An Audiovisual Introduction to Streamer Physics
Abstract
1. Introduction
2. Conceptualization and Structure of This Introduction
- collision-dominated electron motion in gases, cross-sections
- electron avalanches
- streamer discharges (avalanche-to-streamer transition, properties, modeling, streamers in other atmospheres)
- relation to lightning and chemistry
3. Contents of the Video: From Electron Avalanches to Streamer Discharges
3.1. Introduction to Streamers (Slide 3)
3.2. Fundamentals of Electron Motion in Gases (Slides 4–8)
3.3. Electron Avalanches and the Avalanche-to-Streamer Transition (Slides 9–13)
3.4. Propagation and Properties of Positive and Negative Streamers (Slides 14–16)
3.5. Streamer Modeling (Slides 17–22)
3.6. Streamer Properties and Observations (Slides 23–24)
3.7. Streamers as Precursors to Lightning Leaders and Their Relation to Plasma Chemistry (Slides 25–26)
4. Conclusions and Outlook
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Acknowledgment for Figures Used in the Presentation
Slide | Figure | Reference | Copyright/License |
---|---|---|---|
3 | top left: lightning flash | [50] | CC BY-SA 4.0 |
top right: discharge inception from needle electrode | [51] | Permission granted by J. Mizeraczyk et al. [51] | |
bottom left: overview of Transient Luminous Events | [6] | Copyright ©2003, The American Association for the Advancement of Science | |
bottom right: sketch of plasma medice device | Open Day 2013, Centrum Wiskunde & Informatica (CWI), Amsterdam, NL | ||
9 | Visualisation of electron discharge | [55] | CC BY-SA 3.0 |
14 | negative streamer propagation | [1] | Copyright by Springer Verlag Berlin Heidelberg New York |
15 | positive streamer propagation | [1] | Copyright by Springer Verlag Berlin Heidelberg New York |
25 | right: lightning flash | [50] | CC BY-SA 4.0 |
26 | top: overview of Transient Luminous Events | [6] | Copyright ©2003, The American Association for the Advancement of Science |
bottom: excerpt of a table of chemical reactions | [67] | Copyright 2008 by the American Geophysical Union |
References
- Raizer, Y. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Raizer, Y.; Milikh, G.; Shneider, M.; Novakovski, S. Long streamers in the upper atmosphere above thundercloud. J. Phys. D Appl. Phys. 1998, 31, 3255–3264. [Google Scholar] [CrossRef]
- Moss, G.; Pasko, V.; Liu, N.; Veronis, G. Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J. Geophys. Res. 2006, 111, A02307. [Google Scholar] [CrossRef]
- da Silva, C.; Pasko, V. Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets. J. Geophys. Res. 2013, 118, 13561–13590. [Google Scholar] [CrossRef]
- Montanyà, J.; van der Velde, O.; Williams, E. The start of lightning: Evidence of bidirectional lightning initiation. Nat. Sci. Rep. 2015, 5, 15180. [Google Scholar] [CrossRef]
- Neubert, T. On Sprites and Their Exotic Kin. Science 2003, 300, 747–749. [Google Scholar] [CrossRef]
- Cummer, S.; Jaugey, N.; Li, J.; Lyons, W.; Nelson, T.; Gerken, E. Submillisecond imaging of sprite development and structure. Geophys. Res. Lett. 2006, 33, L04104. [Google Scholar] [CrossRef]
- Pasko, V. Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges. Plasma Sour. Sci. Technol. 2007, 16, S13–S29. [Google Scholar] [CrossRef]
- Qin, J.; Celestin, S.; Pasko, V. Formation of single and double-headed streamers in sprite-halo events. Geophys. Res. Lett. 2012, 39, L05810. [Google Scholar] [CrossRef]
- Starikovskaia, S. Plasma-assisted ignition and combustion: Nanosecond discharges and development of kinetic mechanisms. J. Phys. D Appl. Phys. 2014, 47, 353001. [Google Scholar] [CrossRef]
- Popov, N. Kinetics of plasma-assisted combustion:effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sour. Sci. Technol. 2016, 25, 043002. [Google Scholar] [CrossRef]
- Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A.; Vasilets, V.; Fridman, A. Applied plasma medicine. Plasma Process. Polym. 2008, 5, 503–533. [Google Scholar] [CrossRef]
