A Comparison of Different Solar Radiation Models in the Iberian Peninsula
Abstract
:1. Introduction
2. Methods
2.1. Solar Radiation Models
2.2. SARAH Model
2.3. PVGIS Model
2.4. Constant Atmospheric Conditions Model
2.5. Physical Solar Model
2.6. CAMS Worldwide Model
2.7. InsolMets Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Variability of Solar Radiation and Atmospheric Conditions over the Analyzed Years
Year | COT SEVIRI | CFC SEVIRI | GHI AEMET | COTvsCFC | GHIvsCOT | GHIvsCFC | ||||
---|---|---|---|---|---|---|---|---|---|---|
r | R2 | r | R2 | r | R2 | |||||
2004 | 9.6 | 54 | 1548 | 0.90 | 0.81 | −0.71 | 0.50 | −0.66 | 0.43 | |
2005 | 8.5 | 50 | 1557 | 0.92 | 0.85 | −0.59 | 0.35 | −0.62 | 0.38 | |
2006 | 9.4 | 55 | 1564 | 0.87 | 0.75 | −0.58 | 0.33 | −0.69 | 0.48 | |
2007 | 9.1 | 51 | 1592 | 0.90 | 0.80 | −0.83 | 0.68 | −0.87 | 0.75 | |
2008 | 9.4 | 54 | 1569 | 0.91 | 0.83 | −0.92 | 0.85 | −0.96 | 0.92 | Climatic conditions AEMET * |
2009 | 8.8 | 52 | 1864 | 0.90 | 0.80 | −0.79 | 0.63 | −0.83 | 0.68 | stable years |
2010 | 9.6 | 57 | 1648 | 0.87 | 0.76 | −0.72 | 0.52 | −0.83 | 0.70 | drought years |
2011 | 8.7 | 50 | 1611 | 0.90 | 0.81 | −0.82 | 0.68 | −0.84 | 0.71 | atypical years |
2012 | 7.9 | 50 | 1612 | 0.88 | 0.77 | −0.62 | 0.39 | −0.64 | 0.41 | humid years |
2013 | 9.2 | 53 | 1600 | 0.89 | 0.79 | −0.93 | 0.86 | −0.95 | 0.91 | |
2014 | 8.3 | 56 | 1609 | 0.87 | 0.76 | −0.91 | 0.82 | −0.93 | 0.86 | * Climatic conditions according to |
2015 | 8.3 | 52 | 1616 | 0.93 | 0.86 | −0.93 | 0.87 | −0.95 | 0.91 | Resúmenes climatológicos, España |
2016 | 8.6 | 53 | 1592 | 0.86 | 0.74 | −0.92 | 0.85 | −0.90 | 0.81 | (AEMET, 2004–2020) |
2017 | 7.9 | 47 | 1656 | 0.91 | 0.82 | −0.88 | 0.77 | −0.87 | 0.76 | |
2018 | 12.6 | 43 | 1561 | 0.88 | 0.77 | −0.90 | 0.82 | −0.90 | 0.81 | |
2019 | 10.5 | 38 | 1678 | 0.92 | 0.85 | −0.89 | 0.79 | −0.90 | 0.80 | |
2020 | 10.5 | 42 | 1673 | 0.85 | 0.73 | −0.72 | 0.52 | −0.70 | 0.49 | |
MED | 9.1 | 52 | 1609 | 0.90 | 0.80 | −0.83 | 0.68 | −0.87 | 0.75 | |
Dmed | 0.82 | 3.71 | 45.65 | 0.02 | 0.03 | 0.10 | 0.16 | 0.09 | 0.15 |
Appendix B. Additional Figures
OBSERVED SOLAR RADIATION DATA - METEOROLOGICAL STATIONS | AEMET-Spain | 10 kJ·m−2·day−1 | kJ·m−2·day−1·10/3600 == kWh·m−2·day−1 |
GHI, DNI, DIF (to perform validations, the same periods of the models detailed below are computed) | |||
Observed GHI and DIF data measured with pyranometers, and DNI data measured with pyrheliometers | |||
SNIRH-Portugal | W·m−2 | ∑* ==> W·m−2·h−1·0.001 == kWh·m−2·day−1 it is multiplied by 0.001 because the data is hourly | |
GHI (to perform validations, the same periods of the models detailed below are computed) | |||
Observed GHI data measured with silicon photovoltaic cell | |||
SOLAR RADIATION - MODELS | SARAH-SEVIRI (v. 3.0) | W·m−2 | W·m−2·day−1·0.001 == kWh·m−2·day−1 it is multiplied by 0.024 because the data is the AVG every 30-min considering 24 h |
GHI, DNI, DHI, GHI.CS, DNI.CS, DHI.CS (AVG GHI of each per-year month is used: SEVIRI provides the AVG from the instantaneous data every 30-min) | |||
Satellite remote sensing approach at 0.05° (~5 km) | |||
PVGIS-EC (v. 5.3) | kWh·m−2·day−1 | ||
GHI, DNI, DIF, GHI.CS, GTI optimal angle and given angles (AVG GHI of each per-year month is computed: PVGIS provides the accumulated monthly data) | |||
Semi-empirical approach using remote sensing data SARAH at 0.05° (~5 km) and reanalysis data ERA5 to 0.25° (~30 km) | |||
CAC-Grumets | 10 kJ·m−2·day−1 | kJ·m−2·day−1·10/3600 == kWh·m−2·day−1 | |
GHI, GRI (GRI for each central day of each per-year month is computed) | |||
Semi-empirical approach using InsolDia-MiraMon application, considering constant atmospheric conditions at 100 m | |||
PSM-NSRDB (v. 3.1) | W·m−2 | ∑* ==> W·m−2·h−1·0.001 == kWh·m−2·day−1 it is multiplied by 0.001 because the data is hourly | |
GHI, DNI, DIF, GHI.CS, DNI.CS, DIF.CS (AVG GHI of each per-year month is computed: NSRDB provides the instantaneous data every 60-min) | |||
Physical radiative transfer approach using remote sensing data at 4 km | |||
CAMS-SoDa (v. 4.6) | Wh·m−2 | ∑* ==> Wh·m−2·0.001 == kWh·m−2·day−1 | |
GHI, DNI, DHI, DIF, GHI.CS, DNI.CS, DHI.CS, DIF.CS (AVG GHI of each per-year month is computed: SoDa provides the instantaneous data every 15-min) | |||
Hybrid physical-empirical approach using remote sensing data at 0.2° (~20 km) | |||
InsolMets-Grumets | 10 kJ·m−2·day−1 | kJ·m−2·day−1·10/3600 == kWh·m−2·day−1 | |
GHI, GRI, GTI, DHI, DRI, DIF (also for the cloudy and clear sky fractions) (GRI for each central day of each per-year month is computed) | |||
