The Human Thermal Load of Mornings with Clear Skies in the Hungarian Lowland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Body Mass Index
2.2. The Clothing Thermal Resistance–Operative Temperature Model
2.3. Parameterization of Metabolic Heat Flux Density
2.4. Human Thermal Sensation Scale
2.5. Basic Information Related to Clear-Sky Mornings
3. Locations
4. Data
4.1. Anthropometric Data
4.2. Weather Data
5. Results
5.1. The M–BMI Relationship
5.2. Thermal Load of the Weather During Cloud-Free Mornings
5.3. Sensitivity of the rcl–To Relationship to Human Activity
5.4. Sensitivity of rcl to Interpersonal Variability of M
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radinović, D. Weather Analysis; Institute for Publishing Textbooks of the Socialist Republic of Serbia: Belgrade, Serbia, 1968; 367p. (In Serbian) [Google Scholar]
- Szász, G. Agrometeorological research and its results in Hungary (1870–2010). Időjárás 2013, 117, 315–358. [Google Scholar]
- Bianca, W. The significance of meteorology in animal production. Int. J. Biometeorol. 1976, 20, 139–156. [Google Scholar] [CrossRef]
- Mohan, M.; Gupta, A.; Bhati, S. A Modified Approach to Analyze Thermal Comfort Classification. ACS 2014, 4, 7–19. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- HungaroMet. 2024. Available online: https://www.met.hu/idojaras/humanmeteorologia/ (accessed on 5 September 2024). (In Hungarian).
- Köppen, W. The geographic system of climates (original: Das geographische system der Klimate). In Handbuch der Klimatologie, Bd.1, Teil C; Köppen, W., Geiger, R., Eds.; Borntraeger: Berlin, Germany, 1936; 44p. [Google Scholar]
- Németh, Á. Changing thermal bioclimate in some Hungarian cities. Acta Climatol. et Chorol. Univ. Szeged. 2011, 44–45, 93–101. [Google Scholar]
- Gulyás, Á.; Matzarakis, A. Seasonal and spatial distribution of physiologically equivalent temperature (PET) index in Hungary. Időjárás 2009, 113, 221–231. [Google Scholar]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.I.; Breuer, H. Carpathian Basin climate according to Köppen and a clothing resistance scheme. Theor. Appl. Climatol. 2020, 141, 299–307. [Google Scholar] [CrossRef]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.I.; Feddema, J.; Breuer, H. Clothing Resistance and Potential Evapotranspiration as Thermal Climate Indicators—The Example of the Carpathian Region. Int. J. Climatol. 2021, 41, 3107–3120. [Google Scholar] [CrossRef]
- Bašarin, B.; Lukić, T.; Matzarakis, A. Quantification and assessment of heat and cold waves in Novi Sad, Nothern Serbia. Int. J. Biometeorol. 2016, 60, 139–150. [Google Scholar] [CrossRef]
- Bašarin, B.; Lukić, T.; Matzarakis, A. Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere 2020, 11, 1276. [Google Scholar] [CrossRef]
- Lukić, M.; Filipović, D.; Pecelj, M.; Crnogorac, L.; Lukić, B.; Divjak, L.; Lukić, A.; Vučićević, A. Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons. Atmosphere 2021, 12, 1084. [Google Scholar] [CrossRef]
- Unger, J.; Skarbit, N.; Kovács, A.; Gál, T. Comparison of regional and urban outdoor thermal stress conditions in heatwave and normal summer periods: A case study. Urban Clim. 2020, 32, 100619. [Google Scholar] [CrossRef]
- Kovács, A.; Németh, Á. Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatol. Chorol. Univ. Szeged. 2012, 46, 115–124. [Google Scholar]
- Gulyás, Á.; Matzarakis, A.; Unger, J. Differences in the thermal bioclimatic conditions on the urban and rural areas in a Southern Hungarian city (Szeged). Ber. Des Meteorol. Inst. Der Albert Ludwigs Univ. Freiburg. 2009, 18, 229–234. [Google Scholar]
- Unger, J.; Gulyás, Á.; Matzarakis, A. Effects of the different inner city micro-environments on the human bioclimatological comfort sensation. Légkör 2005, 50, 9–14. (In Hungarian) [Google Scholar]
- Kántor, N.; Gulyás, Á.; Égerházi, L.; Unger, J. Complex human comfort studies in urban environment—Part II. Légkör 2010, 55, 115–126. (In Hungarian) [Google Scholar]
- Páldy, A.; Bobvos, J.; Vámos, A.; Kováts, R.S.; Hajat, S. The effect of temperature and heat waves on daily mortality in Budapest, Hungary, 1970–2000. In Extreme Weather Events and Public Health Responses; Kirch, W., Menne, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 99–107. [Google Scholar]
- Kántor, N.; Égerházi, L.; Unger, J. Subjective estimation of thermal environment in recreational urban spaces–Part 1: Investigations in Szeged, Hungary. Int. J. Biometeorol. 2012, 56, 1089–1101. [Google Scholar] [CrossRef]
