Analysis of Carbon Source/Sink Driving Factors Under Climate Change in the Inner Mongolia Grassland Ecosystem Through MGWR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Research Methods
2.3.1. Estimation of NPP
2.3.2. Estimation of NEP
2.3.3. Multiscale Geographically Weighted Regression Method
3. Results
3.1. Spatial Characteristics of NPP and NEP over the Inner Mongolia Grassland Ecosystem
3.2. Temporal Characteristics of NPP and NEP in the Inner Mongolia Grassland Ecosystem
3.3. Spatial Distribution of NPP and NEP Driving Factors in the Inner Mongolia Grassland Ecosystem
3.4. Temporal Distribution of Temperature and Precipitation in the Inner Mongolia Grassland Ecosystem
3.5. Analysis of Factors Influencing Spatial Variation in NPP
3.6. Analysis of Factors Influencing Spatial Variation in NEP
4. Discussion
4.1. Spatiotemporal Patterns of NPP, NEP, and Driving Factors in the Inner Mongolia Grassland Ecosystem
4.2. Spatial Driving Factors of NPP and NEP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Li, Y.; Hu, F.; Wang, L.; Wang, K.; Ma, W.; Ruan, N.; Jiang, W. Spatio-Temporal Variation of Carbon Emission Intensity and Spatial Heterogeneity of Influencing Factors in the Yangtze River Delta. Atmosphere 2023, 14, 163. [Google Scholar] [CrossRef]
- Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D-Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Yang, W.; Zeng, L.; Li, X. Advances in research of carbon sinks and their influencing factors evaluation. Adv. Earth Sci. 2023, 38, 151–167. [Google Scholar]
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, X.; Fang, J. Carbon Sequestration of Grassland in China. Strateg. Study CAE 2016, 18, 73–79. [Google Scholar]
- Dai, E.; Huang, Y.; Wu, Z.; Zhao, D. Analysis of Spatio-Temporal Features of a Carbon Source/Sink and Its Relationship to Climatic Factors in the Inner Mongolia Grassland Ecosystem. J. Geogr. Sci. 2016, 26, 297–312. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Zhang, M.; Yang, J.; Cao, R.; Malhi, S.S. Changes of Vegetation Carbon Sequestration in the Tableland of Loess Plateau and Its Influencing Factors. Environ. Sci. Pollut. Res. 2019, 26, 22160–22172. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, X.; Jia, G. Changes in Carbon Budget of Northeast China Forest Ecosystems under Future Climatic Scenario. Chin. J. Ecol. 2009, 28, 781–787. [Google Scholar]
- Rowe, R.L.; Cooper, H.M.; Hastings, A.; Mabey, A.; Keith, A.M.; McNamara, N.P.; Morrison, R. Low risk management intervention: Limited impact of remedial tillage on net ecosystem carbon balance at a commercial Miscanthus plantation. Glob. Change Biol. Bioenergy 2024, 16, e13114. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, C.; Ma, X.; Zhang, X.; Yang, D.; Shao, Y. Spatiotemporal Variation Characteristics and Dynamic Persistence Analysis of Carbon Sources/Sinks in the Yellow River Basin. Remote Sens. 2023, 15, 323. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Shi, Y.; Wang, S.; Wang, L.; Zhang, L.; Kang, J. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sens. 2022, 14, 1902. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Lieth, H.; Whittaker, R.H. Primary Productivity of the Biosphere; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Yin, C.; Luo, M.; Meng, F.; Sa, C.; Yuan, Z.; Bao, Y. Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sens. 2022, 14, 3383. [Google Scholar] [CrossRef]
- Fang, J.; Ke, J.; Tang, Z.; Chen, A. Implications and Estimations of Four Terrestrial Productive Parameters. Acta Phytoecol. Sin. 2001, 25, 414–419. [Google Scholar]
- Pei, Z.Y.; Ouyang, H.; Zhou, C.-P.; Xu, X.-L. Carbon Balance in an Alpine Steppe in the Qinghai-Tibet Plateau. J. Integr. Plant Biol. 2009, 51, 521–526. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, X.; Hao, H.; Fan, X.; Li, Y. Climate Change Decreased Net Ecosystem Productivity in the Arid Region of Central Asia. Remote Sens. 2021, 13, 4449. [Google Scholar] [CrossRef]
- Li, Z.; Shan, N.; Wang, Q.; Li, W.; Wang, Z.; Bao, S.; Dou, H.; Ao, W.; Pang, B.; Wang, W. Estimation of Vegetation Carbon Source/Sink and Analysis of Its Influencing Factors in Hulun Lake Basin from 2013 to 2020. J. Ecol. Rural Environ. 2022, 38, 1437–1446. [Google Scholar]
