Investigating the Sensitivity of Modelled Ozone Levels in the Mediterranean to Dry Deposition Parameters
Abstract
:1. Introduction
2. Methodology
2.1. Chemistry Transport Modelling with LOTOS-EUROS
2.2. Dry Deposition Parameterization
2.3. Sensitivity Runs and Parameter Updates
2.4. Evaluation Metrics and Measurement Data
3. Results and Discussion
3.1. Modelled Ozone Concentration
3.2. Changes in the Ozone Deposition Using the Updated Vegetation Parameters
3.3. Change in the Modelled Ozone Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Zhang, J.J.; Wei, Y.; Fang, Z. Ozone pollution: A major health hazard worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef] [PubMed]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Zheng, X.; Li, Y.; Han, M.; Liu, T.; Xiao, J.; Guo, L.; Zeng, W.; Zhang, J.; et al. Effects of ambient ozone concentrations with different averaging times on asthma exacerbations: A meta-analysis. Sci. Total Environ. 2019, 691, 549–561. [Google Scholar] [CrossRef]
- Feng, Z.; De Marco, A.; Anav, A.; Gualtieri, M.; Sicard, P.; Tian, H.; Fornasier, F.; Tao, F.; Guo, A.; Paoletti, E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019, 131, 104966. [Google Scholar] [CrossRef]
- Jakovljević, T.; Lovreškov, L.; Jelić, G.; Anav, A.; Popa, I.; Fornasier, M.F.; Proietti, C.; Limić, I.; Butorac, L.; Vitale, M.; et al. Impact of ground-level ozone on Mediterranean forest ecosystems health. Sci. Total Environ. 2021, 783, 147063. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Millán, M.M.; José Sanz, M.; Salvador, R.; Mantilla, E. Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean. Environ. Pollut. 2002, 118, 167–186. [Google Scholar] [CrossRef]
- Cristofanelli, P.; Bonasoni, P. Background ozone in the southern Europe and Mediterranean area: Influence of the transport processes. Environ. Pollut. 2009, 157, 1399–1406. [Google Scholar] [CrossRef]
- Otero, N.; Sillmann, J.; Schnell, J.L.; Rust, H.W.; Butler, T. Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ. Res. Lett. 2016, 11, 024005. [Google Scholar] [CrossRef]
- Alonso, C.; Gouveia, C.M.; Santos, J.A. Analysis of tropospheric ozone concentration and their predictors in mainland Portugal. Atmos. Res. 2025, 314, 107766. [Google Scholar] [CrossRef]
- Barros, N.; Fontes, T.; Silva, M.P.; Manso, M.C.; Carvalho, A.C. Analysis of the effectiveness of the NEC Directive on the tropospheric ozone levels in Portugal. Atmos. Environ. 2015, 106, 80–91. [Google Scholar] [CrossRef]
- Ascenso, A.; Gama, C.; Blanco-Ward, D.; Monteiro, A.; Silveira, C.; Viceto, C.; Rodrigues, V.; Rocha, A.; Borrego, C.; Lopes, M.; et al. Assessing douro vineyards exposure to tropospheric ozone. Atmosphere 2021, 12, 200. [Google Scholar] [CrossRef]
- Hogrefe, C.; Galmarini, S.; Makar, P.A.; Kioutsioukis, I.; Clifton, O.E.; Alyuz, U.; Bash, J.O.; Bellasio, R.; Bianconi, R.; Butler, T.; et al. A Diagnostic Intercomparison of Modeled Ozone Dry Deposition Over North America and Europe Using AQMEII4 Regional-Scale Simulations. EGUsphere 2025, 2025, 1–42. [Google Scholar]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model – Technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- de Vries, W.; Schulte-Uebbing, L.; Kros, H.; Voogd, J.C.; Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 2021, 786, 147283. [Google Scholar] [CrossRef] [PubMed]
- Duprè, C.; Stevens, C.J.; Ranke, T.; Bleeker, A.; Peppler-Lisbach, C.; Gowing, D.J.G.; Dise, N.B.; Dorland, E.; Bobbink, R.; Diekmann, M. Changes in species richness and composition in European acidic grasslands over the past 70 years: The contribution of cumulative atmospheric nitrogen deposition. Glob. Change Biol. 2010, 16, 344–357. [Google Scholar] [CrossRef]