- Laroussi, M. From killing bacteria to destroying cancercells: 20 years of plasma medicine. Plasma Process. Polym. 2014, 11, 1138–1141. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Aleksandrov, N. Blocking streamer development by plane gaseous layers of various densities. Plasma Sour. Sci. Technol. 2020, 29, 034002. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Aleksandrov, N. How pulse polarity and photoionization control streamer discharge development in long air gaps. Plasma Sour. Sci. Technol. 2020, 29, 075004. [Google Scholar] [CrossRef]
- Boggs, S.; Schramm, H.H. Current interruption and switching in sulphur hexafuoride. IEEE Electr. Insul. Mag. 1990, 6, 12–17. [Google Scholar] [CrossRef]
- Christophorou, L.; Olthoff, J.; Van Brunt, R. Sulfur hexafuoride and the electric power industry. IEEE Electr. Insul. Mag. 1997, 13, 20–24. [Google Scholar] [CrossRef]
- Zhang, B.; Uzelac, N.; Cao, Y. Fluoronitrile/CO2 mixture as an eco-friendly alternative to SF6 for medium voltage switchgears. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1340–1350. [Google Scholar] [CrossRef]
- Zheleznyak, M.; Mnatsakanyan, A.; Sizykh, S. Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge. High Temp. 1982, 20, 357–362. [Google Scholar]
- Pancheshnyi, S. Role of electronegative gas admixtures in streamer start, propagation and branching phenomena. Plasma Sour. Sci. Technol. 2005, 14, 645–653. [Google Scholar] [CrossRef]
- Luque, A.; Ebert, U.; Montijn, C.; Hundsdorfer, W. Photoionisation in negative streamers: Fast computations and two propagation modes. Appl. Phys. Lett. 2007, 90, 081501. [Google Scholar] [CrossRef]
- Köhn, C.; Chanrion, O.; Neubert, T. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures. Plasma Sour. Sci. Technol. 2017, 26, 015006. [Google Scholar] [CrossRef]
- Nguyen, C.; van Deursen, A.; Ebert, U. Multiple x-ray bursts from long discharges in air. J. Phys. D. Appl. Phys. 2008, 41, 234012. [Google Scholar] [CrossRef]
- Rahman, M.; Cooray, V.; Ahmad, N.; Nyberg, J.; Rakov, V.; Sharma, S. X rays from 80-cm long sparks in air. Geophys. Res. Lett. 2008, 35, L06805. [Google Scholar] [CrossRef]
- Nguyen, C.; van Deursen, A.; van Heesch, E.; Winands, G.; Pemen, A. X-ray emission in streamer-corona plasma. J. Phys. D Appl. Phys. 2010, 43, 025202. [Google Scholar] [CrossRef]
- Kochkin, P.; Nguyen, C.; van Deursen, A.; Ebert, U. Experimental study of hard x-rays emitted from metre-scale positive discharges in air. J. Phys. D Appl. Phys. 2012, 45, 425202. [Google Scholar] [CrossRef]
- Kochkin, P.; van Deursen, A.; Ebert, U. Experimental study on hard x-rays emitted from metre-scale negative discharges in air. J. Phys. D Appl. Phys. 2014, 48, 025202. [Google Scholar] [CrossRef]
- Kochkin, P.; Köhn, C.; Ebert, U.; van Deursen, A. Analyzing x-ray emissions from meter-scale negative discharges in ambient air. Plasma Sour. Sci. Technol. 2016, 25, 044002. [Google Scholar] [CrossRef]
- Fishman, G.J.; Bhat, P.N.; Mallozzi, R.; Horack, J.M.; Koshut, T.; Kouveliotou, C.; Pendleton, G.N.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.S.; et al. Discovery of intense gamma-ray flashes of atmospheric origin. Science 1994, 264, 1313–1316. [Google Scholar] [CrossRef]
- Briggs, M.; Fishman, G.; Connaughton, V.; Bhat, P.; Paciesas, W.; Preece, R.; Wilson-Hodge, C.; Chaplin, V.L.; Kippen, R.M.; von Kienlin, A.; et al. First results on terrestrial gamma ray flashes from the Fermi gamma-ray burst monitor. J. Geophys. Res. 2010, 115, A07323. [Google Scholar] [CrossRef]
- Briggs, M.S.; Xiong, S.; Connaughton, V.; Tierney, D.; Fitzpatrick, G.; Foley, S.; Grove, J.E.; Chekhtman, A.; Gibby, M.; Fishman, G.J.; et al. Terrestrial gamma-ray flashes in the Fermi era: Improved observations and analysis methods. J. Geophys. Res. 2013, 118, 3805–3830. [Google Scholar] [CrossRef]
- Østgaard, N.; Neubert, T.; Reglero, V.; Ullaland, K.; Yang, S.; Genov, G.; Marisaldi, M.; Mezentsev, A.; Kochkin, P.; Lehtinen, N.; et al. First 10 Months of TGF Observations by ASIM. J. Geophys. Res. Atmos. 2019, 124, 14024–14036. [Google Scholar] [CrossRef]