Hybrid physical-empirical approach using InsolDia-MiraMon application, considering variable atmospheric conditions and a DEM-based at 100 m | |||
* First, it is necessary to sum the hourly data to make the daily series. The average solar radiation of each per-year monthly series is either used or computed (AVG). GHI: Global Horizontal Irradiation. GHI.CS: GHI under clear sky. GRI: Global Relief Irradiation. GTI: Global Tilted Irradiation. DNI: Direct Normal Irradiation. DNI.CS: DNI under clear sky. DHI: Direct Horizontal Irradiation. DHI.CS: DHI under clear sky. DRI: Direct Relief Irradiation. DIF: Diffuse Solar Irradiation. DIF.CS: DIF under clear sky. |
References
- WMO. About Essential Climate Variables. Global Climate Observing System (World Meteorological Organization). 2025. Available online: https://gcos.wmo.int/site/global-climate-observing-system-gcos/essential-climate-variables/about-essential-climate-variables (accessed on 10 May 2025).
- WMO. Essential Climate Variables. Global Climate Observing System (World Meteorological Organization). 2025. Available online: https://gcos.wmo.int/site/global-climate-observing-system-gcos/essential-climate-variables (accessed on 10 May 2025).
- Hansen, J.E.; Sato, M.; Simons, L.; Nazarenko, L.S.; Sangha, I.; Kharecha, P.; Zachos, J.C.; von Schuckmann, K.; Loeb, N.G.; Osman, M.B.; et al. Global warming in the pipeline. Oxf. Open Clim. Change 2023, 3, kgad008. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Robson, T.M.; Pieristè, M.; Kenta, T.; Zhou, W.; Kurokawa, H. Canopy structure and phenology modulate the impacts of solar radiation on C and N dynamics during litter decomposition in a temperate forest. Sci. Total Environ. 2022, 820, 153185. [Google Scholar] [CrossRef]
- Carpentieri, A.; Folini, D.; Wild, M.; Vuilleumier, L.; Meyer, A. Satellite-derived solar radiation for intra-hour and intra-day applications: Biases and uncertainties by season and altitude. Sol. Energy 2023, 255, 274–284. [Google Scholar] [CrossRef]
- Cebecauer, T.; Suri, M.; Perez, R. High Performance MSG Satellite Model for Operational Solar Energy Applications. American Solar Energy Society. 2010. Available online: https://ases.org/wp-content/uploads/2021/11/High-Performance-MSG-Satellite-Model-for-Operational-Solar-Energy-Applications-.pdf (accessed on 10 May 2025).
- Suri, M.; Cebecauer, T.; Skoczek, A.; Marais, R.; Mushwana, C.; Reinecke, J.; Meyer, R. Cloud cover impact on photovoltaic power production in South Africa. In Proceedings of the SASEC 2014 Conference, Port Elizabeth, South Africa, 28 January 2014; pp. 309–317. Available online: https://solargis.com/es/publications/2014/all/intermitency-analysis (accessed on 10 May 2025).
- Virtuani, A.; Pravettoni, M.; Parini, L.; Morganti, L.; Skoczek, A.; Betak, J.; Mussetta, M.; Marchionna, S. Where has all the power gone? In A health check of italian solar electricity in 2016. In Proceedings of the 33rd EU PVSEC, Amsterdam, The Netherlands, 25–29 September 2017; pp. 2401–2405. Available online: https://solargis.com/publications/2017/all/regional-studies (accessed on 10 May 2025).
- Aalto, J.; Riihimäki, H.; Meineri, E.; Hylander, K.; Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Clim. 2017, 37, 544–556. [Google Scholar] [CrossRef]
- Domínguez-Álvarez, A.; De-Tena-Rey, M.-T.; García-Moruno, L. Modelling global solar radiation to optimise agricultural production. Span. J. Agric. Res. 2021, 19, e0201. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Sun, S.; Zhu, L.; Li, Y.; Wang, X.; Shi, J.; Chen, S.; Qi, D.; Peng, J.; et al. Using crop intercepted solar radiation and vegetation index to estimate dry matter yield of Choy Sum. Front. Plant Sci. 2023, 14, 1208404. [Google Scholar] [CrossRef]
- Tomas-Burguera, M.; Vicente-Serrano, S.M.; Beguería, S.; Reig, F.; Latorre, B. Reference crop evapotranspiration database in Spain (1961–2014). Earth Syst. Sci. Data 2019, 11, 1917–1930. [Google Scholar] [CrossRef]
- Low, S. Engineering imaginaries: Anticipatory foresight for solar radiation management governance. Sci. Total Environ. 2017, 580, 90–104. [Google Scholar] [CrossRef]
- Pons, X. Estimación de la Radiación Solar a partir de modelos digitales de elevaciones. Propuesta metodológica. In VII Coloquio de Geografía Cuantitativa, Sistemas de Información Geográfica y Teledetección; Juaristi, J., Moro, I., Eds.; VII Coloquio de Geografía Cuantitativa, Sistemas de Información Geográfica y Teledetección: Vitoria-Gasteiz, Spain, 1996; Available online: https://ddd.uab.cat/pub/poncom/1996/200247/Pons_1996_Estimacion_de_la_radiacion_solar_a_partir_de_modelos_digitales_de_elevaciones_Propuesta_metodologica_OCR.pdf (accessed on 10 May 2025).