- Erisman, J.W.; Draaijers, G. Deposition to forests in Europe: Most important factors influencing dry deposition and models used for generalisation. Environ. Pollut. 2003, 124, 379–388. [Google Scholar] [CrossRef]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; Denier van der Gon, H.A.C.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef]
- Curier, R.L.; Timmermans, R.; Calabretta-Jongen, S.; Eskes, H.; Segers, A.; Swart, D.; Schaap, M. Improving ozone forecasts over Europe by synergistic use of the LOTOS-EUROS chemical transport model and in-situ measurements. Atmos. Environ. 2012, 60, 217–226. [Google Scholar] [CrossRef]
- Manders, A.M.M.; Van Meijgaard, E.; Mues, A.C.; Kranenburg, R.; Van Ulft, L.H.; Schaap, M. The impact of differences in large-scale circulation output from climate models on the regional modeling of ozone and PM. Atmos. Chem. Phys. 2012, 12, 9441–9458. [Google Scholar] [CrossRef]
- Thürkow, M.; Schaap, M.; Kranenburg, R.; Pfäfflin, F.; Neunhäuserer, L.; Wolke, R.; Heinold, B.; Stoll, J.; Lupaşcu, A.; Nordmann, S.; et al. Dynamic evaluation of modeled ozone concentrations in Germany with four chemistry transport models. Sci. Total Environ. 2024, 906, 167665. [Google Scholar] [CrossRef]
- Escudero, M.; Segers, A.; Kranenburg, R.; Querol, X.; Alastuey, A.; Borge, R.; De La Paz, D.; Gangoiti, G.; Schaap, M. Analysis of summer O3 in the Madrid air basin with the LOTOS-EUROS chemical transport model. Atmos. Chem. Phys. 2019, 19, 14211–14232. [Google Scholar] [CrossRef]
- Petersen, A.K.; Brasseur, G.P.; Bouarar, I.; Flemming, J.; Gauss, M.; Jiang, F.; Kouznetsov, R.; Kranenburg, R.; Mijling, B.; Peuch, V.H.; et al. Ensemble forecasts of air quality in eastern China-Part 2: Evaluation of the MarcoPolo-Panda prediction system, version 1. Geosci. Model Dev. 2019, 12, 1241–1266. [Google Scholar] [CrossRef]
- Marécal, V.; Peuch, V.H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef]
- Peuch, V.H.; Engelen, R.; Rixen, M.; Dee, D.; Flemming, J.; Suttie, M.; Ades, M.; Agustí-Panared, A.; Ananasso, C.; Andersson, E.; et al. The Copernicus Atmosphere Monitoring Service from Research to Operations. Bull. Am. Meteorol. Soc. 2022, 103, E2650–E2668. [Google Scholar] [CrossRef]
- Colette, A.; Andersson, C.; Manders, A.; Mar, K.; Mircea, M.; Pay, M.T.; Raffort, V.; Tsyro, S.; Cuvelier, C.; Adani, M.; et al. EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990–2010. Geosci. Model Dev. 2017, 10, 3255–3276. [Google Scholar] [CrossRef]
- Bessagnet, B.; Pirovano, G.; Mircea, M.; Cuvelier, C.; Aulinger, A.; Calori, G.; Ciarelli, G.; Manders, A.; Stern, R.; Tsyro, S.; et al. Presentation of the EURODELTA III intercomparison exercise-evaluation of the chemistry transport models’ performance on criteria pollutants and joint analysis with meteorology. Atmos. Chem. Phys. 2016, 16, 12667–12701. [Google Scholar] [CrossRef]
- Colette, A.; Collin, G.; Besson, F.; Blot, E.; Guidard, V.; Meleux, F.; Royer, A.; Petiot, V.; Miller, C.; Fermond, O.; et al. Copernicus Atmosphere Monitoring Service—Regional Air Quality Production System v1.0. EGUsphere 2024, 2024, 1–92. [Google Scholar] [CrossRef]
- Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J.M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; et al. Performance of European chemistry transport models as function of horizontal resolution. Atmos. Environ. 2015, 112, 90–105. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- EEA. CORINE Land Cover 2018; EEA: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- Köble, R.; Seufert, G. Novel Maps for Forest Tree Species in Europe. In Proceedings of the 8th European Symposium on the Physico-Chemical Behaviour of Air Pollutants: ‘A Changing Atmosphere!’, Torino, Italy, 17–20 September 2001; pp. 1–6. [Google Scholar]
- van Zanten, M.C.; van Sauter, F.J.; Kruit, R.J.W.; van Jaarsveld, J.; van Pul, W. Description of the DEPAC Module; 2010; pp. 1–76. Available online: https://www.rivm.nl/bibliotheek/rapporten/680180001.pdf (accessed on 3 April 2025).
