Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon
Abstract
1. Introduction
2. Model Description, Data, and Design of Numerical Experiments
2.1. Model Description
2.2. Large-Scale Forcing Data
2.3. Methodology Used to Search ShCu Cases
2.4. LES Simulations to Choose ShCu Cases
3. Results of Large Eddy Simulations
3.1. Cloud Fraction, Liquid Water, and Updraft Mass Flux Vertical Profiles
3.2. Buoyancy Flux (B), Subcloud Mixed Layer (ML), and Entrainment (E) and Detrainment (D) Rates
3.3. Vertical Heat and Moisture Fluxes and TKE Profiles
3.4. TKE, CAPE, and CIN
4. Conclusions
- (1)
- Diurnal cycle of ShCu clouds: The diurnal evolution of ShCu clouds follows a consistent pattern, initiating at approximately 10–11 LT, reaching maturity between 13 and 15 LT, and dissipating by 17–18 LT. Our results suggest that the vertical extent and intensity of the updraft mass flux and liquid water mixing ratio—as well as the deepening of the ShCu cloud layer—are closely associated with the enhanced buoyancy flux within the cloud layer and reduced large-scale subsidence.
- (2)
- The fractional entrainment and detrainment rates for the ShCu composite case display pronounced diurnal variation. On average, and particularly during the maturity stage, the entrainment rate resembles that observed in the quasi-stationary BOMEX case, with maximum values near the cloud base (≈1.0 × 10−3 m−1) and minimum values near the cloud top. However, the entrainment rate increases near the cloud top during the dissipation stage. The fractional detrainment rate, on the other hand, is nearly constant with the height on average (≈2.5 × 10−3 m−1) but increases with the height during and after the maturity stage. This increase aligns with the findings from other LES studies conducted over both oceanic and continental environments. Overall, the detrainment rate consistently exceeds the entrainment rate, often by more than a factor of two.
- (3)
- Relationship with atmospheric parameters: We analyzed the diurnal cycles of CAPE, CIN, BR, and the vertically integrated TKE in the mixed layer (ITKE-ML) and their relationships with the cloud base mass flux (Mb) and cloud depth for the six ShCu cases. The diurnal variations in the ITKE-ML and cloud base mass fluxes were similar, with peak values occurring around 14–15 LT. However, CAPE and BR did not show a clear relationship with Mb.
- (4)
- Cloud depth comparisons: Comparisons between the cloud depth and parameters such as CAPE, BR, ITKE-ML, CIN, and Mb did not reveal clear relationships. In some cases, higher CAPE and lower CIN values were observed for smaller ShCu clouds, or nearly similar BR values were found for both smaller and taller ShCu clouds.
- (5)
- A significantly higher surface buoyancy flux is observed in the Sep3 case compared to Oct5. However, the cloud depths in these cases show the opposite trend, indicating that higher sensible or latent heat fluxes do not necessarily correspond to greater vertical cloud development. Our preliminary findings indicate that the vertical growth of ShCu clouds over the Central Amazon is more closely linked to enhanced buoyancy flux within the cloud layer and reduced large-scale subsidence than to surface fluxes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giangrande, S.E.; Feng, Z.; Jensen, M.P.; Comstock, J.M.; Johnson, K.L.; Toto, T.; Wang, M.; Burleyson, C.; Bharadwaj, N.; Mei, F.; et al. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment. Atmos. Chem. Phys. 2017, 17, 14519–14541. [Google Scholar] [CrossRef]