- Pons, X.; Ninyerola, M. Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data. Int. J. Clim. 2008, 28, 1821–1834. [Google Scholar] [CrossRef]
- Roca-Fernández, C.; Ninyerola, M.; Pons, X. Mejoras en el cálculo de los Modelos Digitales de Radiación Solar a partir del tratamiento del MDE y de la incorporación del patrón espaciotemporal de la profundidad óptica atmosférica: Resultados preliminares para la Península Ibérica. In Proceedings of the XIX Congreso de Tecnologías de la Información Geográfica–Las TIG al Servicio de los ODS (Departamento de Geografía y Ordenación del Territorio de la Universidad de Zaragoza, y la Asociación de Geógrafos Españoles), Zaragoza, Spain, 12–14 September 2022; pp. 391–400. Available online: https://www.researchgate.net/publication/390105467_Mejoras_en_el_calculo_de_los_Modelos_Digitales_de_Radiacion_Solar_a_partir_del_tratamiento_del_MDE_y_de_la_incorporacion_del_patron_espaciotemporal_de_la_profundidad_optica_atmosferica_resultados_prel (accessed on 10 May 2025).
- Shikwambana, L. Global Distribution of Clouds over Six Years: A Review Using Multiple Sensors and Reanalysis Data. Atmosphere 2022, 13, 1514. [Google Scholar] [CrossRef]
- Zarzalejo, L.F.; Domínguez, J.; Romero, M.; Ramírez-Santigosa, L. Caracterización de la Radiación Solar Como Recurso Energético. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Gobierno de España). 2012. Available online: https://www.researchgate.net/publication/327573936_CARACTERIZACION_DE_LA_RADIACION_SOLAR_COMO_RECURSO_ENERGETICO (accessed on 10 May 2025).
- Zarzalejo, L.F.; Ramírez, L.; Polo, J.; Martín, L.; Espinar, B. Estimación de la radiación solar a partir de imágenes de satélite: Nuevos mapas de evaluación de la irradiancia solar para la Península Ibérica. Av. Energy Renov. Medio Ambiente 2006, 10, 71–78. Available online: https://sedici.unlp.edu.ar/handle/10915/88424 (accessed on 10 May 2025).
- Calbó, J.; Sánchez-Lorenzo, A.; Martín-Vide, J.; Brunetti, M. Aspectos climatológicos y evolución temporal de la nubosidad en la Península Ibérica (1961–2004). In Proceedings of the VI Congreso Internacional de la Asociación Española de Climatología, Tarragona, Spain, 8–11 October 2008; Available online: https://www.divulgameteo.es/Aspectos-climatologicos-y-evolucion-temporal-de-la-nubosidad-en-la-Peninsula-Iberica-1961-2004/ (accessed on 10 May 2025).
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Carnicer, J.; Domingo-Marimon, C.; Ninyerola, M.; Camarero, J.J.; Bastos, A.; López-Parages, J.; Blanquer, L.; Rodríguez-Fonseca, B.; Lenton, T.M.; Dakos, V.; et al. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures. Glob. Change Biol. 2019, 25, 2825–2840. [Google Scholar] [CrossRef]
- Jordà, G.; Cacho, I.; Argüeso, D.; Ayarzagüena, B.; Ballabrera-Poy, J.; García-Rodríguez, O.E.; Hernanz, A.; Herrera, S.; Moreno, A.; Nieto, R.; et al. Informe CLIVAR-SPAIN Sobre el Clima en España. Ministerio para la Transición Ecológica y el Reto Demográfico (Gobierno de España). 2024. Available online: https://www.miteco.gob.es/content/dam/miteco/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/2024_INFORME_CLIVAR-SPAIN.pdf (accessed on 10 May 2025).
- Ministerio de Medio Ambiente. La Sequía en España. Directrices Para minimizar su Impacto. Comité de Expertos en Sequía del Ministerio de Medio Ambiente (Gobierno de España). 2007. Available online: https://www.miteco.gob.es/content/dam/miteco/es/agua/enlaces-de-interes/doc_sequia_espana_new_tcm30-278172.pdf (accessed on 10 May 2025).
- MITECO. Informe Sobre la Gestión de la Sequía en 2023. Ministerio para la Transición Ecológica y el Reto Demográfico (Gobierno de España). 2023. Available online: https://www.miteco.gob.es/es/prensa/ultimas-noticias/2023/09/el-14-6--del-territorio-esta-en-emergencia-por-escasez-de-agua-y.html (accessed on 10 May 2025).
