Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets
Abstract
1. Introduction
2. Data and Methodology
2.1. Introduction to Data
2.1.1. Antarctic Station Observations
2.1.2. Reanalysis and Merged Satellite Datasets
2.2. Introduction to the Methodology
3. Results
3.1. Applicability Evaluation of Interannual Variation
3.1.1. Assessment of Correlation Coefficients
3.1.2. Assessment of Root-Mean-Square Errors
3.1.3. Assessment of Interannual Variability Skill Scores
3.1.4. Comprehensive Interannual Variation Assessment
3.2. Evaluation of Long-Term Trends in the Recovery Period
3.2.1. Long-Term Trends Assessment at Individual Stations
3.2.2. Average Trends Assessment at Multiple Stations
4. Discussion and Conclusions
- In terms of interannual variation, for the correlation coefficients (R), C3S-MSR performed well at all eight stations and showed the best overall performance, while JRA-55 performed poorly at most stations, especially Marambio, Rothera, and Faraday/Vernadsky, which are located at lower latitudes on the Antarctic Peninsula near 60°W. For the root-mean-square error (RMSE), C3S-MSR was the best and JRA-55 was the worst. All datasets exhibited larger errors at Dumont D’Urville and Arrival Heights, which are located close to the edge of the Antarctic stratospheric vortex where total column ozone is on average larger than in the vortex core. Regarding the interannual variability skill score (IVS), C3S-MSR showed relatively small differences, but exhibited some fluctuations among different stations and months. JRA-55 showed the largest overall differences, especially for the above-mentioned three stations on the Antarctic Peninsula and the two stations in the ozone high value area.
- Combining the three evaluation metrics and the average results of eight stations, this study obtained the overall rankings of the datasets for interannual variation. The ranking results showed that the C3S-MSR reanalysis dataset performed best overall, followed by the ERA5 reanalysis dataset and the NIWA-BS merged satellite dataset. The MERRA-2 and JRA-55 reanalysis datasets ranked lowest. Among them, JRA-55 had the worst performance and failed to present the interannual variation of Antarctic ozone.
- The evaluation of trends during the recovery period (2000–2019) showed that, for most time periods, the absolute trend bias (TrBias) values of all datasets were within an acceptable range for most stations, and were able to reflect the Antarctic ozone trends. However, large differences were observed at some stations, especially Arrival Heights. The absolute TrBias of JRA-55 was larger, especially for the three stations on the Antarctic Peninsula, namely Marambio, Rothera, and Faraday/Vernadsky. Regarding the overall trend of eight stations, the absolute TrBias values of C3S-MSR and NIWA-BS were smaller, accurately reflecting the ozone trend in the Antarctic area; the performance of MERRA-2 was not stable, with large differences from month to month; whereas ERA5 and JRA-55, on the other hand, significantly overestimated the recovery trend of Antarctic ozone and performed poorly. In particular, JRA-55 showed considerable deviations in certain months, suggesting that its use in analyzing Antarctic ozone trends requires careful attention.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal ClO/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Solomon, S. The discovery of the Antarctic ozone hole. Nature 2019, 575, 46–48. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Lefèvre, F.; Pommereau, J.; Roscoe, H.K.; Goutail, F.; Pazmiño, A.; Shanklin, J.D. Antarctic ozone loss in 1979–2010: First sign of ozone recovery. Atmos. Chem. Phys. 2013, 13, 1625–1635. [Google Scholar] [CrossRef]