- Erisman, J.W.; Van Pul, A.; Wyers, P. Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ. 1994, 28, 2595–2607. [Google Scholar] [CrossRef]
- Urban, J.; Ingwers, M.; McGuire, M.A.; Teskey, R.O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 2017, 12, e1356534. [Google Scholar] [CrossRef]
- Reynolds-Henne, C.E.; Langenegger, A.; Mani, J.; Schenk, N.; Zumsteg, A.; Feller, U. Interactions between temperature, drought and stomatal opening in legumes. Environ. Exp. Bot. 2010, 68, 37–43. [Google Scholar] [CrossRef]
- Marchin, R.M.; Backes, D.; Ossola, A.; Leishman, M.R.; Tjoelker, M.G.; Ellsworth, D.S. Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Glob. Chang. Biol. 2022, 28, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Harmens, H.; Hayes, F.; Pleijel, H.; Buker, P.; González-Fernández, I., III. MAPPING CRITICAL LEVELS FOR VEGETATION * International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops. Bangor, UK, 2017. Available online: http://icpvegetation.ceh.ac.uk (accessed on 3 April 2025).
- Torre-Pascual, E.; Gangoiti, G.; Rodríguez-García, A.; Sáez De Cámara, E.; Ferreira, J.; Gama, C.; Gómez, M.C.; Zuazo, I.; García, J.A.; De Blas, M. Analysis of an intense O3 pollution episode on the Atlantic coast of the Iberian Peninsula using photochemical modeling: Characterization of transport pathways and accumulation processes. Atmos. Chem. Phys. 2024, 24, 4305–4329. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G. Surface ozone behaviour at rural sites in Portugal. Atmos. Res. 2012, 104, 164–171. [Google Scholar] [CrossRef]
- Russo, M.A.; Gama, C.; Monteiro, A. How does upgrading an emissions inventory affect air quality simulations? Air Qual. Atmos. Health 2019, 12, 731–741. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Troussier, F.; Renou, C.; Vas, N.; Paoletti, E. Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos. Environ. 2013, 79, 705–715. [Google Scholar] [CrossRef]
- García, M.A.; Sánchez, M.L.; Pérez, I.A.; De Torre, B. Ground level ozone concentrations at a rural location in northern Spain. Sci. Total Environ. 2005, 348, 135–150. [Google Scholar] [CrossRef]
- Brands, S.; Fernández-García, G.; García Vivanco, M.; Tesouro Montecelo, M.; Gallego Fernández, N.; David Saunders Estévez, A.; Enrique Carracedo García, P.; Neto Venâncio, A.; Melo Da Costa, P.; Costa Tomé, P.; et al. An exploratory performance assessment of the CHIMERE model (version 2017r4) for the northwestern Iberian Peninsula and the summer season. Geosci. Model Dev. 2020, 13, 3947–3973. [Google Scholar] [CrossRef]
- Li, Q.; Gabay, M.; Rubin, Y.; Raveh-Rubin, S.; Rohatyn, S.; Tatarinov, F.; Rotenberg, E.; Ramati, E.; Dicken, U.; Preisler, Y.; et al. Investigation of ozone deposition to vegetation under warm and dry conditions near the Eastern Mediterranean coast. Sci. Total Environ. 2019, 658, 1316–1333. [Google Scholar] [CrossRef]
- Li, Q.; Gabay, M.; Rubin, Y.; Fredj, E.; Tas, E. Measurement-based investigation of ozone deposition to vegetation under the effects of coastal and photochemical air pollution in the Eastern Mediterranean. Sci. Total Environ. 2018, 645, 1579–1597. [Google Scholar] [CrossRef]
- D’Elia, I.; Briganti, G.; Vitali, L.; Piersanti, A.; Righini, G.; D’Isidoro, M.; Cappelletti, A.; Mircea, M.; Adani, M.; Zanini, G.; et al. Measured and modelled air quality trends in Italy over the period 2003–2010. Atmos. Chem. Phys. 2021, 21, 10825–10849. [Google Scholar] [CrossRef]
