Identification and Correction for Sun Glint Contamination in Microwave Radiation Imager-Rainfall Mission Global Ocean Observations Onboard the FY-3G Satellite
Abstract
:1. Introduction
2. Materials and Methods
2.1. FY-3G Mission and MWRI-RM Channel Characteristics
2.2. Data
2.3. Model Regression Difference Method
2.4. Accuracy Variation Method
2.5. Sun Glint Geometry and Angle Definitions
3. Results
3.1. Sun Glint Identification and Source Analysis
3.2. Determination of the Sun Glint Flag Critical Angle
3.3. Contamination at Other MWRI-RM Channels
3.4. Validation and Statistical Evaluation for Sun Glint Correction
4. Discussion
4.1. Advantages
4.2. Limitations
5. Conclusions
- Observations over the global ocean at the MWRI-RM 10.65 GHz channel are occasionally affected by specular reflection of solar radiation from the ocean surface. The intensity and locations of the contamination exhibit a strong correlation with the value of the sun glint angle. The closer the sun glint angle is to 0°, the stronger the contamination is. The increment in observed brightness temperatures due to reflected solar radiation falls within the range of [0 K, 5 K]. The range of the solar zenith angle associated with large model difference values falls within [45°, 60°].
- Through a detailed quantitative analysis of sun glint angle distributions in the contaminated pixels, the statistical results reveal that over 96% of such pixels have sun glint angles ≤ 25°, with fewer than 4% exceeding 25°. This strong correlation between contaminated pixels and angles below 25° justifies recommending 25° as the critical threshold for sun glint flagging in MWRI-RM 10.65 GHz observations.
- The TFI along the U.S. coastline can be effectively detected using the model regression difference method, as demonstrated in the analysis of MWRI-RM Level 1 data, where the standard RFI-Flag product failed to identify these persistent interference signals. The spatial distribution of TFI signals differs significantly from that of sun glint contamination.
- The MWRI-RM brightness temperature at 10.65 GHz contaminated by sun glint can be corrected by the multichannel regression technique, which is validated by improved correlation (from 0.90 to 0.98) with the 18.7 GHz channel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hollinger, J.P.; Peirce, J.L.; Poe, G.A. SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens. 1990, 28, 781–790. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. T. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T. The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. [Google Scholar] [CrossRef]
- Gaiser, P.W.; St Germain, K.M.; Twarog, E.M.; Poe, G.A.; Purdy, W. The Wind Satspaceborne Polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2347–2361. [Google Scholar] [CrossRef]
- Spencer, R.W.; Christy, J.R.; Braswell, W.D. UAH Version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci. 2017, 53, 121–130. [Google Scholar] [CrossRef]
- Draper, D.; Newell, D.; Wentz, F.; Krimchansky, S.; Skofronick-Jackson, G. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance. IEEE Trans. Geosci. Remote Sens. 2015, 8, 3452–3462. [Google Scholar] [CrossRef]
- Xia, X.; He, W.Y.; Wu, S.L. A thorough evaluation of the passive microwave radiometer measurements onboard three Fengyun-3 satellites. J. Meteorol. Res. 2023, 37, 573–588. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Krapivin, V.F.; Mkrtchyan, F.A. A New Passive Microwave Tool for Operational Forest Fires Detection: A Case Study of Siberia in 2019. Remote Sens. 2020, 12, 835. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Aghababaei, M.; Karakouzian, M.; Karami, M. Water on Mars—A Literature Review. Galaxies 2020, 8, 40. [Google Scholar] [CrossRef]
- Cho, J.; Lee, Y.W.; Lee, H.S. Assessment of the relationship between thermal-infrared-based temperature-vegetation dryness index and microwave satellite-derived soil moisture. Remote Sens. Lett. 2014, 5, 627–636. [Google Scholar] [CrossRef]
- Shi, Z.; Zou, X. Diurnal variations of radio-frequency interference signal detected from FY-3G Microwave Radiation Imager-Rainfall Mission. J. Meteorol. Sci. 2024, 44, 691–706. [Google Scholar]
- Zou, X.; Zhao, J.; Weng, F.; Qin, Z. Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens. 2012, 50, 4994–5003. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, X.; Weng, F.Z. WindSat radio-frequency interference signature and its identification over Greenland and Antarctic. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4830–4839. [Google Scholar] [CrossRef]
- Martin-Porqueras, F.; Floury, N.; Martin-Neira, M. Detection of the L-band Galactic Glint on the sea surface with the airborne MIRAS. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1968–1975. [Google Scholar] [CrossRef]
- Kunkee, D.B.; Swadley, S.D.; Poe, G.A.; Hong, Y.; Werner, M.F. Special Sensor Microwave Imager Sounder (SSMIS) Radiometric Calibration Anomalies-Part I: Identification and Characterization. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1017–1033. [Google Scholar] [CrossRef]
- Wentz, F.; Ashcroft, P.; Gentemann, C. Post-launch calibration of the TRMM Microwave Imager. IEEE Trans. Geosci. Remote Sens. 2001, 39, 415–422. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P.; Bormann, N. Solar Biases in Microwave Imager Observations Assimilated at ECMWF. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2660–2669. [Google Scholar] [CrossRef]
- Tropical Rainfall Measuring Mission Precipitation Processing System File Specification 2A12; Version 7; NASA-GSFC: Greenbelt, MD, USA, 2013; pp. 15–16.