- Köhn, C.; Heumesser, M.; Chanrion, O.; Nishikawa, K.; Reglero, V.; Neubert, T. The Emission of Terrestrial Gamma Ray Flashes From Encountering Streamer Coronae Associated to the Breakdown of Lightning Leaders. Geophys. Res. Lett. 2020, 47, e2020GL089749. [Google Scholar] [CrossRef]
- Heumesser, M.; Chanrion, O.; Neubert, T.; Christian, H.J.; Dimitriadou, K.; Gordillo-Vazquez, F.J.; Luque, A.; Pérez-Invernón, F.J.; Blakeslee, R.J.; Østgaard, N.; et al. Spectral Observations of Optical Emissions Associated with Terrestrial Gamma-Ray Flashes. Geophys. Res. Lett. 2021, 48, e2020GL090700. [Google Scholar] [CrossRef] [PubMed]
- Köhn, C.; Dujko, S.; Chanrion, O.; Neubert, T. Streamer propagation in the atmosphere of Titan and other N2:CH4 mixtures compared to N2:O2 mixtures. Icarus 2019, 333, 294–305. [Google Scholar] [CrossRef]
- Dubrovin, D.; Nijdam, S.; van Veldhuizen, E.; Ebert, U.; Yair, Y.; Price, C. Sprite discharges on Venus and Jupiter-like planets: A laboratory investigation. J. Geophys. Res. 2010, 115, A00E34. [Google Scholar] [CrossRef]
- Köhn, C.; Chanrion, O.; Enghoff, M.; Dujko, S. Streamer discharges in the atmosphere of Primordial Earth. Geophys. Res. Lett. 2022, 49, e2021GL09750. [Google Scholar] [CrossRef]
- Bouwman, D.; Teunissen, J.; Ebert, U. 3D particle simulations of positiveair–methane streamers for combustion. Plasma Sour. Sci. Technol. 2022, 31, 045023. [Google Scholar] [CrossRef]
- Ebert, U.; Sentman, D. Streamers, sprites, leaders, lightning: From micro- to macroscales. J. Phys. D Appl. Phys. 2008, 41, 230301. [Google Scholar] [CrossRef]
- Ebert, U.; Nijdam, S.; Li, C.; Luque, A.; Briels, T.; van Veldhuizen, E. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J. Geophys. Res. Space Phys. 2010, 115, A00E43. [Google Scholar] [CrossRef]
- Cooray, V. An Introduction to Lightning; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Nijdam, S.; Teunissen, J.; Ebert, U. The physics of streamer discharge phenomena. Plasma Sour. Sci. Technol. 2020, 29, 103001. [Google Scholar] [CrossRef]
- Hartley, J.; Davies, I. Note-taking: A critical review. Program. Learn. Educ. Technol. 1978, 15, 207–224. [Google Scholar] [CrossRef]
- Wankat, P. The Effective, Efficient Professor: Teaching Scholarship and Service; Pearson: London, UK, 2001. [Google Scholar]
- Carstens, D.; Doss, S.; Kies, S. Social Media Impact on Attention Span. J. Manag. Eng. Integr. 2018, 11, 20–27. [Google Scholar]
- Ray, E. Outreach, engagement will keep academia relevant to twenty-first century societies. J. Pub. Serv. Outreach 1999, 4, 21–27. [Google Scholar]
- Ecklund, E.; James, S.; Lincoln, A. How Academic Biologists and Physicists View ScienceOutreach. PLoS ONE 2012, 7, e36240. [Google Scholar] [CrossRef] [PubMed]
- Köhn, C. Blitze auf der Urerde; Science Slam Hamburg: Hamburg, Germany, 2022; Available online: https://www.youtube.com/watch?v=gYcprqUemMQ (accessed on 10 June 2025). (In German)
- St Andrews Centre for Exoplanet Science. Available online: https://exoplanets.wp.st-andrews.ac.uk/ (accessed on 10 June 2025).
- Vidinovski, F. Wikipedia: A Lightning Strike as Seen from the Village of Dolno Sonje, in a Rural Area South of Skopje, North Macedonia. 2020. Available online: https://en.wikipedia.org/wiki/Lightning_strike#/media/File:Rural_nightime_lightning_strike.png (accessed on 10 June 2025).
- Mizeraczyk, J.; Kanazawa, S.; Ohkubo, T. Progress in the Visualization of Filamentary Gas Discharges. Part 2: Visualization of DC Positive Corona Discharges. J. Adv. Oxid. Technol. 2004, 7, 20–30. [Google Scholar] [CrossRef]
- Boakye-Mensah, F.; Bonifaci, N.; Hanna, R.; Niyonzima, I.; Timoshkin, I. Modelling of Positive Streamers in SF6 Gas under Non-Uniform Electric Field Conditions: Effect of Electronegativity on Streamer Discharges. Multi. Sci. J. 2022, 5, 255–276. [Google Scholar] [CrossRef]
- Plasma Data Exchange Project: LXCat. Available online: https://nl.lxcat.net/home/ (accessed on 10 June 2025).
