Influence of the South Asian High and Western Pacific Subtropical High Pressure Systems on the Risk of Heat Stroke in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Number of Heat Stroke Patients and Climate Conditions in Japan
3.2. Difference in Air Temperatures Between DH and WPSH Days
3.3. Difference in Heat Stroke Patients Between DH and WPSH Days
3.4. Difference Between DH and WPSH Days Within the Same Temperature Range
3.5. Role of Meteorological Factors on Heat Stroke Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WP | Weather Pattern |
WPSH | Western Pacific Subtropical High |
SAH | South Asian High |
DH | Double High |
AMeDAS | Automated Meteorological Data Acquisition System |
JMA | Japan Meteorological Agency |
SOM | Self-Organizing Map |
EHS | Extremely high Heat Stroke |
PJ | Pacific-Japan |
Appendix A
Data | Period | Resolution | Variables | Source |
JRA-55 | July and August in 2008–2021 | 1.25° × 1.25° | geopotential height 2 m specific humidity surface downward shortwave radiation 10 m wind speed | [42] |
References
- Cissé, G.; Mcleman, R.; Adams, H.; Aldunce, P.; Bowen, K.; Campbell-Lendrum, D.; Clayton, S.; Ebi, K.L.; Hess, J.; Huang, C.; et al. Health, Wellbeing, and the Changing Structure of Communities. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1041–1170. [Google Scholar]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death Toll Exceeded 70,000 in Europe during the Summer of 2003. C. R. Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-Related Mortality in Europe during the Summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global Risk of Deadly Heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Heat and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-heat-and-health (accessed on 18 June 2024).
- Pryor, R.R.; Casa, D.J.; Holschen, J.C.; O’Connor, F.G.; Vandermark, L.W. Exertional Heat Stroke: Strategies for Prevention and Treatment from the Sports Field to the Emergency Department. Clin. Pediatr. Emerg. Med. 2013, 14, 267–278. [Google Scholar] [CrossRef]
- Lewis, A.M. Heatstroke in Older Adults. Am. J. Nurs. 2007, 107, 52–56. [Google Scholar] [CrossRef]
- Nakai, S.; Itoh, T.; Morimoto, T. Deaths from Heat-Stroke in Japan: 1968-1994. Int. J. Biometeorol. 1999, 43, 124–127. [Google Scholar] [CrossRef]
- Kenney, W.L.; Munce, T.A. Invited Review: Aging and Human Temperature Regulation. J. Appl. Physiol. 2003, 95, 2598–2603. [Google Scholar] [CrossRef]
- Hirata, A.; Nomura, T.; Laakso, I. Computational Estimation of Body Temperature and Sweating in the Aged during Passive Heat Exposure. Int. J. Therm. Sci. 2015, 89, 154–163. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The Direct Impact of Climate Change on Regional Labor Productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Sato, T.; Kusaka, H.; Hino, H. Quantitative Assessment of the Contribution of Meteorological Variables to the Prediction of the Number of Heat Stroke Patients for Tokyo. SOLA 2020, 16, 104–108. [Google Scholar] [CrossRef]
- Iwamoto, Y.; Ohashi, Y. Assessing the Climatological Relationship between Heatstroke Risk and Heat Stress Indices in 47 Prefectures in Japan. GeoHazards 2021, 2, 321–331. [Google Scholar] [CrossRef]
- Metzger, K.B.; Ito, K.; Matte, T.D. Summer Heat and Mortality in New York City: How Hot Is Too Hot? Environ. Health Perspect. 2010, 118, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Luo, S.; He, J.; Cheng, Y.; Jin, Y. Impacts of Extremely High Temperature and Heatwave on Heatstroke in Chongqing, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 8534–8540. [Google Scholar] [CrossRef] [PubMed]
- Coffel, E.D.; Horton, R.M.; de Sherbinin, A. Temperature and Humidity Based Projections of a Rapid Rise in Global Heat Stress Exposure during the 21st Century. Environ. Res. Lett. 2018, 13, 014001. [Google Scholar] [CrossRef]
- Fujibe, F.; Matsumoto, J.; Suzuki, H. Regional Features of the Relationship between Daily Heat-Stroke Mortality and Temperature in Different Climate Zones in Japan. SOLA 2018, 14, 144–147. [Google Scholar] [CrossRef]
- Chan, Y.K.; Mamat, M. Management of Heat Stroke. Tren. Anaesth. Crit. Care 2015, 5, 65–69. [Google Scholar] [CrossRef]
