Assessing the Reliability of Seasonal Data in Representing Synoptic Weather Types: A Mediterranean Case Study
Abstract
:1. Introduction
2. Data and Methodology
2.1. WRF-ARW Seasonal Forecast Model
2.1.1. Sensitivity Test
2.1.2. Seasonal Hindcast Simulations
- Domain 1 covers Europe with a horizontal resolution of 111.18 km × 111.18 km (), consisting of 63 longitudinal and 50 latitudinal grid points, and 51 vertical levels;
- Domain 2, nested from Domain 1, expands in the Mediterranean region with a finer resolution of 37.06 km × 37.06 km (), grid points, and 51 vertical levels;
- Nested from Domain 2, the simulations produce seven high-resolution subdomains (referred to as “hot-spots” [3]), each with a spatial resolution of 12.35 km × 12.35 km (), with grid points, and 51 vertical levels.
2.2. Classification of Weather Types
3. Results
3.1. Climate Analysis of Weather Types
3.2. WT Classification Agreement Between WRF Lead Time 3 and ERA5
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Burke, M. Global warming has increased global economic inequality. Proc. Natl. Acad. Sci. USA 2019, 116, 9808–9813. [Google Scholar] [CrossRef] [PubMed]
- Lazoglou, G.; Papadopoulos-Zachos, A.; Georgiades, P.; Zittis, G.; Velikou, K.; Manios, E.M.; Anagnostopoulou, C. Identification of climate change hotspots in the Mediterranean. Sci. Rep. 2024, 14, 29817. [Google Scholar] [CrossRef] [PubMed]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Page, M.L.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Manzanas, R.; Torralba, V.; Lledó, L.; Bretonnière, P.A. On the Reliability of Global Seasonal Forecasts: Sensitivity to Ensemble Size, Hindcast Length and Region Definition. Geophys. Res. Lett. 2022, 49, e2021GL094662. [Google Scholar] [CrossRef]
- Portele, T.C.; Lorenz, C.; Dibrani, B.; Laux, P.; Bliefernicht, J.; Kunstmann, H. Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions. Sci. Rep. 2021, 11, 10581. [Google Scholar] [CrossRef]
- Soares, M.B.; Daly, M.; Dessai, S. Assessing the value of seasonal climate forecasts for decision-making. Adv. Rev. 2018, 9, e523. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Y.Q.; Magnusson, L.; Buizza, R.; Lin, S.J.; Chen, J.H.; Emanuel, K. What is the predictability limit of midlatitude weather? J. Atmos. Sci. 2019, 76, 1077–1091. [Google Scholar] [CrossRef]
- Kirtman, B.; Power, S.B.; Adedoyin, A.J.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.; Fiore, A.M.; Kimoto, M.; Meehl, G.; et al. Near-term climate change: Projections and predictability. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057999. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. NPJ Clim. Atmos. Sci. 2018, 1, 3. [Google Scholar] [CrossRef]
- Mariotti, A.; Ruti, P.M.; Rixen, M. Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. NPJ Clim. Atmos. Sci. 2018, 1, 4. [Google Scholar] [CrossRef]
- Palmer, T.N.; Anderson, D.L. The prospects for seasonal forecasting—A review paper. Q. J. R. Meteorol. Soc. 1994, 120, 755–793. [Google Scholar] [CrossRef]
- Barnston, A.G.; Glantz, M.H.; He, Y. Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull. Am. Meteorol. Soc. 1999, 80, 217–244. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; García-Serrano, J.; Lienert, F.; Biescas, A.P.; Rodrigues, L.R. Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev. Clim. Change 2013, 4, 245–268. [Google Scholar] [CrossRef]
- Lenssen, N.J.; Goddard, L.; Mason, S. Seasonal forecast skill of enso teleconnection maps. Weather Forecast. 2020, 35, 2387–2406. [Google Scholar] [CrossRef]
- Klemm, T.; McPherson, R.A. The development of seasonal climate forecasting for agricultural producers. Agric. For. Meteorol. 2017, 232, 384–399. [Google Scholar] [CrossRef]
- Ceglar, A.; Toreti, A. Seasonal climate forecast can inform the European agricultural sector well in advance of harvesting. NPJ Clim. Atmos. Sci. 2021, 4, 42. [Google Scholar] [CrossRef]
- Clark, R.T.; Bett, P.E.; Thornton, H.E.; Scaife, A.A. Skilful seasonal predictions for the European energy industry. Environ. Res. Lett. 2017, 12, 024002. [Google Scholar] [CrossRef]