- Alvim-Ferraz, M.C.M.; Sousa, S.I.V.; Martins, F.G.; Ferraz, M.P. Tropospheric and Stratospheric Ozone: Scientific History and Shifts in Early Perspectives Regarding the Impact on Human Health. Atmosphere 2024, 15, 1504. [Google Scholar] [CrossRef]
- Son, S.W.; Gerber, E.P.; Perlwitz, J.; Polvani, L.M.; Gillett, N.P.; Seo, K.H.; Eyring, V.; Shepherd, T.G.; Waugh, D.; Akiyoshi, H.; et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res. 2010, 115, D00M07. [Google Scholar] [CrossRef]
- Zambri, B.; Solomon, S.; Thompson, D.W.; Fu, Q. Emergence of southern hemisphere stratospheric circulation changes in response to ozone recovery. Nat. Geosci. 2021, 14, 638–644. [Google Scholar] [CrossRef]
- Polvani, L.M.; Waugh, D.W.; Correa, G.J.; Son, S.W. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the southern hemisphere. J. Clim. 2011, 24, 795–812. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; Bitz, C.M.; Solomon, S.; Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Clim. 2015, 28, 1206–1226. [Google Scholar] [CrossRef]
- Turner, J.; Comiso, J.; Marshall, G.; Lachlan-Cope, T.A.; Bracegirdle, T.; Maksym, T.; Meredith, M.P.; Wang, Z.; Orr, A. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett. 2009, 36, L08502. [Google Scholar] [CrossRef]
- Rienecker, M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s modern-ERA retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Soci, C.; Hersbach, H.; Simmons, A.; Poli, P.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; et al. The ERA5 global reanalysis from 1940 to 2022. Q. J. R. Meteorol. Soc. 2024, 150, 4014–4048. [Google Scholar] [CrossRef]
- Li, Y.J.; Chipperfield, M.P.; Feng, W.H.; Dhomse, S.S.; Pope, R.J.; Li, F.Q.; Guo, D. Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979–2017. Atmos. Chem. Phys. 2020, 20, 8627–8639. [Google Scholar] [CrossRef]
- Bodeker, G.E.; Kremser, S. Indicators of Antarctic ozone depletion: 1979 to 2019. Atmos. Chem. Phys. 2020, 21, 5289–5300. [Google Scholar] [CrossRef]
- Ivaniha, O. Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukr. Antarct. J. 2020, 1, 41–55. [Google Scholar] [CrossRef]
- Li, Y.J.; Dhomse, S.S.; Chipperfield, M.P.; Feng, W.H.; Chrysanthou, A.; Xia, Y.; Guo, D. Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model. Atmos. Chem. Phys. 2022, 22, 10635–10656. [Google Scholar] [CrossRef]
- Abalos, M.; Polvani, L.; Calvo, N.; Kinnison, D.; Ploeger, F.; Randel, W.; Solomon, S. New insights on the impact of ozone-depleting substances on the Brewer-Dobson circulation. J. Geophys. Res. Atmos. 2019, 124, 2435–2451. [Google Scholar] [CrossRef]
- Bai, K.X.; Chang, N.B.; Gao, W. Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979–2013. J. Geophys. Res. Atmos. 2016, 121, 1459–1474. [Google Scholar] [CrossRef]
- Krzyścin, J.W.; Baranowski, D.B. Signs of the ozone recovery based on multi sensor reanalysis of total ozone for the period 1979–2017. Atmos. Environ. 2019, 199, 334–344. [Google Scholar] [CrossRef]
- Weber, M.; Arosio, C.; Coldewey-Egbers, M.; Fioletov, V.E.; Frith, S.M.; Wild, J.D.; Tourpali, K.; Burrows, J.P.; Loyola, D. Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets. Atmos. Chem. Phys. 2022, 22, 6843–6859. [Google Scholar] [CrossRef]