- Olcina, J.; Rico, A.M. Sequías y golpes de calor en el sureste ibérico: Efectos territoriales y económicos. Investig. Geogr. 1995, 13, 47–79. [Google Scholar] [CrossRef]
- Bayona, G.; García, Y.C.; Sarmiento, H.R. CO2 y radiación solar: ¿causantes del calentamiento global? Rev. Acad. Colomb. Cienc. 2010, 34, 339–345. [Google Scholar] [CrossRef]
- Muramatsu, K.; Yoneda, E.; Soyama, N.; López-Ballesteros, A.; Thanyapraneedkul, J. Use of light response curve parameters to estimate gross primary production capacity from chlorophyll indices of global observation satellite and flux data. Sci. Remote Sens. 2024, 10, 100164. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Marín, J.F.; Parra, L.; Lloret, J.; Yousfi, S.; Mauri, P.V. Correlation of NDVI with RGB data to evaluate the effects of solar exposure on different combinations of ornamental grass used in lawns. In Proceedings of the 4th EAI International Conference on Industrial IoT Techonologies and Applications, Virtual, 11 December 2020; pp. 207–220. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Niu, Y.; Li, X.; Cao, L.; Feng, R.; He, Q.; Pan, Y. Evolution and Climate Drivers of NDVI of Natural Vegetation during the Growing Season in the Arid Region of Northwest China. Forests 2022, 13, 1082. [Google Scholar] [CrossRef]
- Kawaguchi-Akitsu, T.K.; Nasahara, K.N.; Ijima, O.; Hirose, Y.; Ide, R.; Takagi, K.; Kume, A. The variability and seasonality in the ratio of photosynthetically active radiation to solar radiation: A simple empirical model of the ratio. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102724. [Google Scholar] [CrossRef]
- Li, L.; Xin, X.; Zhang, H.; Yu, J.; Liu, Q.; Yu, S.; Wen, J. A method for estimating hourly photosynthetically active radiation (PAR) in China by combining geostationary and polar-orbiting satellite data. Remote Sens. Environ. 2015, 165, 14–26. [Google Scholar] [CrossRef]
- Myneni, R.; Williams, D. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Rahman, M.; Lamb, D.; Stanley, J. The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agric. For. Meteorol. 2015, 202, 39–43. [Google Scholar] [CrossRef]
- Chou, M.D. A Solar Radiation Model for Use in Climate Studies. J. Atmos. Sci. 1992, 49, 762–772. [Google Scholar] [CrossRef]
- Kenny, R.P.; Huld, T.A.; Iglesias, S. Energy rating of PV modules based on PVGIS irradiance and temperature database. In Proceedings of the 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, 4–8 October 2006; Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ac1d9e88315abdb761b753dd3fe819f9214f2ba9 (accessed on 10 May 2025).
- Laguarda, A.; Giacosa, G.; Alonso-Suárez, R.; Abal, G. Performance of the site-adapted CAMS database and locally adjusted cloud index models for estimating global solar horizontal irradiation over the Pampa Húmeda. Sol. Energy 2020, 199, 295–307. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and variability of surface solar radiation in europe based on surface- and satellite-based data records. J. Geophys. Res. Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Rupp, D.E.; Daly, C.; Doggett, M.K.; Smith, J.I.; Steinberg, B. Mapping an Observation-Based Global Solar Irradiance Climatology across the Conterminous United States. J. Appl. Meteorol. Clim. 2022, 61, 857–876. [Google Scholar] [CrossRef]
- Suri, M.; Hofierka, J. A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004, 8, 175–190. [Google Scholar] [CrossRef]
- Suri, M.; Huld, T.; Cebecauer, T.; Dunlop, E.D. Geographic Aspects of Photovoltaics in Europe: Contribution of the PVGIS Website. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 34–41. [Google Scholar] [CrossRef]
- Suri, M.; Huld, T.; Dunlop, E.D.; Albuisson, M.; Wald, L. Online data and tools for estimation of solar electricity in Africa: The PVGIS approach. In Proceedings of the 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, 4–8 October 2006. [Google Scholar]
- Taddei, F.; Melendez, S.; Cuestas, Y.; Collel, E. Resultados Preliminares de la Aplicación del Algoritmo HELIOSAT-2 Para la Estimación de la Irradiación Solar Global a Partir de Imágenes Satelitales GOES-13 en le Región de la Pampa Húmeda Argenti-na. Av. Energy Renov. Medio Ambiente 2014, 18, 11.09–11.21. Available online: https://portalderevistas.unsa.edu.ar/index.php/averma/article/view/2011 (accessed on 10 May 2025).
- Espinar, B.; Ramírez, L.; Drews, A.; Beyer, H.G.; Zarzalejo, L.F.; Polo, J.; Martín, L. Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations. Sol. Energy 2009, 83, 118–125. [Google Scholar] [CrossRef]
- García, R.D.; García, O.E.; Cuevas, E.; Cachorro, V.E.; Romero-Campos, P.M.; Ramos, R.; de Frutos, A.M. Solar radiation measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. J. Geophys. Res. Atmos. 2013, 119, 179–194. [Google Scholar] [CrossRef]
- Jamil, B.; Akhtar, N. Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study. Renew. Sustain. Energy Rev. 2017, 78, 329–355. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Liang, S. Comprehensive assessment of five global daily downward shortwave radiation satellite products. Sci. Remote Sens. 2021, 4, 100028. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Ioannidis, G.C.; Kaminaris, S.D.; Mardikis, K.D.; Katsikas, N.G. A Comparative Evaluation of Photovoltaic Electricity Production Assessment Software (PVGIS, PVWatts and RETScreen). Environ. Process. 2015, 2, 175–189. [Google Scholar] [CrossRef]
- AEMET. Resúmenes Climatológicos, España. Ministerio Para la Transición Ecológica y el Reto Demográfico (Gobierno de España). 2004–2020. Available online: https://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes?w=0&datos=2&n=2 (accessed on 10 May 2025).
- Calbó, J.; Enriquez-Alonso, A.; Sánchez-Romero, A.; González, J.A.; Sánchez-Lorenzo, A. Nubosidad y radiación solar en la Península Ibérica entre 1950 y 2050. De las evidenciaas observacionales a las simulaciones climáticas. In Proceedings of the X Congreso Internacional de la Asociación Española de Climatología: Clima, Sociedad, Riesgos y Ordenación del Territorio, Alicante, Spain, 5–8 October 2016. [Google Scholar] [CrossRef]
- Trigo, R.M.; Añel, J.A.; Barriopedro, D.; García-Herrera, R.; Gimeno, L.; Nieto, R.; Castillo, R.; Allen, M.R.; Massey, N. The record winter drought of 2011–12 in the Iberian Peninsula. Bull. Am. Met. Soc. 2013, 94, S41–S45. Available online: https://www.researchgate.net/publication/297275850_The_record_winter_drought_of_2011-2012_in_the_Iberian_Peninsula (accessed on 10 May 2025).