- GMI Calibration Algorithm and Analysis Theoretical Basis Document; Remote Sensing Systems: Santa Rosa, CA, USA, 2011; pp. 87–90.
- Xue, Q.M.; Guan, L. Identification of Sun Glint Contamination in GMI Measurements Over the Global Ocean. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6473–6483. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Chen, Z.T.; Sun, X.B.; Wang, J.F. Dynamic detection of ocean glint from near-infrared polarized radiation satellite data. J. Remote Sens. 2019, 23, 215–229. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 1964, 44, 838–850. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Ebuchi, N.; Kizu, S. Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers. J. Oceanogr. 2002, 58, 477–486. [Google Scholar] [CrossRef]
- Bréon, F.M.; Henriot, N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res. Ocean. 2006, 111, C06005. [Google Scholar] [CrossRef]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef]
- Zhang, P.; Gu, S.; Chen, L.; Shang, J.; Lin, M.; Zhu, A.; Yin, H.; Wu, Q.; Shou, Y.; Sun, F.; et al. FY-3G satellite instruments and precipitation products: First report of China’s Fengyun rainfall mission in-orbit. J. Remote Sens. 2023, 3, 0097. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P.W.; Bettenhausen, M.H. WindSat radio-frequency interference signature and its identification over land and ocean. IEEE Trans. Geosci. Remote Sens. 2006, 44, 530–539. [Google Scholar] [CrossRef]
- Draper, D.W. Terrestrial and space-based RFI observed by the GPM microwave imager (GMI) within NTIA semi-protected passive earth exploration bands at 10.65 and 18.7 GHz. In Proceedings of the 2016 Radio Frequency Interference, Socorro, NM, USA, 17–20 October 2016. [Google Scholar]
- Grody, N. Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res. Atmos. 1991, 96, 7423–7435. [Google Scholar] [CrossRef]
- Tian, X.; Zou, X. An Empirical Model for Television Frequency Interference Correction of AMSR2 Data Over Ocean Near the U.S. and Europe. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3856–3867. [Google Scholar] [CrossRef]
- Draper, D.W.; Stocker, E.F. A comparison of radio frequency interference within and outside of allocated passive earth exploration bands at 10.65 GHz and 18.7 GHz using the GPM microwave imager and WindSat. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
Channel | Center Frequency (GHz) | Polarization | Bandwidth (MHz) | Frequency Stability (MHz) | Spatial Resolution (km) | Sensitivity (K) | Minimum/Expected Accuracy (K) |
---|---|---|---|---|---|---|---|
1 | 10.65 | V, H | 180 | 10 | 21 × 35 | 0.5 | 0.8/0.8 |
2 | 18.70 | V, H | 200 | 10 | 14 × 23 | 0.5 | 0.8/0.8 |
3 | 23.80 | V, H | 400 | 15 | 13 × 21 | 0.5 | 0.8/0.8 |
4 | 36.50 | V, H | 900 | 20 | 9 × 15 | 0.5 | 0.8/0.8 |
5 | 50.30 | V, H | 400 | 25 | 7 × 11 | 0.5 | 0.8/0.8 |
6 | 52.61 | V, H | 400 | 25 | 7 × 11 | 0.5 | 0.8/0.8 |
