Implications of Solar Radiation Modification on Rainfall and Temperature Patterns over Eastern Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis
3. Results
3.1. Observed Historical Rainfall and Temperature Patterns
3.2. Evaluation of GEOMIP GCMs Against Historical Precipitation
3.3. Evaluation of GeoMIP GCMs Using Historical Temperature
3.4. Projected Future Rainfall Patterns from SRM Models
3.5. Comparison of SRM Scenario of G6Sulfur and the Conventional SSP Annual Total Precipitation
3.5.1. Comparison of SRM Scenario of G6Solar and the Conventional SSP Total Annual Precipitation
3.5.2. Comparison of SRM Scenario of G6Sulfur and the Conventional SSP Total Annual Precipitation
3.6. Comparison of SRM Scenario of G6Sulfur and the Conventional SSP Annual Mean Temperature
3.6.1. Comparison of SRM Scenario of G6Solar and the Conventional SSP Annual Mean Temperature
3.6.2. Comparison of SRM Scenario of G6Sulfur and the Conventional SSP Annual Mean Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARISE | Assessing Responses and Impacts of Solar climate intervention on the Earth system |
CHIRPS | Climate Hazards Group Infrared Precipitation |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
CCN | Cloud Condensation Nuclei |
DMF | Degrees Modeling Fund |
ENSO | El Niño-Southern Oscillation |
GCM | General Circulation Model |
GeoMIP | Geoengineering Model Intercomparison Project |
GHG | Green House Gas |
GLENS | Geoengineering Large Ensemble |
IPCC | Intergovernmental Panel on Climate Change |
IOD | Indian Ocean Dipole |
ITCZ | Inter-Tropical Convergence Zone |
LTM | Long Term Mean |
MCB | Marine Cloud Brightening |
NDC | Nationally Determined Contribution |
SAI | Stratospheric Aerosol Injection |
SOND | September, October, November, and December |
SRM | Solar Radiation Modification |
SSP | Shared Socioeconomic Pathway |
UNFCCC | United Nations Framework Convention on Climate Change |
References
- IPCC. Summary for Policymakers. In Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- UNFCCC. Paris Agreement. In COP 21; United Nations Framework Convention on Climate Change (UNFCCC): Le Bourget, France, 2015. [Google Scholar]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Schäfer, S.; Muri, H.; Scott, V.; Oschlies, A.; Vaughan, N.E.; Boucher, O.; Schmidt, H.; Haywood, J.; Scheffran, J. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 2018, 9, 3734. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Annex VII: Glossary. In Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Matthews, J.B.R., Fuglestvedt, J.S., Masson-Delmotte, V., Möller, V., Méndez, C., van Diemen, R., Reisinger, A., Semenov, S., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Ahlm, L.; Jones, A.; Stjern, C.W.; Muri, H.; Kravitz, B.; Kristjánsson, J.E. Marine cloud brightening—As effective without clouds. Atmos. Chem. Phys. 2017, 17, 13071–13087. [Google Scholar] [CrossRef]
- Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J.M.; Irvine, P.J.; Jones, A.; Lawrence, M.G.; MacCracken, M.; Muri, H.; et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. Geosci. Model Dev. 2015, 8, 3379–3392. [Google Scholar] [CrossRef]
- Tilmes, S.; MacMartin, D.G.; Lenaerts, J.T.M.; van Kampenhout, L.; Muntjewerf, L.; Xia, L.; Harrison, C.S.; Krumhardt, K.M.; Mills, M.J.; Kravitz, B.; et al. Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. Earth Syst. Dynam. 2020, 11, 579–601. [Google Scholar] [CrossRef]
- MacMartin, D.G.; Visioni, D.; Kravitz, B.; Richter, J.H.; Felgenhauer, T.; Lee, W.; Morrow, D.; Sugiyama, M. Scenarios for modeling solar geoengineering. Proc. Natl. Acad. Sci. USA 2022, 119, e2202230119. [Google Scholar] [CrossRef]
- Nicholson, S.E. An analysis of recent rainfall conditions in eastern Africa. Int. J. Climatol. 2016, 36, 526–532. [Google Scholar] [CrossRef]
- Li, C.J.; Chai, Y.Q.; Yang, L.S.; Li, H.R. Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa. Nat. Hazards 2016, 82, 721–731. [Google Scholar] [CrossRef]