- Fink, L.; Karl, M.; Matthias, V.; Oppo, S.; Kranenburg, R.; Kuenen, J.; Moldanova, J.; Jutterstrom, S.; Jalkanen, J.P.; Majamaki, E. Potential impact of shipping on air pollution in the Mediterranean region–A multimodel evaluation: Comparison of photooxidants NO2 and O3. Atmos. Chem. Phys. 2023, 23, 1825–1862. [Google Scholar] [CrossRef]
- Monks, P.S. A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 2000, 34, 3545–3561. [Google Scholar] [CrossRef]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Rodrigues, V.; Gama, C.; Ascenso, A.; Oliveira, K.; Coelho, S.; Monteiro, A.; Hayes, E.; Lopes, M. Assessing air pollution in European cities to support a citizen centered approach to air quality management. Sci. Total Environ. 2021, 799, 149311. [Google Scholar] [CrossRef]
- Im, U.; Daskalakis, N.; Markakis, K.; Vrekoussis, M.; Hjorth, J.; Myriokefalitakis, S.; Gerasopoulos, E.; Kouvarakis, G.; Richter, A.; Burrows, J.; et al. Simulated air quality and pollutant budgets over Europe in 2008. Sci. Total Environ. 2014, 470–471, 270–281. [Google Scholar] [CrossRef]
- Cesari, R.; Landi, T.C.; D’Isidoro, M.; Mircea, M.; Russo, F.; Malguzzi, P.; Tampieri, F.; Maurizi, A. The on-line integrated mesoscale chemistry model bolchem. Atmosphere 2021, 12, 192. [Google Scholar] [CrossRef]
- Pernigotti, D.; Thunis, P.; Cuvelier, C.; Georgieva, E.; Gsella, A.; De Meij, A.; Pirovano, G.; Balzarini, A.; Riva, G.M.; Carnevale, C.; et al. POMI: A model inter-comparison exercise over the Po Valley. Air Qual. Atmos. Health 2013, 6, 701–715. [Google Scholar] [CrossRef]
- Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C.; et al. Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone. Atmos. Environ. 2015, 115, 404–420. [Google Scholar] [CrossRef]
- Giordano, L.; Brunner, D.; Flemming, J.; Hogrefe, C.; Im, U.; Bianconi, R.; Badia, A.; Balzarini, A.; Baró, R.; Chemel, C.; et al. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2. Atmos. Atmos. Environ. 2015, 115, 371–388. [Google Scholar] [CrossRef]
- Visser, A.J.; Boersma, K.F.; Ganzeveld, L.N.; Krol, M.C. European NOx emissions in WRF-Chem derived from OMI: Impacts on summertime surface ozone. Atmos. Chem. Phys. 2019, 19, 11821–11841. Available online: https://acp.copernicus.org/articles/19/11821/2019/ (accessed on 3 April 2025). [CrossRef]
- Oikonomakis, E.; Aksoyoglu, S.; Ciarelli, G.; Baltensperger, U.; Prévôt, A.S.H. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe. Atmos. Chem. Phys. 2018, 18, 2175–2198. [Google Scholar] [CrossRef]
- Zhu, S.; Kinnon, M.; Shaffer, B.P.; Samuelsen, G.S.; Brouwer, J.; Dabdub, D. An uncertainty for clean air: Air quality modeling implications of underestimating VOC emissions in urban inventories. Atmos. Environ. 2019, 211, 256–267. [Google Scholar] [CrossRef]
- Sarwar, G.; Gantt, B.; Schwede, D.; Foley, K.; Mathur, R.; Saiz-Lopez, A. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere. Environ. Sci. Technol. 2015, 49, 9203–9211. [Google Scholar] [CrossRef]
- Soler, R.; Nicolás, J.F.; Caballero, S.; Yubero, E.; Crespo, J. Depletion of tropospheric ozone associated with mineral dust outbreaks. Environ. Sci. Pollut. Res. 2016, 23, 19376–19386. [Google Scholar] [CrossRef]