- Torralba, V.; Doblas-Reyes, F.J.; MacLeod, D.; Christel, I.; Davis, M. Seasonal climate prediction: A new source of information for the management of wind energy resources. J. Appl. Meteorol. Climatol. 2017, 56, 1231–1247. [Google Scholar] [CrossRef]
- Cai, X.; Cao, H.; Fang, X.; Sun, J.; Yu, Y. A View for Atmospheric Unpredictability. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Juricke, S.; MacLeod, D.; Weisheimer, A.; Zanna, L.; Palmer, T.N. Seasonal to annual ocean forecasting skill and the role of model and observational uncertainty. Q. J. R. Meteorol. Soc. 2018, 144, 1947–1964. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Liu, S.; Xu, T.; Chen, F.; Li, Z.; Zhang, Z.; Liu, R.; Song, L.; Xu, Z.; et al. Improving regional climate simulations based on a hybrid data assimilation and machine learning method. Hydrol. Earth Syst. Sci. 2023, 27, 1583–1606. [Google Scholar] [CrossRef]
- Merryfield, W.J.; Baehr, J.; Batté, L.; Becker, E.J.; Butler, A.H.; Coelho, C.A.; Danabasoglu, G.; Dirmeyer, P.A.; Doblas-Reyes, F.J.; Domeisen, D.I.; et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 2020, 101, E869–E896. [Google Scholar] [CrossRef]
- Dayan, U.; Tubi, A.; Levy, I. On the importance of synoptic classification methods with respect to environmental phenomena. Int. J. Climatol. 2012, 32, 681–694. [Google Scholar] [CrossRef]
- Bissolli, P.; Dittmann, E. The objective weather type classification of the German weather service and its possibilities of application to environmental and meteorological investigations. Meteorol. Z. 2001, 10, 253–260. [Google Scholar] [CrossRef]
- Lamb, H.H. British Isles Weather Types and a Register of the Daily Sequence of Circulation Patterns, 1861–1971; H.M. Stationery Office: London, UK, 1972; Volume 16, Issue 116 of Geophysical Memoirs. [Google Scholar]
- Su, S.H.; Chu, J.L.; Yo, T.S.; Lin, L.Y. Identification of synoptic weather types over Taiwan area with multiple classifiers. Atmos. Sci. Lett. 2018, 19, e861. [Google Scholar] [CrossRef]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Fettweis, X.; Huth, R.; James, P.; Jourdain, S.; Kreienkamp, F.; et al. Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Neal, R.; Fereday, D.; Crocker, R.; Comer, R.E. A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteorol. Appl. 2016, 23, 389–400. [Google Scholar] [CrossRef]
- Piotrowicz, K.; Ciaranek, D. A selection of weather type classification systems and examples of their application. Theor. Appl. Climatol. 2020, 140, 719–730. [Google Scholar] [CrossRef]
- Littmann, T. An empirical classification of weather types in the Mediterranean Basin and their interrelation with rainfall. Theor. Appl. Climatol. 2000, 66, 161–171. [Google Scholar] [CrossRef]
- Maheras, P.; Patrikas, I.; Karacostas, T.; Anagnostopoulou, C. Automatic classification of circulation types in Greece: Methodology, description, frequency, variability and trend analysis. Theor. Appl. Climatol. 2000, 67, 205–223. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Tolika, K.; Maheras, P. Classification of circulation types: A new flexible automated approach applicable to NCEP and GCM datasets. Theor. Appl. Climatol. 2009, 96, 3–15. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.1; Technical Report; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Hochman, A.; Gildor, H. Synergistic effects of El Niño–Southern Oscillation and the Indian Ocean Dipole on Middle Eastern subseasonal precipitation variability and predictability. Q. J. R. Meteorol. Soc. 2025, 151, e4903. [Google Scholar] [CrossRef]
- Shaman, J. The Seasonal Effects of ENSO on Atmospheric Conditions Associated with European Precipitation: Model Simulations of Seasonal Teleconnections. J. Clim. 2014, 27, 1010–1028. [Google Scholar] [CrossRef]
- Molteni, F.; Brookshaw, A. Early- and late-winter ENSO teleconnections to the Euro-Atlantic region in state-of-the-art seasonal forecasting systems. Clim. Dyn. 2023, 61, 2673–2692. [Google Scholar] [CrossRef]