- Otani, H.; Goto, T.; Goto, H.; Shirato, M. Time-of-Day Effects of Exposure to Solar Radiation on Thermoregulation during Outdoor Exercise in the Heat. Chronobiol. Int. 2017, 34, 1224–1238. [Google Scholar] [CrossRef]
- Otani, H.; Kaya, M.; Tamaki, A.; Goto, H.; Tokizawa, K.; Maughan, R.J. Combined Effects of Solar Radiation and Airflow on Endurance Exercise Capacity in the Heat. Physiol. Behav. 2021, 229, 113264. [Google Scholar] [CrossRef]
- Otani, H.; Goto, T.; Goto, H.; Hosokawa, Y.; Shirato, M. Solar Radiation Exposure Has Diurnal Effects on Thermoregulatory Responses during High-Intensity Exercise in the Heat Outdoors. J. Strength Cond. Res. 2019, 33, 2608–2615. [Google Scholar] [CrossRef]
- Foster, J.; Smallcombe, J.W.; Hodder, S.; Jay, O.; Flouris, A.D.; Nybo, L.; Havenith, G. Quantifying the Impact of Heat on Human Physical Work Capacity; Part III: The Impact of Solar Radiation Varies with Air Temperature, Humidity, and Clothing Coverage. Int. J. Biometeorol. 2022, 66, 175–188. [Google Scholar] [CrossRef]
- Shiue, I.; Matzarakis, A. When Stroke Epidemiology Meets Weather and Climate: A Heat Exposure Index from Human Biometeorology. Int. J. Stroke 2011, 6, 176. [Google Scholar] [CrossRef] [PubMed]
- Akihiko, T.; Morioka, Y.; Behera, S.K. Role of Climate Variability in the Heatstroke Death Rates of Kanto Region in Japan. Sci. Rep. 2014, 4, 5655. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Hayashi, K.; Nishiura, H. Possible Adaptation Measures for Climate Change in Preventing Heatstroke among Older Adults in Japan. Front. Public Health 2023, 11, 1184963. [Google Scholar] [CrossRef]
- D’ambrogio, E. Japan’s Ageing Society. Available online: https://policycommons.net/artifacts/1426596/japans-ageing-society/2041040 (accessed on 4 September 2024).
- Tanaka, M. Heat Stress Standard for Hot Work Environments in Japan. Ind. Health 2007, 45, 85–90. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sterl, A. Humid Heat Waves at Different Warming Levels. Sci. Rep. 2017, 7, 7477. [Google Scholar] [CrossRef]
- Ueta, H.; Kodera, S.; Sugimoto, S.; Hirata, A. Projection of Future Heat-Related Morbidity in Three Metropolitan Prefectures of Japan Based on Large Ensemble Simulations of Climate Change under 2 °C Global Warming Scenarios. Environ. Res. 2024, 247, 118202. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Kim, K.-Y. Summertime Variability of the Western North Pacific Subtropical High and Its Synoptic Influences on the East Asian Weather. Sci. Rep. 2019, 9, 7865. [Google Scholar] [CrossRef]
- Inoue, M.; Ugajin, A.; Kiguchi, O.; Yamashita, Y.; Komine, M.; Yamakawa, S. Effects of the Tibetan High and the North Pacific High on the Occurrence of Hot or Cool Summers in Japan. Atmosphere 2021, 12, 307. [Google Scholar] [CrossRef]
- He, C.; Zhou, T.; Lin, A.; Wu, B.; Gu, D.; Li, C.; Zheng, B. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming? Sci. Rep. 2015, 5, 16771. [Google Scholar] [CrossRef]
- Kurihara, K.; Tsuyuki, T. Development of the Barotropic High around Japan and Its Association with Rossby Wave-like Propagations over the North Pacific: Analysis of August 1984. J. Meteorol. Soc. 1987, 65, 237–246. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S.; Li, W. Dynamic Effect of the South Asian High on the Interannual Zonal Extension of the Western North Pacific Subtropical High. Int. J. Climatol. 2019, 39, 5367–5379. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Liu, Y. Mechanisms for Regional Compound Hot Extremes in the Mid-lower Reaches of the Yangtze River. Int. J. Climatol. 2021, 41, 1292–1304. [Google Scholar] [CrossRef]
- Imada, Y.; Watanabe, M.; Kawase, H.; Shiogama, H.; Arai, M. The July 2018 High Temperature Event in Japan Could Not Have Happened without Human-Induced Global Warming. SOLA 2019, 15A, 8–12. [Google Scholar] [CrossRef]
- Shimpo, A.; Takemura, K.; Wakamatsu, S.; Togawa, H.; Mochizuki, Y.; Takekawa, M.; Tanaka, S.; Yamashita, K.; Maeda, S.; Kurora, R.; et al. Primary Factors behind the Heavy Rain Event of July 2018 and the Subsequent Heat Wave in Japan. SOLA 2019, 15A, 13–18. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Primary Factors behind the Heavy Rain Event of July 2018 and the Subsequent Heatwave in Japan from Mid-July Onward. Available online: https://www.data.jma.go.jp/tcc/data/news/press_20180822.pdf (accessed on 7 April 2025).