- Guichard, F.; Petch, J.; Redelsperger, J.L.; Bechtold, P.; Chaboureau, J.P.; Cheinet, S.; Grabowski, W.; Grenier, H.; Jones, C.; Köhler, M.; et al. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2004, 130, 3139–3172. [Google Scholar] [CrossRef]
- Zhang, Y.; Klein, S.A. Mechanisms Affecting the Transition from Shallow to Deep Convection over Land: Inferences from Observations of the Diurnal Cycle Collected at the ARM Southern Great Plains Site. J. Atmos. Sci. 2010, 67, 2943–2959. [Google Scholar] [CrossRef]
- Waite, M.L.; Khouider, B. The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci. 2010, 67, 2601–2615. [Google Scholar] [CrossRef]
- Hohenegger, C.; Stevens, B. Preconditioning deep convection with cumulus congestus. J. Atmos. Sci. 2013, 70, 448–464. [Google Scholar] [CrossRef]
- Kurowski, M.J.; Suselj, K.; Grabowski, W.W.; Teixeira, J. Shallow-to-deep transition of continental moist convection: Cold pools, surface fluxes, and mesoscale organization. J. Atmos. Sci. 2018, 75, 4071–4090. [Google Scholar] [CrossRef]
- Fiedler, S.; Crueger, T.; D’Agostino, R.; Peters, K.; Becker, T.; Leutwyler, D.; Paccini, L.; Burdanowitz, J.; Buehler, S.A.; Cortes, A.U.; et al. Simulated Tropical Precipitation Assessed across Three Major Phases of the Coupled Model Intercomparison Project (CMIP). Mon. Weather Rev. 2020, 148, 3653–3680. [Google Scholar] [CrossRef]
- Champouillon, A.; Rio, C.; Couvreux, F. Simulating the transition from shallow to deep convection across scales: The role of congestus clouds. J. Atmos. Sci. 2023, 80, 2989–3005. [Google Scholar] [CrossRef]
- Vraciu, C.V.; Kruse, I.L.; Haerter, J.O. The role of passive cloud volumes in the transition from shallow to deep atmospheric convection. Geophys. Res. Lett. 2023, 50, e2023GL105996. [Google Scholar] [CrossRef]
- Augstein, E.; Riehl, H.; Ostapoff, F.; Wagner, V. Mass and Energy Transports in an Undisturbed Atlantic Trade-Wind Flow. Mon. Weather Rev. 1973, 101, 101–111. [Google Scholar] [CrossRef]
- Holland, J.Z.; Rasmusson, E.M. Measurements of the Atmospheric Mass, Energy, and Momentum Budgets Over a 500-Kilometer Square of Tropical Ocean. Mon. Weather Rev. 1973, 101, 44–55. [Google Scholar] [CrossRef]
- Rauber, R.M.; Stevens, B.; Ochs, H.T.; Knight, C.; Albrecht, B.A.; Blyth, A.M.; Fairall, C.W.; Jensen, J.B.; Lasher-Trapp, S.G.; Mayol-Bracero, O.L.; et al. Rain in Shallow Cumulus Over the Ocean: The RICO Campaign. Bull. Am. Meteorol. Soc. 2007, 88, 1912–1928. [Google Scholar] [CrossRef]
- Bony, S.; Stevens, B.; Ament, F.; Bigorre, S.; Chazette, P.; Crewell, S.; Delanoë, J.; Emanuel, K.; Farrell, D.; Flamant, C.; et al. EUREC 4 A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys. 2017, 38, 1529–1568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Klein, S.A.; Fan, J.; Chandra, A.S.; Kollias, P.; Xie, S.; Tang, S. Large-eddy simulation of shallow cumulus over land: A composite case based on ARM long-term observations at its Southern Great Plains site. J. Atmos. Sci. 2017, 74, 3229–3251. [Google Scholar] [CrossRef]
- Vogelmann, A.M.; McFarquhar, G.M.; Ogren, J.A.; Turner, D.D.; Comstock, J.M.; Feingold, G.; Long, C.N.; Jonsson, H.H.; Bucholtz, A.; Collins, D.R.; et al. RACORO extended-term aircraft observations of boundary layer clouds. Bull. Am. Meteorol. Soc. 2012, 93, 861–878. [Google Scholar] [CrossRef]
- Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Andreae, M.O.; Barbosa, H.M.J.; Fan, J.; et al. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797. [Google Scholar] [CrossRef]
- Betts, A.K. Non-precipitating cumulus convection and its parameterization. Q. J. R. Meteorol. Soc. 1973, 99, 178–196. [Google Scholar]