- Chen, A.; Chen, D.; Hu, X.Y.; Harth, C.M.; Young, D.; Mühle, J.; Krummel, P.B.; O’Doherty, S.; Weiss, R.F.; Prinn, R.G.; et al. Historical trend of ozone-depleting substances and hydrofluorocarbon concentrations during 2004–2020 derived from satellite observations and estimates for global emissions. Environ. Pollut. 2023, 316, 120570. [Google Scholar] [CrossRef] [PubMed]
- Mears, C.A.; Wentz, F.J. Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders. J. Atmos. Ocean. Technol. 2009, 26, 1040–1056. [Google Scholar] [CrossRef]
- Tritscher, I.; Pitts, M.C.; Poole, L.R.; Alexander, S.P.; Cairo, F.; Chipperfield, M.P.; Grooß, J.-U.; Höpfner, M.; Lambert, A.; Luo, B.; et al. Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion. Rev. Geophys. 2021, 59, e2020RG000702. [Google Scholar] [CrossRef]
- Kessenich, H.E.; Seppälä, A.; Rodger, C.J. Potential drivers of the recent large Antarctic ozone holes. Nat. Commun. 2023, 14, 7259. [Google Scholar] [CrossRef]
- Keeble, J.; Hassler, B.; Banerjee, A.; Checa-Garcia, R.; Chiodo, G.; Davis, S.; Eyring, V.; Griffiths, P.T.; Morgenstern, O.; Nowack, P.; et al. Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmos. Chem. Phys. 2021, 21, 5015–5061. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hagemann, S.; Hodges, K.I. Can climate trends be calculated from reanalysis data. J. Geophys. Res. Atmos. 2004, 109, 112–123. [Google Scholar] [CrossRef]
- Gualtieri, G. Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review. Renew. Sustain. Energy Rev. 2022, 167, 112741. [Google Scholar] [CrossRef]
- Gai, Y.Y.; Long, X.J.; Wei, Z.H.; Sui, X.; Jiang, B.; Chen, X.; Yu, D.; Qin, S.; Cui, Y. Toward a better understanding of uncertainty for satellite precipitation products over complex terrain with sparse rain gauge data. Atmos. Res. 2023, 288, 106742. [Google Scholar] [CrossRef]
- Wargan, K.G.; Labow, S.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis. J. Clim. 2017, 30, 2961–2988. [Google Scholar] [CrossRef]
- Sepúlveda, E.; Cordero, R.R.; Damiani, A.; Feron, S.; Pizarro, J.; Zamorano, F.; Kivi, R.; Sánchez, R.; Yela, M.; Jumelet, J.; et al. Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes. Sci. Rep. 2021, 11, 4288. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Cai, K.; Zhu, S.; Zhang, X.; Chen, L. Evaluating the Performance of Ozone Products Derived from CrIS/NOAA20, AIRS/Aqua and ERA5 Reanalysis in the Polar Regions in 2020 Using Ground-Based Observations. Remote Sens. 2021, 13, 4375. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2022; GAW Report No. 278; WMO: Geneva, Switzerland, 2022; 509p. [Google Scholar]
- Zhang, Y.; Li, J.; Zhou, L.B. The relationship between polar vortex and ozone depletion in the Antarctic stratosphere during the period 1979–2016. Adv. Meteorol. 2017, 2017, 3078079. [Google Scholar] [CrossRef]
- Proffitt, M.H.; Margitan, J.J.; Kelly, K.K.; Loewenstein, M.; Podolske, J.R.; Chan, K.R. Ozone loss in the Arctic polar vortex inferred from high-altitude aircraft measurements. Nature 1990, 347, 6288. [Google Scholar] [CrossRef]
- Anderson, J.G.; Toohey, D.W.; Brune, W.H. Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science 1991, 251, 39–46. [Google Scholar] [CrossRef]
- Hassler, B.; Bodeker, G.E.; Solomon, S.; Young, P.J. Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations. Geophys. Res. Lett. 2011, 38, L01805. [Google Scholar] [CrossRef]