- Fire Disaster Management Agency. Heatstroke Information. Available online: https://www.fdma.go.jp/disaster/heatstroke/post3.html (accessed on 19 June 2024). (In Japanese)
- Statistics Bureau of Japan. Population Estimation. Available online: https://www.stat.go.jp/data/jinsui/2021np/index.html (accessed on 19 June 2024). (In Japanese)
- Japan Meteorological Agency. Past Meteorological Data and Download. Available online: https://www.data.jma.go.jp/risk/obsdl/index.php (accessed on 21 May 2025).
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organized Formation of Topologically Correct Feature Maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Ohba, M.; Kadokura, S.; Nohara, D. Medium-Range Probabilistic Forecasts of Wind Power Generation and Ramps in Japan Based on a Hybrid Ensemble. Atmosphere 2018, 9, 423. [Google Scholar] [CrossRef]
- Ohba, M.; Sugimoto, S. Impacts of Climate Change on Heavy Wet Snowfall in Japan. Clim. Dyn. 2020, 54, 3151–3164. [Google Scholar] [CrossRef]
- Noh, E.; Kim, J.; Jun, S.-Y.; Cha, D.-H.; Park, M.-S.; Kim, J.-H.; Kim, H.-G. The Role of the Pacific-japan Pattern in Extreme Heatwaves over Korea and Japan. Geophys. Res. Lett. 2021, 48, e2021GL093990. [Google Scholar] [CrossRef]
- Xue, X.; Chen, W.; Chen, S.; Sun, S.; Hou, S. Distinct Impacts of Two Types of South Asian Highs on East Asian Summer Rainfall. Int. J. Climatol. 2021, 41, E2718–E2740. [Google Scholar] [CrossRef]
- Zhou, T.-J.; Yu, R.-C. Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Nishii, K.; Taguchi, B.; Nakamura, H. An Atmospheric General Circulation Model Assessment of Oceanic Impacts on Extreme Climatic Events over Japan in July 2018. J. Meteorol. Soc. 2020, 98, 801–820. [Google Scholar] [CrossRef]
- Cao, D.; Xu, K.; Huang, Q.-L.; Tam, C.-Y.; Chen, S.; He, Z.; Wang, W. Exceptionally Prolonged Extreme Heat Waves over South China in Early Summer 2020: The Role of Warming in the Tropical Indian Ocean. Atmos. Res. 2022, 278, 106335. [Google Scholar] [CrossRef]
- Martinez, G.S.; Imai, C.; Masumo, K. Local Heat Stroke Prevention Plans in Japan: Characteristics and Elements for Public Health Adaptation to Climate Change. Int. J. Environ. Res. Public Health 2011, 8, 4563–4581. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Jézéquel, A.; Cattiaux, J.; Naveau, P.; Radanovics, S.; Ribes, A.; Vautard, R.; Vrac, M.; Yiou, P. Trends of Atmospheric Circulation during Singular Hot Days in Europe. Environ. Res. Lett. 2018, 13, 054007. [Google Scholar] [CrossRef]
- Weinberger, K.R.; Wu, X.; Sun, S.; Spangler, K.R.; Nori-Sarma, A.; Schwartz, J.; Requia, W.; Sabath, B.M.; Braun, D.; Zanobetti, A.; et al. Heat Warnings, Mortality, and Hospital Admissions among Older Adults in the United States. Environ. Int. 2021, 157, 106834. [Google Scholar] [CrossRef]
Max Temp. | Ave. Temp. | |
---|---|---|
Tokyo | 30.6 °C | 26.3 °C |
Osaka | 32.8 °C | 28.4 °C |
Nagoya | 32.3 °C | 27.6 °C |
Fukuoka | 31.9 °C | 27.9 °C |
Number of Days (Days) | Percentage (%) | |
---|---|---|
DH days | 180 | 21 |
WPSH days | 180 | 21 |
Tokyo | Osaka | Aichi | Fukuoka | |
---|---|---|---|---|
DH days | 41 | 39 | 43 | 39 |
WPSH days | 20 | 22 | 20 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morioka, T.; Tamura, K.; Sato, T. Influence of the South Asian High and Western Pacific Subtropical High Pressure Systems on the Risk of Heat Stroke in Japan. Atmosphere 2025, 16, 693. https://doi.org/10.3390/atmos16060693
Morioka T, Tamura K, Sato T. Influence of the South Asian High and Western Pacific Subtropical High Pressure Systems on the Risk of Heat Stroke in Japan. Atmosphere. 2025; 16(6):693. https://doi.org/10.3390/atmos16060693
Chicago/Turabian StyleMorioka, Takehiro, Kenta Tamura, and Tomonori Sato. 2025. "Influence of the South Asian High and Western Pacific Subtropical High Pressure Systems on the Risk of Heat Stroke in Japan" Atmosphere 16, no. 6: 693. https://doi.org/10.3390/atmos16060693
APA StyleMorioka, T., Tamura, K., & Sato, T. (2025). Influence of the South Asian High and Western Pacific Subtropical High Pressure Systems on the Risk of Heat Stroke in Japan. Atmosphere, 16(6), 693. https://doi.org/10.3390/atmos16060693