- Wu, L.; Ma, X.; Dou, X.; Zhu, J.; Zhao, C. Impacts of Climate Change on Vegetation Phenology and Net Primary Productivity in Arid Central Asia. Sci. Total Environ. 2021, 796, 149055. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Xu, J. Estimation of the spatial distribution of potential forestation land and its climatic potential productivity in China. Acta Geogr. Sinica. 2023, 78, 677–693. [Google Scholar]
- Liu, C.; Dong, X.; Wang, C.; Ding, R. Time and space variability of the county level administrative unit to NEP Gansu Province. J. Lanzhou Univ. Nat. Sci. 2018, 54, 82–89. [Google Scholar]
- Zhang, Z.; Xiong, M.; Li, F.; Liu, X.; Hao, Y.; Xing, L.; Wang, X.; Lai, M.; Yuan, P. Analysis of the temporal and spatial variations in net primary productivity of in the grassland region of Inner Mongolia and the factors influencing those changes. Pratac. Sci. 2022, 39, 2492–2502. [Google Scholar]
- Song, L.; Li, M.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.; Wu, X.; Feng, L.; Chen, J.; Lu, X.; et al. Spatiotemporal Variation and Driving Factors of Vegetation Net Primary Productivity in a Typical Karst Area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Shen, T.; Yu, H.; Zhou, L.; Gu, H.; He, H. On Hedonic Price of Second-Hand Houses in Beijing Based on Multi-Scale Geographically Weighted Regression: Scale Law of Spatial Heterogeneity. Econ. Geogr. 2020, 40, 75–83. [Google Scholar]
- Lu, B.; Ge, Y.; Shi, Y.; Zheng, J.; Harris, P. Uncovering Drivers of Community-Level House Price Dynamics through Multiscale Geographically Weighted Regression: A Case Study of Wuhan, China. Spat. Stat. 2023, 53, 100723. [Google Scholar] [CrossRef]
- Nazia, N.; Law, J.; Butt, Z.A. Spatiotemporal Clusters and the Socioeconomic Determinants of COVID-19 in Toronto Neigh-bourhoods, Canada. Spat. Spatio-Temporal Epidemiol. 2022, 43, 100534. [Google Scholar] [CrossRef]
- Oshan, T.M.; Smith, J.P.; Fotheringham, A.S. Targeting the Spatial Context of Obesity Determinants via Multiscale Geographically Weighted Regression. Int. J. Health Geogr. 2020, 19, 11. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Wu, N.; Liu, G.; Yang, Y.; Song, X.; Bai, H. Dynamic monitoring of net primary productivity and its response to climate factors in native grassland in Inner Mongolia using a light-use efficiency model. Acta Prataculturae Sin. 2020, 29, 1–10. [Google Scholar]
- Huang, L.; Zhou, W.; Li, J.; Wen, W. Analysis on spatial-temporal dynamics of different types grassland NPP and its climate influencing factors in Inner Mongolia. Grassl. Turf 2019, 39, 1–9. [Google Scholar]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Zhou, G.S.; Zhang, X.S. Study on climate-vegetation classification for global change in China. Acta Bot. Sin. 1996, 38, 8–17. [Google Scholar]
- Zhou, W.; Huang, L.; Yang, H.; Ju, W.; Yue, T. Interannual Variation in Grassland Net Ecosystem Productivity and Its Coupling Relation to Climatic Factors in China. Environ. Geochem. Health 2019, 41, 1583–1597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ren, X.; Wang, J.; He, H.; Wang, S.; Wang, M.; Piao, S.; Yan, H.; Ju, W.; Gu, F.; et al. Interannual Variability of Terrestrial Net Ecosystem Productivity over China: Regional Contributions and Climate Attribution. Environ. Res. Lett. 2019, 14, 014003. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, F.; Zhang, L.; Zhao, J.; Zheng, H.; Zhang, F.; Wang, N.; Gu, J.; Zhao, Y.; Zhang, W. Changes and Net Ecosystem Productivity of Terrestrial Ecosystems and Their Influencing Factors in China from 2000 to 2019. Front. Plant Sci. 2023, 14, 1120064. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, H.; Zhang, P.; Wang, Z.; Li, T. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region. Remote Sens. Nat. Resour. 2023, 35, 231–242. [Google Scholar]
- Gao, M.; Xu, R.; Huang, J.; Su, B.; Jiang, S.; Shi, P.; Yang, H.; Xing, Y.; Wang, D.; Jiang, H.; et al. Increase of Carbon Storage in the Qinghai-Tibet Plateau: Perspective from Land-Use Change under Global Warming. J. Clean. Prod. 2023, 414, 137540. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, H.; Wu, J.; Yu, X. Carbon Budget Response to Climate Change Varies with Grassland Type in Qilian Mountains, China. Glob. Ecol. Conserv. 2023, 47, e02670. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Noormets, A.; Bracho, R.; Ward, E.; Seiler, J.; Strahm, B.; Lin, W.; McElligott, K.; Domec, J.-C.; Gonzalez-Benecke, C.; Jokela, E.J.; et al. Heterotrophic Respiration and the Divergence of Productivity and Carbon Sequestration. Geophys. Res. Lett. 2021, 48, e2020GL092366. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Cheng, D.; Kerkhoff, A.J.; Enquist, B.J. Convergence of Terrestrial Plant Production across Global Climate Gradients. Nature 2014, 512, 39–43. [Google Scholar] [CrossRef]