- Grytsai, A.V.; Evtushevsky, O.M.; Agapitov, O.V.; Klekociuk, A.R.; Milinevsky, G.P. Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys. 2007, 25, 361–374. [Google Scholar] [CrossRef]
- Engel, A.; Bönisch, H.; Ostermöller, J.; Chipperfield, M.P.; Dhomse, S.; Jöckel, P. A refined method for calculating equivalent effective stratospheric chlorine. Atmos. Chem. Phys. 2018, 18, 601–619. [Google Scholar] [CrossRef]
- Lin-Gen, B.; Zhong, L.; Xiang-Dong, Z.; Yong-Feng, M.; Long-Hua, L. Trend of Antarctic ozone hole and its influencing factors. Adv. Clim. Change Res. 2012, 3, 68–75. [Google Scholar] [CrossRef]
- Solomon, S.; Ivy, D.; Kinnison, D.; Mills, M.; Neely, R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef]
- van der A, R.J.; Allaart, M.A.F.; Eskes, H.J. Multi sensor reanalysis of total ozone. Atmos. Chem. Phys. 2010, 10, 11277–11294. [Google Scholar] [CrossRef]
- van der A, R.J.; Allaart, M.A.F.; Eskes, H.J. Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012. Atmos. Meas. Tech. 2015, 8, 3021–3035. [Google Scholar] [CrossRef]
Station Name (Abbreviation) | Time Period | Location | Instrument |
---|---|---|---|
Arrival Heights (AH) | 1988–2019 | 166.67° E, 77.83° S | Dobson |
Dumont D’Urville (DD) | 1988–2019 | 140.02° E, 66.66° S | SAOZ |
Faraday/Vernadsky (FV) | 1980–2019 | 64.25° W, 65.24° S | Dobson |
Halley (H) | 1980–2019 | 25.21° W, 75.57° S | Dobson |
Marambio (M) | 1987–2019 | 56.62° W, 64.23° S | Brewer |
Rothera (R) | 1996–2019 | 67.56° W, 68.13° S | SAOZ |
Syowa (S) | 1980–2019 | 39.58° E, 69.00° S | Brewer |
ZhongShan (ZS) | 1993–2019 | 76.38° E, 69.37° S | Brewer |
Data | Resolution (Lon° × Lat°) | Category | Time Period | Source |
---|---|---|---|---|
ERA5 | 0.25 × 0.25 | Reanalysis | 1940–2023 | ECMWF |
NIWA-BS | 1.25 × 1.0 | Merged Satellite | 1979–2019 | NIWA |
C3S-MSR | 0.5 × 0.5 | Reanalysis | 1979–2022 | C3S |
JRA-55 | 1.25 × 1.25 | Reanalysis | 1958–2023 | JMA |
MERRA-2 | 0.625 × 0.5 | Reanalysis | 1980–2023 | NASA |
Metric | Description | Optimal Value | Unit |
---|---|---|---|
R | Pearson correlation coefficient | 1 | Dimensionless |
RMSE | Root-mean-square error | 0 | DU |
IVS | Interannual variability skill score | 0 | Dimensionless |
TrBias | Trend bias | 0 | DU/year |
Period | C3S-MSR | ERA5 | NIWA-BS | MERRA-2 | JRA-55 |
---|---|---|---|---|---|
Sep | 1 | 2.33 | 2.66 | 4.67 | 4.33 |
Oct | 1 | 2.66 | 3.33 | 3 | 5 |
Nov | 1.33 | 2.33 | 4.33 | 2.33 | 4.67 |
SON | 1 | 2.33 | 2.67 | 4 | 5 |
Average | 1.08 | 2.42 | 3.25 | 3.5 | 4.75 |
Period | C3S-MSR | NIWA-BS | MERRA-2 | JRA-55 | ERA5 |
---|---|---|---|---|---|
Sep | 2 | 1 | 5 | 3 | 4 |
Oct | 2 | 4 | 1 | 3 | 5 |
Nov | 2 | 1 | 3 | 5 | 4 |
SON | 1 | 2 | 3 | 5 | 4 |
Average | 1.75 | 2 | 3 | 4 | 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, Y.; Shi, H.; Hu, H.; Xu, J. Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets. Atmosphere 2025, 16, 696. https://doi.org/10.3390/atmos16060696
Chen J, Zhang Y, Shi H, Hu H, Xu J. Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets. Atmosphere. 2025; 16(6):696. https://doi.org/10.3390/atmos16060696
Chicago/Turabian StyleChen, Junzhe, Yu Zhang, Houxiang Shi, Hao Hu, and Jianjun Xu. 2025. "Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets" Atmosphere 16, no. 6: 696. https://doi.org/10.3390/atmos16060696
APA StyleChen, J., Zhang, Y., Shi, H., Hu, H., & Xu, J. (2025). Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets. Atmosphere, 16(6), 696. https://doi.org/10.3390/atmos16060696