- Vicente-Serrano, S.M.; López-Moreno, J.I. The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain. Int. J. Clim. 2006, 26, 1427–1453. [Google Scholar] [CrossRef]
- MITECO. La Reserva Hidráulica Bajó un 12 por Ciento en 2011 Tras 5 Años de Aumento. In Ministerio para la Transición Ecológica y el Reto Demográfico (Gobierno de España); 2012. Available online: https://hispagua.cedex.es/documentacion/noticia/115702 (accessed on 10 May 2025).
- iAgua. La Sequía Acecha a España: 2015 se Cerró con un 40% Menos de la Lluvia Habitual. 2016. Available online: https://www.iagua.es/noticias/espana/ep/16/01/03/sequia-acecha-espana-2015-se-cerro-40-menos-lluvia-habitual (accessed on 10 May 2025).
- Roca-Fernández, C.; Ninyerola, M.; Pons, X. Diagnosis for integrating the main Iberian networks of solar radiation meteorological stations. Geofocus 2024, 33, 43–75. [Google Scholar] [CrossRef]
- AEMET. La Radiación Solar. Ministerio de Medio Ambiente y Medio Rural y Marino (Gobierno de España). 2024. Available online: https://www.aemet.es/documentos/es/eltiempo/observacion/radiacion/Radiacion_Solar.pdf (accessed on 10 May 2025).
- Forstinger, A.; Wilbert, S.; Jensen, A.; Kraas, B.; Fernández-Peruchena, C.; Gueymard, C.A.; Ronzio, D.; Yang, D.; Collino, E.; Martinez, J.P. Expert quality control of solar radiation ground data sets. In Proceedings of the SWC 2021: ISES Solar World Congress, Online, 25–29 October 2021; International Solar Energy Society: Freiburg, Germany, 2021; pp. 1037–1048. [Google Scholar] [CrossRef]
- Padial-Iglesias, M.; Pons, X.; Serra, P.; Ninyerola, M. Does the gap-filling method influence long-term (1950-2019) temperature and precipitation trend analyses? GeoFocus 2022, 29, 5–33. [Google Scholar] [CrossRef]
- Salazar, G.; Gueymard, C.; Galdino, J.B.; Vilela, O.d.C.; Fraidenraich, N. Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil. Renew. Sustain. Energy Rev. 2020, 117, 109478. [Google Scholar] [CrossRef]
- Sánchez-Lorenzo, A.; Calbó, J.; Wild, M. Global and diffuse solar radiation in Spain: Building a homogeneous dataset and assessing their trends. Glob. Planet. Change 2013, 100, 343–352. [Google Scholar] [CrossRef]
- Pons, X. MiraMon. Geographic Information System and Remote Sensing Software. Centre de Recerca Ecològica i Aplicacions Forestals (CREAF). 2024. Available online: https://www.miramon.cat/Index_eng.htm (accessed on 10 May 2025).
- Pons, X. CombiCap: Analytical Combination of Raster and Vector Layers in MiraMon. Centre de Recerca Ecològica i Aplicacions Forestals (CREAF). 2024. Available online: https://www.miramon.cat/help/eng/msa/combicap.htm (accessed on 10 May 2025).
- Pfeifroth, U.; Trentmann, J.; Kothe, S. Product User Manual. Meteosat Solar Surface Radiation and Effective Cloud Albedo Climate Data Record. SARAH-2.1 Climate Data Records. EUMETSAT CM SAF Climate Monitoring. 2019. Available online: https://www.cmsaf.eu/SharedDocs/Literatur/document/2019/saf_cm_dwd_pum_meteosat_hel_sarah_2_4_pdf.pdf?__blob=publicationFile (accessed on 10 May 2025).
- Karlsson, K.-G.; Stengel, M.; Meirink, J.F.; Riihelä, A.; Trentmann, J.; Akkermans, T.; Stein, D.; Devasthale, A.; Eliasson, S.; Johansson, E.; et al. CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023. Earth Syst. Sci. Data 2023, 15, 4901–4926. [Google Scholar] [CrossRef]
- Stackhouse, P. POWER Data Methodology. NASA POWER Docs. 2024. Available online: https://power.larc.nasa.gov/docs/methodology/ (accessed on 10 May 2025).
- Blanc, P.; Gschwind, B.; Lefèvre, M.; Wald, L. The HelioClim Project: Surface Solar Irradiance Data for Climate Applications. Remote Sens. 2011, 3, 343–361. [Google Scholar] [CrossRef]
- EC. PVGIS User Manual. European Commission, EU Science Hub. 2024. Available online: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/getting-started-pvgis/pvgis-user-manual_en (accessed on 10 May 2025).
- EC. SARAH-2 Solar Radiation Data. European Commission, EU Science Hub. 2024. Available online: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/pvgis-data-download/sarah-2-solar-radiation-data_en (accessed on 10 May 2025).
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Solargis. Solargis Solar Resource Database. Description and Accuracy. 2016. Available online: https://solargis2-web-assets.s3.eu-west-1.amazonaws.com/public/Uploads/279e8bb216/Solargis-database-description-and-accuracy.pdf (accessed on 10 May 2025).
- Sengupta, M.; Weekley, A.; Habte, A.; Lopez, A.; Molling, C.; Heidinger, A. Validation of the National Solar Radiation Database (NSRDB) (2005–2012). In Proceedings of the European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015; Available online: https://www.researchgate.net/publication/298786251_Validation_of_the_National_Solar_Radiation_Database_NSRDB_2005-2012 (accessed on 10 May 2025).