- Bonasoni, P.; Cristofanelli, P.; Calzolari, F.; Bonafè, U.; Evangelisti, F.; Stohl, A.; Sajani, S.Z.; van Dingenen, R.; Colombo, T.; Balkanski, Y. Aerosol-ozone correlations during dust transport episodes. Atmos. Chem. Phys. 2004, 4, 1201–1215. [Google Scholar] [CrossRef]
- Koenig, T.K.; Volkamer, R.; Apel, E.C.; Bresch, J.F.; Cuevas, C.A.; Dix, B.; Eloranta, E.W.; Fernandez, R.P.; Hall, S.R.; Hornbrook, R.S.; et al. Ozone depletion due to dust release of iodine in the free troposphere. Sci. Adv. 2021, 7, eabj6544. [Google Scholar] [CrossRef]
Tmin | Topt | Tmax | VPDmin | VPDmax | gmax | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
tmp | med | tmp | med | tmp | med | tmp | med | tmp | med | tmp | med | |
ARA | 12 | 11 | 26 | 28 | 40 | 45 | 2.8 | 4.9 | 0.9 | 3.1 | 300 | 410 |
CRP | 12 | 13 | 26 | 28 | 40 | 39 | 2.8 | 4.6 | 0.9 | 3.2 | 300 | 782 |
FBD | 0 | 0 | 20 | 22 | 35 | 35 | 3.25 | 3.1 | 1 | 1.1 | 150 | 265 |
FCE | 0 | 1 | 18 | 23 | 36 | 39 | 3 | 4 | 0.5 | 2.2 | 140 | 195 |
Vd (mm/s) | |||||
---|---|---|---|---|---|
Test | LNH | SCO | |||
Baseline | 3.62 | - | 2.06 | - | |
ARA | VPD | 3.64 | 0.6% | 2.11 | 2.4% |
ARA | Temp | 3.61 | −0.3% | 2.06 | 0.0% |
ARA | gmax | 3.73 | 3.0% | 2.09 | 1.5% |
FBD | VPD | 3.62 | 0.0% | 2.06 | 0.0% |
FBD | Temp | 3.61 | −0.3% | 2.06 | 0.0% |
FBD | gmax | 3.93 | 8.6% | 2.15 | 4.4% |
CRP | VPD | 3.65 | 0.8% | 2.15 | 4.4% |
CRP | Temp | 3.55 | −1.9% | 2.04 | −1.0% |
CRP | gmax | 4.09 | 13.0% | 2.25 | 9.2% |
FCE | VPD | 3.63 | 0.3% | 2.06 | 0.0% |
FCE | Temp | 3.62 | 0.0% | 2.06 | 0.0% |
FCE | gmax | 3.63 | 0.3% | 2.07 | 0.5% |
All-changes | 4.43 | 22.4% | 2.55 | 23.8% |
O3 Concentration (µg/m3) | |||||
---|---|---|---|---|---|
Test | LNH | SCO | |||
Baseline | 95.5 | - | 100.4 | - | |
ARA | VPD | 95.4 | −0.1% | 100.1 | −0.3% |
ARA | Temp | 95.5 | 0.0% | 100.4 | 0.0% |
ARA | gmax | 95.3 | −0.2% | 100.3 | −0.1% |
FBD | VPD | 95.5 | 0.0% | 100.4 | 0.0% |
FBD | Temp | 95.5 | 0.0% | 100.5 | 0.1% |
FBD | gmax | 94.8 | −0.7% | 99.8 | −0.6% |
CRP | VPD | 95.4 | −0.1% | 99.8 | −0.6% |
CRP | Temp | 95.6 | 0.1% | 100.6 | 0.2% |
CRP | gmax | 94.8 | −0.7% | 99.5 | −0.9% |
FCE | VPD | 95.5 | 0.0% | 100.4 | 0.0% |
FCE | Temp | 95.5 | 0.0% | 100.5 | 0.1% |
FCE | gmax | 95.4 | −0.1% | 100.3 | −0.1% |
All-Changes | 93.7 | −1.9% | 97.3 | −3.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreirinha, A.; Banzhaf, S.; Thürkow, M.; Gama, C.; Russo, M.; Dammers, E.; Schaap, M.; Monteiro, A. Investigating the Sensitivity of Modelled Ozone Levels in the Mediterranean to Dry Deposition Parameters. Atmosphere 2025, 16, 620. https://doi.org/10.3390/atmos16050620
Barreirinha A, Banzhaf S, Thürkow M, Gama C, Russo M, Dammers E, Schaap M, Monteiro A. Investigating the Sensitivity of Modelled Ozone Levels in the Mediterranean to Dry Deposition Parameters. Atmosphere. 2025; 16(5):620. https://doi.org/10.3390/atmos16050620
Chicago/Turabian StyleBarreirinha, André, Sabine Banzhaf, Markus Thürkow, Carla Gama, Michael Russo, Enrico Dammers, Martijn Schaap, and Alexandra Monteiro. 2025. "Investigating the Sensitivity of Modelled Ozone Levels in the Mediterranean to Dry Deposition Parameters" Atmosphere 16, no. 5: 620. https://doi.org/10.3390/atmos16050620
APA StyleBarreirinha, A., Banzhaf, S., Thürkow, M., Gama, C., Russo, M., Dammers, E., Schaap, M., & Monteiro, A. (2025). Investigating the Sensitivity of Modelled Ozone Levels in the Mediterranean to Dry Deposition Parameters. Atmosphere, 16(5), 620. https://doi.org/10.3390/atmos16050620