- Gurevich, A. On the theory of runaway electrons. Sov. Phys. JETP-USSR 1961, 12, 904–912. [Google Scholar]
- Dougsim. Wikipedia: Visualisation of a Townsend Avalanche. 2012. Available online: https://en.wikipedia.org/wiki/Townsend_discharge#/media/File:Electron_avalanche.gif (accessed on 10 June 2025).
- Raether, H. Die Entwicklung der Elektronen in den Funkenkanal. Zeit. F. Phys. 1939, 112, 464–489. [Google Scholar] [CrossRef]
- Meek, J. A theory of spark discharge. Phys. Rev. 1940, 57, 722–728. [Google Scholar] [CrossRef]
- Montijn, C.; Ebert, U. Diffusion correction to the Raether-Meek criterion for the avalanche-to-streamer transition. J. Phys. D Appl. Phys. 2006, 39, 2979–2992. [Google Scholar] [CrossRef]
- Peeters, S.; Mirpour, S.; Köhn, C.; Nijdam, S. A Model for Positive Corona Inception From Charged Ellipsoidal Thundercloud Hydrometeors. J. Geophys. Res. Atmos. 2022, 127, e2021JD035505. [Google Scholar] [CrossRef]
- Li, C.; Teunissen, J.; Nool, M.; Hundsdorfer, W.; Ebert, U. A comparison of 3D fluid, particle and hybrid model for negative streamers. Plasma Sources Sci. Technol. 2012, 21, 055019. [Google Scholar] [CrossRef]
- Kulikovsky, A. Positive streamer between parallel plate electrodes in atmospheric pressure air. J. Phys. D Appl. Phys. 1997, 30, 441–450. [Google Scholar] [CrossRef]
- Chanrion, O.; Neubert, T. A PIC-MCC code for simulation of streamer propagation in air. J. Comp. Phys. 2008, 227, 7222–7245. [Google Scholar] [CrossRef]
- Liu, N.; Pasko, V. Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J. Geophys. Res. 2004, 109, A04301. [Google Scholar]
- Wormeester, G.; Pancheschnyi, S.; Luque, A.; Nijdam, S.; Ebert, U. Probing photo-ionization: Simulations of positive streamers in varying N2:O2-mixtures. J. Phys. D Appl. Phys. 2010, 43, 505201. [Google Scholar] [CrossRef]
- Köhn, C.; Chanrion, O.; Neubert, T. The Sensitivity of Sprite Streamer Inception on the Initial Electron-Ion Patch. J. Geophys. Res. Space Phys. 2019, 124, 3083–3099. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.; Luque, A.; Gordillo-Vázquez, F. Mesospheric optical signatures of possible lightning on Venus. J. Geophys. Res. Space Phys. 2016, 121, 7026–7048. [Google Scholar] [CrossRef]
- Sentman, D.; Stenbaek-Nielsen, H.; McHarg, M.; Morrill, J. Plasma chemistry of sprite streamers. J. Geophys. Res. 2008, 113, D11112. [Google Scholar] [CrossRef]
- Ebert, U.; Montijn, C.; Briels, T.; Hundsdorfer, W.; Meulenbroek, B.; Rocco, A.; van Veldhuizen, E. The multiscale nature of streamers. Plasma Sour. Sci. Technol. 2006, 15, S118–S129. [Google Scholar] [CrossRef]
- Dwyer, J.R.; Uman, M.A. The physics of lightning. Phys. Rep. 2014, 534, 147–241. [Google Scholar] [CrossRef]
- Uman, M. The Lightning Discharge; Academic Press: London, UK, 1987. [Google Scholar]
- Rakov, V.; Uman, M. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhn, C. An Audiovisual Introduction to Streamer Physics. Atmosphere 2025, 16, 757. https://doi.org/10.3390/atmos16070757
Köhn C. An Audiovisual Introduction to Streamer Physics. Atmosphere. 2025; 16(7):757. https://doi.org/10.3390/atmos16070757
Chicago/Turabian StyleKöhn, Christoph. 2025. "An Audiovisual Introduction to Streamer Physics" Atmosphere 16, no. 7: 757. https://doi.org/10.3390/atmos16070757
APA StyleKöhn, C. (2025). An Audiovisual Introduction to Streamer Physics. Atmosphere, 16(7), 757. https://doi.org/10.3390/atmos16070757