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, R.; Wang, L.; Su, X.; Zhang, M.; Li, H.; Li, S.; Zhou, J. Prediction of diffuse solar radiation by integrating radiative transfer model and machine-learning techniques. Sci. Total Environ. 2023, 859, 160269. [Google Scholar] [CrossRef] [PubMed]
- Tapimo, R.; Lazard, M.; Ymeli, G.L.; Yemele, D. Radiative transfer model for ground surface irradiance estimation: Clear sky. J. Opt. Soc. Am. A 2021, 38, 1640–1646. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Xing, J.; He, T.; Yang, J.; Wang, Q. High resolution aerosol optical depth retrieval over urban areas from Landsat-8 OLI images. Atmos. Environ. 2021, 261, 118591. [Google Scholar] [CrossRef]
- Lefèvre, M. CAMS Solar Radiation Products Regular Validation Report, Issue #34, March–May 2021; [Research Report] 34; HAL: hal-03605103; Copernicus Atmosphere Monitoring Service: 2022. Available online: https://atmosphere.copernicus.eu/sites/default/files/custom-uploads/EQC-solar/CAMS2_73_2021SC1_D1.3.1-2021Q4_RAD_validation_report_MAM2021_v1.pdf (accessed on 10 May 2025).
- Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Killius, N.; Betcke, J.; Lefèvre, M.; Wald, L.; Wey, E.; Saboret, L. User Guide to the CAMS Radiation Service (CRS), Status December 2019. Report number: CAMS72_2018SC1_D72.4.3.1_2019_UserGuide_v1, Copernicus Atmosphere Monitoring Service. 2019. Available online: https://atmosphere.copernicus.eu/sites/default/files/2020-03/CAMS72_2018SC1_D72.4.3.1_2019_UserGuide_v1.1.pdf (accessed on 10 May 2025).
- SoDa. Download CAMS Radiation Volume over MSG Field of View. Solar Energy Services for Professionals. Solar Radiation Data. 2024. Available online: https://www.soda-pro.com/help/cams-services/cams-radiation-service/download-msg-volume (accessed on 10 May 2025).
- Pons, X. InsolDia: Computation of the Solar Radiation in a Single Day or an Instant. Centre de Recerca Ecològica i Aplicacions Forestals (CREAF). 2024. Available online: https://www.miramon.cat/help/eng/msa/insoldia.htm (accessed on 10 May 2025).
- Ineichen, P. A broadband simplified version of the Solis clear sky model. Sol. Energy 2008, 82, 758–762. [Google Scholar] [CrossRef]
- Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar] [CrossRef]
- Posselt, R.; Mueller, R.; Stöckli, R.; Trentmann, J. Remote sensing of solar surface radiation for climate monitoring—The CM-SAF retrieval in international comparison. Remote Sens. Environ. 2012, 118, 186–198. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Patelis, E.; Kavadias, K.A. An in-depth analysis of the Ångström–Prescott-type solar models: Application for Athens, Greece. Acad. Environ. Sci. Sust. 2025, 2, 7490. [Google Scholar] [CrossRef]
- Salazar, G.; Hernández, L.A.; Saravia, L.R.; Romero, G.G. Determinación de los Coeficientes de la Relación de Ångström-Prescott, Para la Ciudad de Salta (Argentina) a Partir de Datos Tomados Durante un Año. Av. Energy Renov. Medio Ambiente 2007, 11. Available online: https://sedici.unlp.edu.ar/bitstream/handle/10915/93432/Documento_completo.pdfPDFA.pdf?sequence=1&isAllowed=y (accessed on 10 May 2025).
- Paulescu, M.; Badescu, V.; Budea, S.; Dumitrescu, A. What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies? Theor. Appl. Clim. 2022, 147, 239–250. [Google Scholar] [CrossRef]
- Cano, D.; Monget, J.; Albuisson, M.; Guillard, H.; Regas, N.; Wald, L. A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy 1986, 37, 31–39. [Google Scholar] [CrossRef]
- Hammer, A.; Heinemann, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Müller, R.; Beyer, H.G. Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 2003, 86, 423–432. [Google Scholar] [CrossRef]
- Ineichen, P.; Barroso, C.S.; Geiger, B.; Hollmann, R.; Marsouin, A.; Mueller, R. Satellite Application Facilities irradiance products: Hourly time step comparison and validation over Europe. Int. J. Remote Sens. 2009, 30, 5549–5571. [Google Scholar] [CrossRef]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef]
- Zarzalejo, L.F.; Polo, J.; Martín, L.; Ramírez, L.; Espinar, B. A new statistical approach for deriving global solar radiation from satellite images. Sol. Energy 2009, 83, 480–484. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Huld, T.; Cebecauer, T.; Šúri, M.; Dunlop, E.D. Analysis of one-axis tracking strategies for PV systems in Europe. Prog. Photovolt. Res. Appl. 2010, 18, 183–194. [Google Scholar] [CrossRef]
- Huld, T.; Šúri, M.; Dunlop, E.D. Geographical variation of the conversion efficiency of crystalline silicon photovoltaic modules in Europe. Prog. Photovolt. Res. Appl. 2008, 16, 595–607. [Google Scholar] [CrossRef]
- Suri, M.; Huld, T.A.; Dunlop, E.D. PV-GIS: A web-based solar radiation database for the calculation of PV potential in Europe. Int. J. Sustain. Energy 2005, 24, 55–67. [Google Scholar] [CrossRef]
- Laguarda, A. Modelado de la Irradiancia Solar Sobre la Superficie Terrestre. Modelos Físicos e Híbridos Utilizando Información Satelital Sobre la Pampa Húmeda. Ph.D. Thesis, Programa de Posgrado en Ingeniería de la Energía, Facultad de Ingeniería de la Universidad de la República de Uruguay, Montevideo, Uruguay, 2021. Available online: https://www.researchgate.net/publication/350857653_Modelado_de_la_irradiancia_solar_sobre_la_superficie_terrestre_Modelos_fisicos_e_hibridos_utilizando_informacion_satelital_sobre_la_Pampa_Humeda (accessed on 10 May 2025).