- Enquist, B.J.; Kerkhoff, A.J.; Huxman, T.E.; Economo, E.P. Adaptive Differences in Plant Physiology and Ecosystem Paradoxes: Insights from Metabolic Scaling Theory. Glob. Change Biol. 2007, 13, 591–609. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, Q.; Zhang, J.; Liu, J.; Chen, H.; Peng, C.; Li, P.; Li, M.; Wang, M.; Zhao, P. Global Response of Terrestrial Gross Primary Productivity to Climate Extremes. Sci. Total Environ. 2021, 750, 142337. [Google Scholar] [CrossRef]
- Sawut, R.; Li, Y.; Kasimu, A.; Ablat, X. Examining the Spatially Varying Effects of Climatic and Environmental Pollution Fac-tors on the NDVI Based on Their Spatially Heterogeneous Relationships in Bohai Rim, China. J. Hydrol. 2023, 617, 128815. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.; Zheng, D.; Wang, Y.; Ma, L.; Tong, M. What Drives the Vegetation Dynamics in the Hengduan Mountain Region, Southwest China: Climate Change or Human Activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Prăvălie, R.; Niculiță, M.; Roșca, B.; Marin, G.; Dumitrașcu, M.; Patriche, C.; Birsan, M.-V.; Nita, I.A.; Tișcovschi, A.; Sîrodoev, I.; et al. Machine Learning-Based Prediction and Assessment of Recent Dynamics of Forest Net Primary Productivity in Ro-mania. J. Environ. Manag. 2023, 334, 117513. [Google Scholar] [CrossRef]
- Bradford, M.A.; Jones, T.H.; Bardgett, R.D.; Black, H.I.J.; Boag, B.; Bonkowski, M.; Cook, R.; Eggers, T.; Gange, A.C.; Grayston, S.J.; et al. Impacts of Soil Faunal Community Composition on Model Grassland Ecosystems. Science 2002, 298, 615–618. [Google Scholar] [CrossRef]
- Hong, S.; Ding, J.; Kan, F.; Xu, H.; Chen, S.; Yao, Y.; Piao, S. Asymmetry of Carbon Sequestrations by Plant and Soil after Forestation Regulated by Soil Nitrogen. Nat. Commun. 2023, 14, 3196. [Google Scholar] [CrossRef]
Name | Description | Resolution |
---|---|---|
NDVI | Developed from NASA MOD13A3 “https://doi.org/10.5067/MODIS/MOD13A3.006 (accessed on 19 June 2024)” | 1 |
Temperature | Developed from ECMWF ERA5 “https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview (accessed on 19 June 2024)” | |
Precipitation | Developed from ECMWF ERA5 “https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview (accessed on 19 June 2024)” | |
Solar radiation | Developed from ECMWF ERA5 “https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview (accessed on 19 June 2024)” |
Variable | Bandwidth | Value | t-val (95%) |
---|---|---|---|
NDVI | 46 | 0.97 | 4.20 |
Solar radiation | 157 | 0.09 | 3.86 |
Precipitation | 706 | 0.01 | 3.33 |
Temperature | 56 | −0.07 | 4.09 |
= 0.98 | AICc = −44,996.39 | = 3504.77 | = 517.69 |
Variable | Bandwidth | Mean | t-val (95%) |
---|---|---|---|
NDVI | 46 | 0.95 | 4.20 |
Solar radiation | 157 | 0.09 | 3.86 |
Precipitation | 652 | −0.08 | 3.36 |
Temperature | 56 | −0.19 | 4.09 |
= 0.98 | AICc = −46,525.612 | = 3517.42 | = 496.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Hong, Z.; Du, W.; Ying, H.; Wu, R.; Shan, Y.; Bayarsaikhan, S.; Xiang, D. Analysis of Carbon Source/Sink Driving Factors Under Climate Change in the Inner Mongolia Grassland Ecosystem Through MGWR. Atmosphere 2025, 16, 607. https://doi.org/10.3390/atmos16050607
Wu R, Hong Z, Du W, Ying H, Wu R, Shan Y, Bayarsaikhan S, Xiang D. Analysis of Carbon Source/Sink Driving Factors Under Climate Change in the Inner Mongolia Grassland Ecosystem Through MGWR. Atmosphere. 2025; 16(5):607. https://doi.org/10.3390/atmos16050607
Chicago/Turabian StyleWu, Ritu, Zhimin Hong, Wala Du, Hong Ying, Rihan Wu, Yu Shan, Sainbuyan Bayarsaikhan, and Dan Xiang. 2025. "Analysis of Carbon Source/Sink Driving Factors Under Climate Change in the Inner Mongolia Grassland Ecosystem Through MGWR" Atmosphere 16, no. 5: 607. https://doi.org/10.3390/atmos16050607
APA StyleWu, R., Hong, Z., Du, W., Ying, H., Wu, R., Shan, Y., Bayarsaikhan, S., & Xiang, D. (2025). Analysis of Carbon Source/Sink Driving Factors Under Climate Change in the Inner Mongolia Grassland Ecosystem Through MGWR. Atmosphere, 16(5), 607. https://doi.org/10.3390/atmos16050607