, T.; Skandfer, M. Is Working in a Cold Environment Associated with Musculoskeletal Complaints 7–8 Years Later? A Longitudinal Analysis from the Tromsø Study. Int. Arch. Occup. Environ. Health 2021, 94, 611–619. [Google Scholar] [CrossRef]
Citation | Country | Study Design | Study Timeframe | Work Tasks | Sample Size | Gender Ratio (n,%) | Age (Mean ± SD or Range) | Occupational Risks | Outcomes Considered | Results | p Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Karthick (2022) [36] | USA | Cross-sectional | NR | Construction | 100 | M = 87 (87.0%) | Range from 21 to ≥60 | Cold weather | Respiratory issues | OR 1.141 | 0.041 |
Freezing of exposed parts | OR 1.217 | 0.032 | |||||||||
Han (2021) [37] | China | Cross-sectional | July–September 2020 | Construction | 318 | M = 239 (75.2%) | Range from ≤24 to ≥55 | Heat stress | Heat-related illness | 37 (11.6%) | NR |
Heat-related injury | 35 (11.0%) | NR | |||||||||
Phanprasit (2021) [38] | Thailand | Cohort | March–June 2016 | Construction | 90 | M = 70 (77.8%) | Range 20–60 | Heat stress | Heat-related symptoms | 20 (22.0%) | 0.028 |
Foundry | 78 | M = 75 (96.2%) | Range 20–46 | Heat-related symptoms | 30 (39.0%) | 0.028 | |||||
Venugopal (2021) [39] | India | Cross-sectional | NR | Agriculture, construction, brick making, salt pans | 1053 | M = 532 (50.5%) | NR | Heat stress | Self-reported heat-related illness | 951 (90.3%) | <0.001 |
Rise in CBT > 1 °C | 189 (17.9%) | <0.001 | |||||||||
Sweat rate > 1/h | 282 (26.8%) | <0.001 | |||||||||
Urine specific gravity | 300 (28.5%) | 0.020 | |||||||||
Reduced kidney function | 268 (48.2%) | 0.007 | |||||||||
Mansor (2019) [40] | Malaysia | Cross-sectional | March–April 2016 | Cleaning, gardening | 320 | M = 148 (46.2%) | 43 ± 9.49 | Heat stress | Heat-related illness | 152 (47.5%) | <0.001 |
Suter (2019) [41] | Indonesia | Trial | October–November 2017 | Agriculture | 331 | M = 331 (100%) | 42.3 ± 11.0 | Heat stress | Skin rush | 3 (1.7%) | NR |
Muscle cramps | 19 (11.0%) | ||||||||||
Dizziness | 14 (8.1%) | ||||||||||
Heavy sweating | 146 (84.9%) | ||||||||||
Extreme weakness | 3 (1.7%) | ||||||||||
Confusion | 6 (3.5%) | ||||||||||
Riley (2018) [42] | USA | Cross-sectional | 2005–2010 | Construction | NR | NR | NR | Heat stress | Emergency department visits | OR 1.023 | NR |
Hospitalizations | OR 1.035 | NR | |||||||||
Agriculture, forestry, fishing, hunting, mining | Heat stress | Emergency department visits | OR 1.080 | NR | |||||||
Hospitalizations | OR 0.907 | NR | |||||||||
Meade (2017) [43] | USA | Case series | Two consecutive days | Work involving electrical utilities | 4 | M = 4 (100%) | 38 ± 12 | Heat stress | Body core temperature, dehydration, urine specific gravity | NR | NR |
Rahman (2016) [44] | Bangladesh | Cross-sectional | May 2014 | Construction | 8 | F = 8 (100%) | 24.67 ± 8.0 | Heat stress | Tympanic Temperature | 37.2 ± 0.4 | NR |
Core temperature | 41.2 | NR | |||||||||
Metabolic rate (W/m2) | 280 | NR | |||||||||
Xiang (2016) [45] | Australia | Cross-sectional | August–November 2012 | Miscellaneous (completely outdoor work) | 82 | M = 96.0% | Range < 24 to >55 | Heat stress | Concern for extreme heat | OR 71.6 | NR |
Miscellaneous (mostly outdoor work) | 300 | OR 53.2 | NR | ||||||||
Venugopal (2015) [46] | India | Cross-sectional | 2012–2013 | Metal work, security, agriculture, construction | 442 | M = 314 (71%) | 35.8 ± 12.7 | Heat stress | Heat-related symptoms | 421 (96%) | <0.001 |
Bethel (2014) [47] | USA | Cross-sectional | July–August 2013 | Agriculture | 100 | M = 60 (60.0%) | 31.8 ± 10.1 | Heat stress | Heat-related illness | 27 (27.3%) | NR |
Heat-related symptoms (past week) | 64 (64.0%) | NR | |||||||||
Luo (2013) [48] | China | Case–control | 2003–2010 | Spray painting | 37 | M = 788 (83%) | Range 20–59 | Heat stress | Urolithiasis | OR 4.4 | NR |
Smelter work | 48 | OR 4.0 | NR | ||||||||
Welding | 178 | OR 3.7 | NR | ||||||||
Production security and quality inspection | 159 | OR 2.7 | NR | ||||||||
Planing machine operation | 12 | OR 4.0 | NR | ||||||||
Gas cutting work | 16 | OR 2.6 | NR | ||||||||
Assembly | 203 | OR 2.2 | NR |
First Author (Year) | Selection | Comparability | Outcome | Total |
---|---|---|---|---|
Karthick (2022) [36] | 2 | 2 | 2 | 6 |
Han (2021) [37] | 3 | 2 | 1 | 6 |
Phanprasit (2021) [38] | 3 | 2 | 2 | 7 |
Venugopal (2021) [39] | 4 | 2 | 3 | 9 |
Mansor (2019) [40] | 4 | 2 | 2 | 8 |
Suter (2019) [41] | 4 | 2 | 3 | 9 |
Riley (2018) [42] | 3 | 2 | 2 | 7 |
Meade (2017) [43] | 2 | 2 | 3 | 7 |
Rahman (2016) [44] | 2 | 2 | 3 | 7 |
Xiang (2016) [45] | 4 | 2 | 3 | 9 |
Venugopal (2015) [46] | 3 | 2 | 2 | 7 |
Bethel (2014) [47] | 3 | 2 | 2 | 7 |
Luo (2013) [48] | 4 | 2 | 3 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, M.F.; Leone, R.; Moscato, U. Climate Change and Occupational Risks in Outdoor Workers: A Systematic Review of the Health Effects of Extreme Temperatures. Atmosphere 2025, 16, 839. https://doi.org/10.3390/atmos16070839
Rossi MF, Leone R, Moscato U. Climate Change and Occupational Risks in Outdoor Workers: A Systematic Review of the Health Effects of Extreme Temperatures. Atmosphere. 2025; 16(7):839. https://doi.org/10.3390/atmos16070839
Chicago/Turabian StyleRossi, Maria Francesca, Raimondo Leone, and Umberto Moscato. 2025. "Climate Change and Occupational Risks in Outdoor Workers: A Systematic Review of the Health Effects of Extreme Temperatures" Atmosphere 16, no. 7: 839. https://doi.org/10.3390/atmos16070839
APA StyleRossi, M. F., Leone, R., & Moscato, U. (2025). Climate Change and Occupational Risks in Outdoor Workers: A Systematic Review of the Health Effects of Extreme Temperatures. Atmosphere, 16(7), 839. https://doi.org/10.3390/atmos16070839