- Rigollier, C.; Bauer, O.; Wald, L. On the Clear Sky Model of the ESRA—European Solar Radiation Atlas—With Respect to the Heliosat Method. Sol. Energy 2000, 68, 33–48. [Google Scholar] [CrossRef]
- Serrano, D. Estudio del Espesor Óptico de Nubes a Partir de Radiación Solar. Ph.D. Thesis, Departament de Física de la Terra i Termodinàmica, Facultat de Física de la Universitat de València, València, Spain, 2015. Available online: https://core.ac.uk/download/pdf/71041992.pdf (accessed on 10 May 2025).
- Abal, G.; Aicardi, D.; Suárez, R.A.; Laguarda, A. Performance of empirical models for diffuse fraction in Uruguay. Sol. Energy 2017, 141, 166–181. [Google Scholar] [CrossRef]
- Baldasano, J.M.; Calbó, J.; Moreno, J. Atlas de Radiació Solar a Catalunya (Dades del Període 1964–1993); Informe RS94; Institut de Tecnologia i Modelització Ambiental de la Universitat Politècnica de Catalunya: Barcelona, Spain, 1994. [Google Scholar]
- Kondratyev, K.Y. Radiation in the Atmosphere; Academic Press, Inc.: Cambridge, MA, USA, 1969; Chapter 6. [Google Scholar]
- Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Liu, B.Y.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Page, J. Prediction of Solar Radiation on Inclined Surfaces; Solar Energy, R&D in the European Community. Series F: Solar Radiation Data; Springer Dordrecht Publishing Company: Dordrecht, The Netherlands, 1986; Volume 3. [Google Scholar]
- Wilcox, S. National Solar Radiation Database 1991–2010 Update: User’s Manual. National Renewable Energy Laboratory–NREL. 2012. Available online: https://www.nrel.gov/docs/fy12osti/54824.pdf (accessed on 10 May 2025).
- NSRDB. International Data. 2023. Available online: https://nsrdb.nrel.gov/data-sets/international-data (accessed on 10 May 2025).
- NSRDB. US Data. 2023. Available online: https://nsrdb.nrel.gov/data-sets/us-data (accessed on 10 May 2025).
- Gschwind, B.; Wald, L.; Blanc, P.; Lefèvre, M.; Schroedter-Homscheidt, M.; Arola, A. Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions—McClear-v3. Meteorol. Z. 2019, 28, 147–163. [Google Scholar] [CrossRef]
- Lefèvre, M.; Wald, L. Validation of the McClear clear-sky model in desert conditions with three stations in Israel. Adv. Sci. Res. 2016, 13, 21–26. [Google Scholar] [CrossRef]
- ISO/TC 20/SC 14; Space Environment (Natural and Artificial)—Process for Determining Solar Irradiances. International Standards Organization: Geneva, Switzerland, 2007.
- Rothermel, R.; Wilson, R.A.; Morris, G.A.; Sackett, S.S. Modelling Moisture Content of Fine Dead Wildland Fuels. Input to the BEHAVE Fire Prediction System. USDA For. Serv. Intermount. Res. Station, Research Paper INT-359. 1986. Available online: https://www.fs.usda.gov/rm/pubs_int/int_rp359.pdf (accessed on 10 May 2025).
- Psiloglou, B.; Kambezidis, H.; Kaskaoutis, D.; Karagiannis, D.; Polo, J. Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece. Renew. Energy 2020, 146, 1372–1391. [Google Scholar] [CrossRef]
- Aguilar, C.; Herrero, J.; Polo, M.J. Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrol. Earth Syst. Sci. 2010, 14, 2479–2494. [Google Scholar] [CrossRef]
- Royé, D.; Lorenzo, N.; Rasilla, D.; Martí, A. Spatio-temporal variations of cloud fraction based on circulation types in the Iberian Peninsula. Int. J. Climatol. 2018, 39, 1716–1732. [Google Scholar] [CrossRef]
- WMO. Surface Radiation Budget. Global Climate Observing System (World Meteorological Organization). 2025. Available online: https://gcos.wmo.int/site/global-climate-observing-system-gcos/essential-climate-variables/surface-radiation-budget (accessed on 10 May 2025).
- Ouhechou, A.; Philippon, N.; Morel, B.; Trentmann, J.; Graillet, A.; Mariscal, A.; Nouvellon, Y. Inter-comparison and validation against in-situ measurements of satellite estimates of incoming solar radiation for Central Africa: From the annual means to the diurnal cycles. Atmos. Res. 2023, 287, 106711. [Google Scholar] [CrossRef]
- AEMET. Guía Resmida del Clima en España (1981–2010). Ministerio Para la Transición Ecológica y el Reto Demográfico (Gobierno de España). 2024. Available online: https://www.aemet.es/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/detalles/guia_resumida_2010 (accessed on 10 May 2025).
- iAgua. Medidas Urgentes Para Paliar la Sequía en el Júcar, Segura, Guadiana y Guadalquivir. 2008. Available online: https://www.iagua.es/2008/10/el-gobierno-aprueba-un-real-decreto-ley-de-medidas-urgentes-para-paliar-los-efectos-de-la-sequia-en-determinados-ambitos (accessed on 10 May 2025).
- Vicente-Serrano, S.; Trigo, R.; López-Moreno, J.; Liberato, M.; Lorenzo-Lacruz, J.; Beguería, S.; Morán-Tejeda, E.; El Kenawy, A. Extreme winter precipitation in the Iberian Peninsula in 2010: Anomalies, driving mechanisms and future projections. Clim. Res. 2011, 46, 51–65. [Google Scholar] [CrossRef]
- Parra, S. Todavía no lo Hemos Visto Todo en Auroras Boreales: Lo Que Está por Llegar. National Geographic España. 2024. Available online: https://www.nationalgeographic.com.es/ciencia/todavia-no-hemos-visto-todo-auroras-boreales-que-esta-por-llegar_22270 (accessed on 10 May 2025).