7 | 53.24 | V, H | 400 | 25 | 7 × 11 | 0.5 | 0.8/0.8 |
8 | 53.75 | V, H | 400 | 25 | 5 × 8 | 0.5 | 0.8/0.8 |
9 | 89.00 | V, H | 3000 | 25 | 4 × 7 | 0.5 | 0.9/0.8 |
10 | 118.75 ± 3.20 | V | 2 × 500 | 25 | 4 × 7 | 0.8 | 1.2/0.8 |
11 | 118.75 ± 2.40 | V | 2 × 400 | 25 | 4 × 7 | 0.8 | 1.2/0.8 |
12 | 118.75 ± 1.40 | V | 2 × 400 | 25 | 4 × 7 | 0.8 | 1.2/0.8 |
13 | 118.75 ± 1.20 | V | 2 × 400 | 25 | 4 × 7 | 0.8 | 1.2/0.8 |
14 | 165.50 ± 0.75 | V | 2 × 1350 | 30 | 4 × 6 | 0.8 | 1.2/0.8 |
15 | 183.31 ± 2.00 | V | 2 × 1500 | 30 | 4 × 7 | 0.8 | 1.2/0.8 |
16 | 183.31 ± 3.40 | V | 2 × 1500 | 30 | 4 × 7 | 0.8 | 1.2/0.8 |
17 | 183.31 ± 4.00 | V | 2 × 2000 | 30 | 4 × 7 | 0.8 | 1.2/0.8 |
Channel | Coefficients | ||||||
---|---|---|---|---|---|---|---|
10.65-H | |||||||
−159.63801 | −0.93205 | 0.75404 | 0.582999 | 0.50965 | 10.03459 | 15.69991 | |
0.00538 | −0.00135 | −0.00104 | −0.00219 | ||||
10.65-V | |||||||
−58.43648 | −0.69206 | 0.87868 | 0.08340 | 0.57104 | 1.28329 | 15.80708 | |
0.00349 | −0.00138 | −0.00024 | −0.00145 | ||||
18.7-H | |||||||
122.96052 | −0.40687 | 0.48656 | 0.88453 | 0.27506 | −8.15434 | −25.89572 | |
0.00465 | −0.00148 | −0.00190 | −0.00069 | ||||
18.7-V | |||||||
198.59411 | −0.64261 | −0.56250 | 0.25474 | 0.65049 | −10.14012 | −9.33605 | |
0.00361 | 0.00293 | −0.00081 | −0.00084 |
Date | 0° ≤ θglint ≤ 20° | 20° < θglint ≤ 25° | 25° < θglint ≤ 30° | θglint > 30° |
---|---|---|---|---|
Nov–Dec-2023 | 81.90 (3.06) | 14.13 (0.52) | 3.72 (0.14) | 0.25 (0.01) |
Jan–Feb-2024 | 82.89 (3.11) | 13.18 (0.49) | 3.80 (0.14) | 0.13 (0.01) |
Mar–Apr-2024 | 80.97 (3.05) | 15.49 (0.58) | 3.48 (0.13) | 0.06 (0.00) |
May–Jul-2024 | 84.75 (3.17) | 12.09 (0.46) | 3.11 (0.12) | 0.05 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Yang, X.; Zhang, Q.; Liu, Z. Identification and Correction for Sun Glint Contamination in Microwave Radiation Imager-Rainfall Mission Global Ocean Observations Onboard the FY-3G Satellite. Atmosphere 2025, 16, 630. https://doi.org/10.3390/atmos16060630
Xue Q, Yang X, Zhang Q, Liu Z. Identification and Correction for Sun Glint Contamination in Microwave Radiation Imager-Rainfall Mission Global Ocean Observations Onboard the FY-3G Satellite. Atmosphere. 2025; 16(6):630. https://doi.org/10.3390/atmos16060630
Chicago/Turabian StyleXue, Qiumeng, Xuanyuan Yang, Qiang Zhang, and Zhenxing Liu. 2025. "Identification and Correction for Sun Glint Contamination in Microwave Radiation Imager-Rainfall Mission Global Ocean Observations Onboard the FY-3G Satellite" Atmosphere 16, no. 6: 630. https://doi.org/10.3390/atmos16060630
APA StyleXue, Q., Yang, X., Zhang, Q., & Liu, Z. (2025). Identification and Correction for Sun Glint Contamination in Microwave Radiation Imager-Rainfall Mission Global Ocean Observations Onboard the FY-3G Satellite. Atmosphere, 16(6), 630. https://doi.org/10.3390/atmos16060630