- Tiedtke, M.; Heckley, W.; Slingo, J. Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Q. J. R. Meteorol. Soc. 1988, 114, 639–664. [Google Scholar] [CrossRef]
- Siebesma, A.P.; Cuijpers, J.W.M. Evaluation of Parametric Assumptions for Shallow Cumulus Convection. J. Atmos. Sci. 1995, 52, 650–666. [Google Scholar] [CrossRef]
- Siebesma, A.P.; Holtslag, A.A.M. Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci. 1996, 53. [Google Scholar] [CrossRef]
- Grant, A.L.M.; Brown, A.R. A similarity hypothesis for shallow-cumulus transports. Q. J. R. Meteorol. Soc. 1999, 125, 1913–1936. [Google Scholar] [CrossRef]
- Neggers, R.A.J.; Neelin, J.D.; Stevens, B. Impact Mechanisms of Shallow Cumulus Convection on Tropical Climate Dynamics. J. Clim. 2007, 20, 2623–2642. [Google Scholar] [CrossRef]
- Zheng, Y. Theoretical Understanding of the Linear Relationship between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part I: Maritime Conditions. J. Atmos. Sci. 2019, 76, 2539–2558. [Google Scholar] [CrossRef]
- Tang, S.; Xie, S.; Guo, Z.; Hong, S.Y.; Khouider, B.; Klocke, D.; Köhler, M.; Koo, M.S.; Krishna, P.M.; Larson, V.E.; et al. Long-term single-column model intercomparison of diurnal cycle of precipitation over midlatitude and tropical land. Q. J. R. Meteorol. Soc. 2021, 148, 641–669. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Klein, S.A.; Schumacher, C. Interpreting the diurnal cycle of clouds and precipitation in the ARM GoAmazon observations: Shallow to deep convection transition. J. Geophys. Res. Atmos. 2021, 126, e2020JD033766. [Google Scholar] [CrossRef]
- Grabowski, W.; Bechtold, P.; Cheng, A.; Forbes, R.; Halliwell, C.; Khairoutdinov, M.; Lang, S.; Nasuno, T.; Petch, J.; Tao, W.K.; et al. Daytime convective development over land: A model intercomparison based on LBA observations. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2006, 132, 317–344. [Google Scholar] [CrossRef]
- Khairoutdinov, M.; Randall, D. High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci. 2006, 63, 3421–3436. [Google Scholar] [CrossRef]
- Efstathiou, G.A. Dynamic subgrid turbulence modeling for shallow cumulus convection simulations beyond LES resolutions. J. Atmos. Sci. 2023, 80, 1519–1545. [Google Scholar] [CrossRef]
- Efstathiou, G.A.; Plant, R.S.; Chow, F.K. Grey-zone simulations of shallow-to-deep convection transition using dynamic subgrid-scale turbulence models. Q. J. R. Meteorol. Soc. 2024, 150, 4306–4328. [Google Scholar] [CrossRef]
- Tang, S.; Xie, S.; Zhang, Y.; Zhang, M.; Schumacher, C.; Upton, H.; Jensen, M.P.; Johnson, K.L.; Wang, M.; Ahlgrimm, M.; et al. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon 2014/5 experiment. Atmos. Chem. Phys. 2016, 16, 14249–14264. [Google Scholar] [CrossRef]
- Grabowski, W.W. Daytime convective development over land: The role of surface forcing. Q. J. R. Meteorol. Soc. 2023, 149, 2800–2819. [Google Scholar] [CrossRef]
- Siebesma, A.P.; Bretherton, C.S.; Brown, A.; Chlond, A.; Cuxart, J.; Duynkerke, P.G.; Jiang, H.; Khairoutdinov, M.; Lewellen, D.; Moeng, C.H.; et al. A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci. 2003, 60, 1201–1219. [Google Scholar] [CrossRef]
- Brown, A.R.; Cederwall, R.T.; Chlond, A.; Duynkerke, P.G.; Golaz, J.C.; Khairoutdinov, M.; Lewellen, D.C.; Lock, A.P.; MacVean, M.K.; Moeng, C.H.; et al. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q. J. R. Meteorol. Soc. 2002, 128, 1075–1093. [Google Scholar] [CrossRef]
- Neggers, R.A.J.; Duynkerke, P.G.; Rodts, S.M.A. Shallow cumulus convection: A validation of large-eddy simulation against aircraft and Landsat observations. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2003, 129, 2671–2696. [Google Scholar] [CrossRef]