- Ward, T. 2024 Podría Traernos las Mejores Auroras en 20 Años. National Geographic. 2023. Available online: https://www.nationalgeographic.es/espacio/2023/12/auroras-boreales-2024-mejores-en-20-anos (accessed on 10 May 2025).
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Abatzoglou, J.T.; Greenberg, J.A.; Schladow, S. How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agric. For. Meteorol. 2009, 149, 1751–1758. [Google Scholar] [CrossRef]
- Meineri, E.; Dahlberg, C.J.; Hylander, K. Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution. Ecol. Model. 2015, 313, 127–136. [Google Scholar] [CrossRef]
- IDEAM. Características de la Radiación Solar. Ministerio de Ambiente y Desarrollo Sostenible (Gobierno de Colombia). 2024. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/caracteristicas-de-la-radiacion-solar# (accessed on 10 May 2025).
NON-FILTERED | AEMET-SNIRH n.Stations | n.Days.P | % TDC & +2 RMSE STDV | FILTERED RMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
The Best-Performing Model | RMSE | TDC ≤ 45 % [1] n.Stations | +2 RMSE STDV [2] n.Stations | % [1] + [2] | ||||||||
Jan | InsolMets | 0.22 | 140 | 527 | 24 | 1 | 17.9 | 0.18 | ||||
Feb | InsolMets | 0.29 | 140 | 481 | 23 | 2 | 17.9 | 0.26 | ||||
Mar | SARAH & InsolMets | 0.36 | 140 | 527 | 25 | 25 | 2 | 3 | 19.3 | 20.0 | 0.34 | 0.32 |
Apr | InsolMets | 0.36 | 140 | 510 | 28 | 4 | 22.9 | 0.33 | ||||
May | InsolMets | 0.47 | 141 | 527 | 25 | 3 | 19.9 | 0.39 | ||||
Jun | InsolMets | 0.43 | 141 | 510 | 27 | 4 | 22.0 | 0.36 | ||||
Jul | InsolMets | 0.45 | 141 | 527 | 27 | 3 | 21.3 | 0.42 | ||||
Aug | InsolMets | 0.39 | 141 | 527 | 35 | 3 | 27.0 | 0.36 | ||||
Sep | InsolMets | 0.35 | 140 | 510 | 28 | 5 | 23.6 | 0.32 | ||||
Oct | InsolMets | 0.34 | 140 | 527 | 33 | 2 | 25.0 | 0.28 | ||||
Nov | PVGIS & InsolMets | 0.27 | 140 | 510 | 41 | 37 | 3 | 2 | 31.4 | 27.9 | 0.25 | 0.20 |
Dec | PVGIS & InsolMets | 0.24 | 139 | 527 | 37 | 32 | 3 | 0 | 28.8 | 23.0 | 0.22 | 0.20 |
58 = total stations removed; 48 = stations coincident with the total ones removed |
RMSE | AEMET-SNIRH | InsolMets | ||||||
---|---|---|---|---|---|---|---|---|
InsolMets | CAC | DIFF | Improv | kWh·m−2 | MBE | NRMSE | r | |
Jan | 0.18 | 0.47 | 0.29 | 61.5 | 2.05 | −0.11 | 0.09 | 0.93 |
Feb | 0.26 | 0.48 | 0.22 | 45.7 | 2.96 | −0.14 | 0.09 | 0.83 |
Mar | 0.32 | 0.55 | 0.23 | 42.1 | 4.24 | −0.31 | 0.07 | 0.81 |
Apr | 0.33 | 0.62 | 0.29 | 46.3 | 5.29 | −0.16 | 0.06 | 0.85 |
May | 0.39 | 0.66 | 0.27 | 40.5 | 6.45 | −0.62 | 0.06 | 0.81 |
Jun | 0.36 | 0.67 | 0.30 | 45.3 | 7.13 | −0.51 | 0.05 | 0.86 |
Jul | 0.42 | 0.59 | 0.17 | 29.1 | 7.16 | −0.01 | 0.06 | 0.76 |
Aug | 0.36 | 0.51 | 0.15 | 29.1 | 6.34 | −0.01 | 0.06 | 0.75 |
Sep | 0.32 | 0.44 | 0.12 | 27.4 | 5.02 | −0.36 | 0.06 | 0.67 |
Oct | 0.28 | 0.51 | 0.23 | 45.4 | 3.38 | −0.37 | 0.08 | 0.82 |
Nov | 0.20 | 0.50 | 0.30 | 59.7 | 2.28 | −0.16 | 0.09 | 0.92 |
Dec | 0.20 | 0.41 | 0.22 | 52.0 | 1.89 | −0.15 | 0.10 | 0.89 |
DIFF (kWh·m−2) = difference between RMSE CAC (worst-performing model) and RMSE InsolMets (best-performing model). Improv (%) = improvement considering the RMSE DIFF to RMSE CAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roca-Fernández, C.; Pons, X.; Ninyerola, M. A Comparison of Different Solar Radiation Models in the Iberian Peninsula. Atmosphere 2025, 16, 590. https://doi.org/10.3390/atmos16050590
Roca-Fernández C, Pons X, Ninyerola M. A Comparison of Different Solar Radiation Models in the Iberian Peninsula. Atmosphere. 2025; 16(5):590. https://doi.org/10.3390/atmos16050590
Chicago/Turabian StyleRoca-Fernández, Catalina, Xavier Pons, and Miquel Ninyerola. 2025. "A Comparison of Different Solar Radiation Models in the Iberian Peninsula" Atmosphere 16, no. 5: 590. https://doi.org/10.3390/atmos16050590
APA StyleRoca-Fernández, C., Pons, X., & Ninyerola, M. (2025). A Comparison of Different Solar Radiation Models in the Iberian Peninsula. Atmosphere, 16(5), 590. https://doi.org/10.3390/atmos16050590