- Nicholson, S.E. Long-term variability of the Eastern Africa “short rains” and its links to large-scale factors. Int. J. Climatol. 2015, 35, 3979–3990. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over Eastern Africa. Adv. Remote Sens. Rainfall Snowfall 2018, 144 (Suppl. S1), 292–312. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrol. Earth Syst. Sci. 2018, 22, 4547–4564. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Ullah, W.; Boiyo, R.; Ongoma, V. Inter-comparison of remotely sensed precipitation datasets over Kenya during 1998–2016. Atmos. Res. 2019, 225, 96–109. [Google Scholar] [CrossRef]
- Ocen, E.; de Bie, C.A.J.M.; Onyutha, C. Investigating false start of the main growing season: A case of Uganda in East Africa. Heliyon 2021, 7, e08428. [Google Scholar] [CrossRef]
- Mearns, L.O.; Giorgi, F.; McDaniel, L.; Shields, C. Climate Scenarios for the Southeast U.S. Based on GCM and Regional Model Simulations. J. Clim. 2003, 16, 874–885. [Google Scholar]
- Ongoma, V.; Chen, H.; Omony, G.W.; Nzioki, R. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor. Appl. Climatol. 2018, 131, 295–308. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. 2007, 34, L15702. [Google Scholar] [CrossRef]
- Curry, C.L.; Sillmann, J.; Bronaugh, D.; Alterskjaer, K.; Cole, J.N.S.; Ji, D.; Kravitz, B.; Kristjánsson, J.E.; Moore, J.C.; Muri, K.; et al. A multimodel examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res. Atmos. 2014, 119, 3900–3923. [Google Scholar] [CrossRef]
- Muthyala, R.; Bala, G.; Nalam, A. Regional scale analysis of climate extremes in an SRM geoengineering simulation, Part 1: Precipitation extremes. Curr. Sci. 2018, 114, 1024. [Google Scholar] [CrossRef]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C. Projected changes in mean rainfall and temperature over East Africa based on CMIP5 models. Int. J. Climatol. 2017, 37, 1375–1392. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.; Abdrabo, M.; Essel, A.; Leonard, C.; Padgham, J.; Urquhart, P.; Adelekan, I.O.; Archibald, S.; Balinga, M.; et al. Chapter 22: Africa. In Climate Change 2014 Impacts: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014; pp. 1–115. [Google Scholar]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 85004. [Google Scholar] [CrossRef]
- Pinto, I.; Jack, C.; Lennard, C.; Tilmes, S.; Odoulami, R.C. Africa’s Climate Response to Solar Radiation Management with Stratospheric Aerosol. Geophys. Res. Lett. 2020, 47, e2019GL086047. [Google Scholar] [CrossRef]
No | Model Name | Institution/Modeling Centre | Resolution |
---|---|---|---|
1 | CESM2 | National Center for Atmospheric Research (NCAR), USA | 0.5° × 0.5° |
2 | CNRM_ESM2-1 | Centre de Recherches Meteorologiques (CNRM) in collaboration with the Centre Euopeen de Recherche et de Formation Avancee en Calcul Scientifique (CERFACS), France | 0.5° × 0.5° |
3 | IPSL-CM6A-LR | Institut Pierre Simon Laplace, Paris, France | 1.9° × 1.3° |
4 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Hamburg, Germany | 2.5° × 1.3° |
5 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Hamburg, Germany | 0.9° × 0.9° |
6 | UKESM1-0-LL | Met Office Hadley Centre (MOHC), UK | 1.9° × 1.3° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nimusiima, A.; Ayesiga, G.; Odongo, R.I.; Mulinde, C.; Aribo, L.; Ojara, M.; Ogwang, B.A. Implications of Solar Radiation Modification on Rainfall and Temperature Patterns over Eastern Africa. Atmosphere 2025, 16, 646. https://doi.org/10.3390/atmos16060646
Nimusiima A, Ayesiga G, Odongo RI, Mulinde C, Aribo L, Ojara M, Ogwang BA. Implications of Solar Radiation Modification on Rainfall and Temperature Patterns over Eastern Africa. Atmosphere. 2025; 16(6):646. https://doi.org/10.3390/atmos16060646
Chicago/Turabian StyleNimusiima, Alex, Godwin Ayesiga, Ronald Ingula Odongo, Catherine Mulinde, Lawrence Aribo, Moses Ojara, and Bob Alex Ogwang. 2025. "Implications of Solar Radiation Modification on Rainfall and Temperature Patterns over Eastern Africa" Atmosphere 16, no. 6: 646. https://doi.org/10.3390/atmos16060646
APA StyleNimusiima, A., Ayesiga, G., Odongo, R. I., Mulinde, C., Aribo, L., Ojara, M., & Ogwang, B. A. (2025). Implications of Solar Radiation Modification on Rainfall and Temperature Patterns over Eastern Africa. Atmosphere, 16(6), 646. https://doi.org/10.3390/atmos16060646