- Ács, F.; Kristóf, E.; Zsákai, A. Individual local human thermal climates in the Hungarian lowland: Estimations by a simple clothing resistance-operative temperature model. Int. J. Climatol. 2023, 43, 1273–1292. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; 244p. [Google Scholar]
- Yang, S.Q.; Matzarakis, A. Implementation of human thermal comfort and air humidity in Köppen-Geiger climate classification and importance towards the achievement of Sustainable Development Goals. Theor. Appl. Climatol. 2019, 138, 981–998. [Google Scholar] [CrossRef]
- Yang, S.Q.; Matzarakis, A. Implementation of human thermal comfort information in Köppen-Geiger climate classification— the example of China. Int. J. Biometeorol. 2016, 60, 1801–1805. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Baranowski, J.; Jendritzky, G.; Błażejczyk, A.; Bröde, P.; Fiala, D. Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonia 2015, 88, 439–453. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Czekierda, D.; Wypych, A. Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Phys. Chem. Earth Pt A/B/C 2010, 35, 429–436. [Google Scholar] [CrossRef]
- Kristóf, E.; Ács, F.; Zsákai, A. On the Human Thermal Load in Fog. Meteorology 2024, 3, 83–96. [Google Scholar] [CrossRef]
- Holmér, I. Assessment of cold stress in terms of required clothing insulation—IREQ. Int. J. Ind. Ergon. 1988, 3, 159–166. [Google Scholar] [CrossRef]
- Ács, F.; Szalkai, Z.; Kristóf, E.; Zsákai, A. Thermal Resistance of Clothing in Human Biometeorological Models. Geogr. Pannonica 2023, 27, 83–90. [Google Scholar] [CrossRef]
- Ács, F.; Zsákai, A.; Kristóf, E.; Szabó, A.; Breuer, H. Human thermal climate of the Carpathian Basin. Int. J. Climatol. 2021, 41, E1846–E1859. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Dubois, D.; Dubois, E.F. The measurement of the surface area of man. Arch. Intern. Med. 1915, 15, 868–881. [Google Scholar] [CrossRef]
- Weyand, P.G.; Smith, B.R.; Puyau, M.R.; Butte, N.F. The mass-specific energy cost of human walking is set by stature. J. Exp. Biol. 2010, 213, 3972–3979. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Sanchez-Delgado, G.; Alcantara, J.M.A.; Martinez-Tellez, B.; Acosta, F.M.; Merchan-Ramirez, E.; Löf, M.; Labayen, I.; Ruiz, J.R. Energy expenditure differences across lying, sitting, and standing positions in young healthy adults. PLoS ONE 2019, 14, e0217029. [Google Scholar] [CrossRef]
- Júdice, P.B.; Hamilton, M.T.; Sardinha, L.B.; Zderic, T.W.; Silva, A.M. What is the metabolic and energy cost of sitting, standing and sit/stand transitions? Eur. J. Appl. Physiol. 2016, 116, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Fehér, V.P.; Annár, D.; Zsákai, A.; Bodzsár, É. The determinants of psychosomatic health complaints in 18–90 year-old women. Anthr. Közlemények 2019, 60, 65–77. (In Hungarian) [Google Scholar] [CrossRef]
- Bröde, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Application of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Krawczyk, B. Bioclimatic Research of the Human Heat Balance; Institute of Geography & Spatial Organisation, Polish Academy of Science: Warsaw, Poland, 1994; p. 28. [Google Scholar]
- Matzarakis, A.; Mayer, H. Another kind of environmental stress: Thermal stress. WHO Newsl. 1996, 18, 7–10. [Google Scholar]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2011, 56, 429–441. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
Person | Sex | Age [Years] | Body Mass (Mbo) [kg] | Body Length (Lbo) [cm] | Total Metabolic Heat Flux Density During Walking (M) [W m−2] | Body Mass Index (BMI) (kgm−2) |
---|---|---|---|---|---|---|
person 1 | male | 68 | 89 | 190 | 135.0 | 24.6 |
person 2 | male | 53 | 95 | 179 | 149.7 | 29.6 |
person 3 | male | 24 | 120 | 179 | 169.4 | 37.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ács, F.; Kristóf, E.; Zsákai, A. The Human Thermal Load of Mornings with Clear Skies in the Hungarian Lowland. Atmosphere 2025, 16, 647. https://doi.org/10.3390/atmos16060647
Ács F, Kristóf E, Zsákai A. The Human Thermal Load of Mornings with Clear Skies in the Hungarian Lowland. Atmosphere. 2025; 16(6):647. https://doi.org/10.3390/atmos16060647
Chicago/Turabian StyleÁcs, Ferenc, Erzsébet Kristóf, and Annamária Zsákai. 2025. "The Human Thermal Load of Mornings with Clear Skies in the Hungarian Lowland" Atmosphere 16, no. 6: 647. https://doi.org/10.3390/atmos16060647
APA StyleÁcs, F., Kristóf, E., & Zsákai, A. (2025). The Human Thermal Load of Mornings with Clear Skies in the Hungarian Lowland. Atmosphere, 16(6), 647. https://doi.org/10.3390/atmos16060647