Diabatic and Frictional Controls of an Axisymmetric Vortex Using Available Potential Energy Theory with a Non-Resting State
Abstract
1. Introduction
2. Model Formulation and Standard Energetics
2.1. Model Formulation
2.2. Linking Momentum Equations to Vortex Static Energy
2.3. Standard Energetics Viewpoint
3. Vortex Available Energetics
3.1. Definition of the Non-Resting Reference State
3.2. Available Versus Static Vortex Energy
3.3. Properties of Available Vortex Energy
- following the surface of constant angular momentum along which the force vanishes identically. Along this path, the path integral is given by
- following the isobaric surface along which the force vanishes. Along this path, the path integral is given by
4. Energetics of Vortex Growth and Decay Due to Diabatic Effects
4.1. Generalised Buoyancy Forces and Available Energy
4.2. Generalised Buoyancy/Inertial Force Viewpoint
4.3. Energy Cycle
5. Application to Energetics of TC Intensification
5.1. Motivation and Background
5.2. Numerical Experiment
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Analytical Expression for Vortex Motions
Appendix B. Signs of Π e and Π k and Stability Conditions
Appendix C. Numerical Methods for Computing Local APE with Vortex Reference State in Axisymmetric Model
References
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Emanuel, K.A. The Maximum Intensity of Hurricanes. J. Atmos. Sci. 1988, 45, 1143–1155. [Google Scholar] [CrossRef]
- DeMaria, M.; Kaplan, J. Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones. J. Clim. 1994, 7, 1324–1334. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 1998, 65, 233–240. [Google Scholar] [CrossRef]
- Lin, I.I.; Black, P.; Price, J.F.; Yang, C.Y.; Chen, S.S.; Lien, C.C.; Harr, P.; Chi, N.H.; Wu, C.C.; D’Asaro, E.A. An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett. 2013, 40, 1878–1882. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; D’Asaro, E.; Emanuel, K.A.; Liu, H.; Zedler, S.E. Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones. Geophys. Res. Lett. 2015, 42, 6739–6746. [Google Scholar] [CrossRef]
- Sabuwala, T.; Gioia, G.; Chakraborty, P. Effect of rainpower on hurricane intensity. Geophys. Res. Lett. 2015, 42, 3024–3029. [Google Scholar] [CrossRef]
- Pauluis, O.M. The Mean Air Flow as Lagrangian Dynamics Approximation and Its Application to Moist Convection. J. Atmos. Sci. 2016, 73, 4407–4425. [Google Scholar] [CrossRef]
- Lorenz, E.N. Available potential energy and the maintenance of the general circulation. Tellus 1955, 7, 157–167. [Google Scholar] [CrossRef]
- Stansifer, E.M.; O’Gorman, P.A.; Holt, J.I. Accurate computation of moist available potential energy with the Munkres algorithm. Q. J. R. Meteorol. Soc. 2017, 143, 288–292. [Google Scholar] [CrossRef]
- Harris, B.L.; Tailleux, R. Assessment of algorithms for computing moist available potential energy. Q. J. R. Meteorol. Soc. 2018, 144, 1501–1510. [Google Scholar] [CrossRef]
- Wong, K.C.; Tailleux, R.; Gray, S.L. The computation of reference state and APE production by diabatic processes in an idealized tropical cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 2646–2657. [Google Scholar] [CrossRef]
- Codoban, S.; Shepherd, T.G. Energetics of a symmetric circulation including momentum constraints. J. Atmos. Sci. 2003, 60, 2019–2028. [Google Scholar] [CrossRef]
- Codoban, S.; Shepherd, T.G. On the available energy of an axisymmetric vortex. Meteorol. Z. 2006, 15, 401–407. [Google Scholar] [CrossRef]
- Andrews, D.G. On the available energy density for axisymmetric motions of a compressible stratified fluid. J. Fluid Mech. 2006, 569, 481–492. [Google Scholar] [CrossRef]
- Harris, B.L.; Tailleux, R.; Holloway, C.E.; Vidale, P.L. A moist available potential energy budget for an axisymmetric tropical cyclone. J. Atmos. Sci. 2022, 79, 2493–2513. [Google Scholar] [CrossRef]
- Tailleux, R. Local available energetics of multicomponent compressible stratified fluids. J. Fluid Mech. 2018, 842, R1. [Google Scholar] [CrossRef]
- Novak, L.; Tailleux, R. On the local view of atmospheric available potential energy. J. Atmos. Sci. 2018, 75, 1891–1907. [Google Scholar] [CrossRef]