- Yavuzsoy-Keven, E.; Ezber, Y.; Sen, O.L. Comparative Evaluation of Niño1+2 and Niño3.4 Indices in Terms of ENSO Effects Over the Euro-Mediterranean Region. Int. J. Climatol. 2024, 44, 5839–5856. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z. Interannual variability of the atlantic hadley circulation in boreal summer and its impacts on tropical cyclone activity. J. Clim. 2013, 26, 8529–8544. [Google Scholar] [CrossRef]
- Xian, T.; Xia, J.; Wei, W.; Zhang, Z.; Wang, R.; Wang, L.P.; Ma, Y.F. Is hadley cell expanding? Atmosphere 2021, 12, 1699. [Google Scholar] [CrossRef]
- Grise, K.M.; Davis, S.M.; Staten, P.W.; Adam, O. Regional and seasonal characteristics of the recent expansion of the tropics. J. Clim. 2018, 31, 6839–6856. [Google Scholar] [CrossRef]
- Rousi, E.; Mimis, A.; Stamou, M.; Anagnostopoulou, C. Classification of circulation types over Eastern mediterranean using a self-organizing map approach. J. Maps 2014, 10, 232–237. [Google Scholar] [CrossRef]
- Tyrlis, E.; Lelieveld, J. Climatology and dynamics of the summer Etesian winds over the eastern Mediterranean. J. Atmos. Sci. 2013, 70, 3374–3396. [Google Scholar] [CrossRef]
- Dafka, S.; Xoplaki, E.; Toreti, A.; Zanis, P.; Tyrlis, E.; Zerefos, C.; Luterbacher, J. The Etesians: From observations to reanalysis. Clim. Dyn. 2016, 47, 1569–1585. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Zanis, P.; Katragkou, E.; Tegoulias, I.; Tolika, K. Recent past and future patterns of the Etesian winds based on regional scale climate model simulations. Clim. Dyn. 2014, 42, 1819–1836. [Google Scholar] [CrossRef]
- Dafka, S.; Toreti, A.; Zanis, P.; Xoplaki, E.; Luterbacher, J. Twenty-First-Century Changes in the Eastern Mediterranean Etesians and Associated Midlatitude Atmospheric Circulation. J. Geophys. Res. Atmos. 2019, 124, 12741–12754. [Google Scholar] [CrossRef]
WRF Physics | Schemes |
---|---|
Cumulus Scheme | Kain–Fritsch (KF) |
Microphysics Scheme | Thompson |
Radiation Scheme (Longwave–Shortwave) | RRTMG |
Planetary Boundary Layer Scheme | Yonsei University (YSU) |
Surface Layer Scheme | Revised MM5 |
Land Surface Model Scheme | Noah |
WRF Dynamics | Options |
Diffusion Options | Simple diffusion |
K Options | 2D deformation |
6th-Order Horizontal Diffusion | Turned off |
Upper Damping | An implicit gravity-wave damping layer |
Non-Hydrostatic | FALSE |
Lateral Boundary Conditions | Specified |
Month | Mean Agreement (%) | Max Agreement (%) | Min Agreement (%) |
---|---|---|---|
01 | 82.6 | 96.8 | 71 |
02 | 80.6 | 100 | 57.1 |
03 | 79.7 | 96.8 | 58.1 |
04 | 78.7 | 96.7 | 63.3 |
05 | 76.3 | 93.6 | 51.6 |
06 | 76.1 | 93.3 | 36.7 |
07 | 80.3 | 100 | 51.6 |
08 | 81 | 100 | 61.3 |
09 | 78.8 | 96.7 | 60 |
10 | 78.1 | 90.3 | 61.3 |
11 | 82 | 96.7 | 63.3 |
12 | 80.1 | 93.6 | 54.8 |
Month | Mean Agreement (%) | Max Agreement (%) | Min Agreement (%) |
---|---|---|---|
01 | 49.1 | 64.5 | 25.8 |
02 | 47.8 | 65.5 | 21.2 |
03 | 45.3 | 64.5 | 16.1 |
04 | 43.6 | 63.3 | 26.7 |
05 | 37.7 | 61.3 | 19.4 |
06 | 37.1 | 56.7 | 16.7 |
07 | 39.8 | 71 | 19.4 |
08 | 38.6 | 64.5 | 16.1 |
09 | 38.9 | 56.7 | 23.3 |
10 | 43.3 | 67.7 | 19.4 |
11 | 46.9 | 76.7 | 26.7 |
12 | 45.2 | 67.7 | 22.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos Zachos, A.; Velikou, K.; Manios, E.-M.; Tolika, K.; Anagnostopoulou, C. Assessing the Reliability of Seasonal Data in Representing Synoptic Weather Types: A Mediterranean Case Study. Atmosphere 2025, 16, 748. https://doi.org/10.3390/atmos16060748
Papadopoulos Zachos A, Velikou K, Manios E-M, Tolika K, Anagnostopoulou C. Assessing the Reliability of Seasonal Data in Representing Synoptic Weather Types: A Mediterranean Case Study. Atmosphere. 2025; 16(6):748. https://doi.org/10.3390/atmos16060748
Chicago/Turabian StylePapadopoulos Zachos, Alexandros, Kondylia Velikou, Errikos-Michail Manios, Konstantia Tolika, and Christina Anagnostopoulou. 2025. "Assessing the Reliability of Seasonal Data in Representing Synoptic Weather Types: A Mediterranean Case Study" Atmosphere 16, no. 6: 748. https://doi.org/10.3390/atmos16060748
APA StylePapadopoulos Zachos, A., Velikou, K., Manios, E.-M., Tolika, K., & Anagnostopoulou, C. (2025). Assessing the Reliability of Seasonal Data in Representing Synoptic Weather Types: A Mediterranean Case Study. Atmosphere, 16(6), 748. https://doi.org/10.3390/atmos16060748