- Grant, A.L.M. The cumulus-capped boundary layer. I: Modelling transports in the cloud layer. Q. J. R. Meteorol. Soc. 2006, 132, 1385–1403. [Google Scholar] [CrossRef]
- Neggers, R.A.J. Exploring bin-macrophysics models for moist convective transport and clouds. J. Adv. Model. Earth Syst. 2015, 7, 2079–2104. [Google Scholar] [CrossRef]
- Song, F.; Zhang, G.J. Improving Trigger Functions for Convective Parameterization Schemes Using GOAmazon Observations. J. Clim. 2017, 30, 8711–8726. [Google Scholar] [CrossRef]
- Lamaakel, O.; Matheou, G. Galilean invariance of shallow cumulus convection large-eddy simulations. J. Comput. Phys. 2021, 427, 110012. [Google Scholar] [CrossRef]
- Khairoutdinov, M.F.; Randall, D.A. Cloud Resolving Modeling of the ARM Summer 1997 IOP: Model Formulation, Results, Uncertainties, and Sensitivities. J. Atmos. Sci. 2003, 60, 607–625. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The community climate system model version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Nuijens, L.; Stevens, B.; Siebesma, A.P. The environment of precipitating shallow cumulus convection. J. Atmos. Sci. 2009, 66, 1962–1979. [Google Scholar] [CrossRef]
- Arulraj, M.; Barros, A.P. Shallow Precipitation Detection and Classification Using Multifrequency Radar Observations and Model Simulations. J. Atmos. Ocean. Technol. 2017, 34, 1963–1983. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Y.; Zhang, X.; Wang, Y.; Li, R.; Liu, Q.; Zhong, L.; Zhang, Q.; Zhang, A. Fundamental characteristics of tropical rain cell structures as measured by TRMM PR. J. Meteorol. Res. 2020, 34, 1129–1150. [Google Scholar] [CrossRef]
- Collow, A.B.M.; Miller, M.A. The seasonal cycle of the radiation budget and cloud radiative effect in the Amazon rain forest of Brazil. J. Clim. 2016, 29, 7703–7722. [Google Scholar] [CrossRef]
- Arakawa, A.; Schubert, W.H. Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef]
- Lamer, K.; Kollias, P.; Nuijens, L. Observations of the variability of shallow trade wind cumulus cloudiness and mass flux. J. Geophys. Res. Atmos. 2015, 120, 6161–6178. [Google Scholar] [CrossRef]
- Sakradzija, M.; Hohenegger, C. What determines the distribution of shallow convective mass flux through a cloud base? J. Atmos. Sci. 2017, 74, 2615–2632. [Google Scholar] [CrossRef]
- Klingebiel, M.; Konow, H.; Stevens, B. Measuring shallow convective mass flux profiles in the trade wind region. J. Atmos. Sci. 2021, 78, 3205–3214. [Google Scholar] [CrossRef]
- Kumar, V.V.; Jakob, C.; Protat, A.; Williams, C.R.; May, P.T. Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia. J. Atmos. Sci. 2015, 72, 1837–1855. [Google Scholar] [CrossRef]
- Masunaga, H.; Luo, Z.J. Convective and large-scale mass flux profiles over tropical oceans determined from synergistic analysis of a suite of satellite observations. J. Geophys. Res. Atmos. 2016, 121, 7958–7974. [Google Scholar] [CrossRef] [PubMed]
- George, G.; Stevens, B.; Bony, S.; Klingebiel, M.; Vogel, R. Observed impact of meso-scale vertical motion on cloudiness. J. Atmos. Sci. 2021, 78, 2413–2427. [Google Scholar] [CrossRef]
- Jeyaratnam, J.; Luo, Z.J.; Giangrande, S.E.; Wang, D.; Masunaga, H. A Satellite-Based Estimate of Convective Vertical Velocity and Convective Mass Flux: Global Survey and Comparison with Radar Wind Profiler Observations. Geophys. Res. Lett. 2021, 48, e2020GL090675. [Google Scholar] [CrossRef]
- Grant, A.L.M. Cloud-base fluxes in the cumulus-capped boundary layer. Q. J. R. Meteorol. Soc. 2001, 127, 407–421. [Google Scholar]