- Tailleux, R.; Dubos, T. A simple and transparent method for improving the energetics and thermodynamics of seawater approximations: Static Energy Asymptotics (SEA). Ocean Model. 2024, 188, 102339. [Google Scholar] [CrossRef]
- Smith, R.K.; Montgomery, M.T.; Kilroy, G. The generation of kinetic energy in tropical cyclones revisited. Q. J. R. Meteorol. Soc. 2018, 144, 1–9. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K. Paradigms for tropical cyclone intensification. Aust. Meteorol. Oceanogr. J. 2014, 64, 37–66. [Google Scholar] [CrossRef]
- Smith, R.K.; Montgomery, M.T.; Zhu, H. Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Ocean 2005, 40, 189–208. [Google Scholar] [CrossRef]
- Emanuel, K.A. The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci. 1995, 52, 3960–3968. [Google Scholar] [CrossRef]
- Andrews, D.G. A note on potential energy density in a stratified compressible fluid. J. Fluid Mech. 1981, 107, 227–236. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Midlatitudes; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Emanuel, K. Atmospheric Convection; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Bui, H.H.; Smith, R.K.; Montgomery, M.T.; Cheng, P. Balanced and unbalanced aspects of tropical cyclone intensification. Q. J. R. Meteorol. Soc. 2009, 135, 1715–1731. [Google Scholar] [CrossRef]
- Brown, S.A. A cloud resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Weather Rev. 2002, 130, 1573–1591. [Google Scholar]
- Zhang, D.L.; Liu, Y.; Yau, M.K. A multiscale numerical study of Hurricane Andrew (1992). Part III. Dynamically induced vertical motion. Mon. Weather Rev. 2000, 128, 3772–3788. [Google Scholar] [CrossRef]
- Emanuel, K.A. Chapter 15. 100 years of research in tropical cyclone research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Emanuel, K.A. A statistical analysis of tropical cyclone intensity. Mon. Weather Rev. 2000, 128, 1139–1152. [Google Scholar] [CrossRef]
- Tailleux, R. Entropy versus APE production: On the buoyancy power input in the oceans energy cycle. Geophys. Res. Lett. 2010, 37, L22603. [Google Scholar] [CrossRef]
- Rotunno, R.; Emanuel, K. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 1987, 44, 542–561. [Google Scholar] [CrossRef]
- Craig, G.C. Radiation and polar lows. Q. J. R. Meteorol. Soc. 1995, 121, 79–94. [Google Scholar] [CrossRef]
- Craig, G.C. Numerical experiments on radiation and tropical cyclones. Q. J. R. Meteorol. Soc. 1996, 122, 415–422. [Google Scholar] [CrossRef]
- Nolan, D.S.; Montgomery, M.T. Nonhydrostatic, Three-Dimensional Perturbations to Balanced, Hurricane-like Vortices. Part I: Linearized Formulation, Stability, and Evolution. J. Atmos. Sci. 2002, 59, 2989–3020. [Google Scholar] [CrossRef]
- Smith, R.K. The surface boundary layer of a hurricane. Tellus A Dyn. Meteorol. Oceanogr. 1968, 20, 473. [Google Scholar] [CrossRef]
- Bennetts, D.A.; Hoskins, B.J. Conditional symmetric instability—A possible explanation for frontal rainbands. Q. J. R. Meteorol. Soc. 1979, 105, 945–962. [Google Scholar]
- Emanuel, K.A. The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci. 1983, 40, 2368–2376. [Google Scholar] [CrossRef]
- Emanuel, K.A. On assessing local conditional symmetric instability from atmospheric soundings. Mon. Weather Rev. 1983, 111, 2016–2033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, B.L.; Tailleux, R. Diabatic and Frictional Controls of an Axisymmetric Vortex Using Available Potential Energy Theory with a Non-Resting State. Atmosphere 2025, 16, 700. https://doi.org/10.3390/atmos16060700
Harris BL, Tailleux R. Diabatic and Frictional Controls of an Axisymmetric Vortex Using Available Potential Energy Theory with a Non-Resting State. Atmosphere. 2025; 16(6):700. https://doi.org/10.3390/atmos16060700
Chicago/Turabian StyleHarris, Bethan L., and Rémi Tailleux. 2025. "Diabatic and Frictional Controls of an Axisymmetric Vortex Using Available Potential Energy Theory with a Non-Resting State" Atmosphere 16, no. 6: 700. https://doi.org/10.3390/atmos16060700
APA StyleHarris, B. L., & Tailleux, R. (2025). Diabatic and Frictional Controls of an Axisymmetric Vortex Using Available Potential Energy Theory with a Non-Resting State. Atmosphere, 16(6), 700. https://doi.org/10.3390/atmos16060700