- Wang, X.; Zhang, M. Vertical velocity in shallow convection for different plume types. J. Adv. Model. Earth Syst. 2014, 6, 478–489. [Google Scholar] [CrossRef]
- Drueke, S.; Kirshbaum, D.J.; Kollias, P. Environmental sensitivities of shallow-cumulus dilution–Part 1: Selected thermodynamic conditions. Atmos. Chem. Phys. 2020, 20, 13217–13239. [Google Scholar] [CrossRef]
- Oh, G.; Austin, P.H. Direct Entrainment as a Measure of Dilution. J. Atmos. Sci. 2024, 81, 1783–1797. [Google Scholar] [CrossRef]
- De Rooy, W.C.; Siebesma, A.P. A simple parameterization for detrainment in shallow cumulus. Mon. Weather. Rev. 2008, 136, 560–576. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y.; Zhang, G.J.; Wu, X.; Endo, S.; Cao, L.; Li, Y.; Guo, X. Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. J. Atmos. Sci. 2016, 73, 761–773. [Google Scholar] [CrossRef]
- Bretherton, C.S.; McCaa, J.R.; Grenier, H. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Weather Rev. 2004, 132, 864–882. [Google Scholar] [CrossRef]
- Shin, J.; Baik, J.J. Parameterization of stochastically entraining convection using machine learning technique. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002817. [Google Scholar] [CrossRef]
- Bechtold, P.; Cuijpers, J.W. Cloud perturbations of temperature and humidity: A LES study. Bound. Layer Meteorol. 1995, 76, 377–386. [Google Scholar] [CrossRef]
- Grant, A.L.M.; Lock, A.P. The turbulent kinetic energy budget for shallow cumulus convection. Q. J. R. Meteorol. Soc. 2004, 130, 401–422. [Google Scholar] [CrossRef]
- Cuijpers, J.; Duynkerke, P. Large eddy simulation of trade wind cumulus clouds. J. Atmos. Sci. 1993, 50, 3894–3908. [Google Scholar] [CrossRef]
- Zheng, Y.; Rosenfeld, D. Linear relation between convective cloud base height and updrafts and application to satellite retrievals. Geophys. Res. Lett. 2015, 42, 6485–6491. [Google Scholar] [CrossRef]
- Zheng, Y.; Rosenfeld, D.; Li, Z. Sub-Cloud Turbulence Explains Cloud-Base Updrafts for Shallow Cumulus Ensembles: First Observational Evidence. Geophys. Res. Lett. 2021, 48, e2020GL091881. [Google Scholar] [CrossRef]
- Raymond, D.; Fuchs-Stone, Z. Weak Temperature Gradient Modeling of Convection in OTREC. J. Adv. Model. Earth Syst. 2021, 13. [Google Scholar] [CrossRef]
- Becker, T.; Bechtold, P.; Sandu, I. Characteristics of convective precipitation over tropical Africa in storm-resolving global simulations. Q. J. R. Meteorol. Soc. 2021, 147, 4388–4407. [Google Scholar] [CrossRef]
- Mapes, B.E. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci. 2000, 57, 1515–1535. [Google Scholar] [CrossRef]
- Kuang, Z.; Bretherton, C.S. A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci. 2006, 63, 1895–1909. [Google Scholar] [CrossRef]
- Park, S.; Bretherton, C.S. The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Clim. 2009, 22, 3449–3469. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manco, J.A.A.; Figueroa, S.N. Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon. Atmosphere 2025, 16, 789. https://doi.org/10.3390/atmos16070789
Manco JAA, Figueroa SN. Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon. Atmosphere. 2025; 16(7):789. https://doi.org/10.3390/atmos16070789
Chicago/Turabian StyleManco, Jhonatan A. A., and Silvio Nilo Figueroa. 2025. "Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon" Atmosphere 16, no. 7: 789. https://doi.org/10.3390/atmos16070789
APA StyleManco, J. A. A., & Figueroa, S. N. (2025). Large Eddy Simulation of the Diurnal Cycle of Shallow Convection in the Central Amazon. Atmosphere, 16(7), 789. https://doi.org/10.3390/atmos16070789