The Forecasting Yield of Highland Barley and Wheat by Combining a Crop Model with Different Weather Fusion Methods in the Study of the Northeastern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WOFOST Model
2.3. Datasets
2.3.1. Field Trials Data
2.3.2. Weather Data
2.4. General Framework
- Step 1: Dynamic yield forecasts with different methods
- Step 2: Determination of optimal weather data fusion methods within different forecast periods
- Step 3: Evaluation of optimal forecast period for yield forecasting
- Step 4: Evaluation of the effect of TIGGE forecast data on yield forecast
2.5. Statistical Analysis
3. Results
3.1. Model Performance
3.2. Determination of Optimal Weather Data Fusion Methods
3.3. Optimal Forecast Period for Yield Forecasting and Its Accuracy
3.4. Evaluation of Yield Forecast with and Without TIGGE Forecast Data
4. Discussion
4.1. Dynamic Yields Forecast with Different Weather Data Fusion Methods
4.2. Performance of Optimal Weather Data Fusion Methods for Different Forecast Periods
4.3. Performance of Optimal Forecast Period for Yield Forecasting
4.4. Performance of Yield Forecasting with and Without TIGGE Forecast Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basso, B.; Liu, L. Seasonal Crop Yield Forecast: Methods, Applications, and Accuracies. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 154, pp. 201–255. ISBN 978-0-12-817406-7. [Google Scholar]
- Chen, S.; He, L.; Dong, W.; Li, R.; Jiang, T.; Li, L.; Feng, H.; Zhao, K.; Yu, Q.; He, J. Weather Records from Recent Years Performed Better than Analogue Years When Merging with Real-Time Weather Measurements for Dynamic within-Season Predictions of Rainfed Maize Yield. Agric. For. Meteorol. 2022, 315, 108810. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Liu, D.L.; Waters, C.; Xiao, D.; Shi, L.; Yu, Q. Dynamic Wheat Yield Forecasts Are Improved by a Hybrid Approach Using a Biophysical Model and Machine Learning Technique. Agric. For. Meteorol. 2020, 285, 107922. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Yang, G.; Yang, H.; Feng, H.; Xu, X.; Wang, J.; Li, X.; Luo, J. Winter Wheat Yield Estimation Based on Multi-Source Medium Resolution Optical and Radar Imaging Data and the AquaCrop Model Using the Particle Swarm Optimization Algorithm. ISPRS J. Photogramm. Remote Sens. 2017, 126, 24–37. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, F. Potential of Remote Sensing Data-Crop Model Assimilation and Seasonal Weather Forecasts for Early-Season Crop Yield Forecasting over a Large Area. Field Crops Res. 2022, 276, 108398. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cahill, K.N.; Field, C.B. Historical Effects of Temperature and Precipitation on California Crop Yields. Clim. Change 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Li, A.; Liang, S.; Wang, A.; Qin, J. Estimating Crop Yield from Multi-Temporal Satellite Data Using Multivariate Regression and Neural Network Techniques. Photogramm. Eng. Remote Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef]
- Li, L.; Yao, N.; Liu, D.L.; Song, S.; Lin, H.; Chen, X.; Li, Y. Historical and Future Projected Frequency of Extreme Precipitation Indicators Using the Optimized Cumulative Distribution Functions in China. J. Hydrol. 2019, 579, 124170. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J.W. Predicting Spatial and Temporal Variability in Crop Yields: An Inter-Comparison of Machine Learning, Regression and Process-Based Models. Environ. Res. Lett. 2020, 15, 044027. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; López-Lozano, R.; Van Der Velde, M.; Baruth, B. Assessing the Information in Crop Model and Meteorological Indicators to Forecast Crop Yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Lobell, D.B. Comparing Estimates of Climate Change Impacts from Processbased and Statistical Crop Models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield Gap Analysis with Local to Global Relevance—A Review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F. Assessing the Potential of an Algorithm Based on Mean Climatic Data to Predict Wheat Yield. Precis. Agric. 2014, 15, 255–272. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios. Clim. Change 1997, 35, 397–414. [Google Scholar] [CrossRef]
- Hochman, Z.; van Rees, H.; Carberry, P.S.; Hunt, J.R.; McCown, R.L.; Gartmann, A.; Holzworth, D.; van Rees, S.; Dalgliesh, N.P.; Long, W.; et al. Re-Inventing Model-Based Decision Support with Australian Dryland Farmers. 4. Yield Prophet® Helps Farmers Monitor and Manage Crops in a Variable Climate. Crop Pasture Sci. 2009, 60, 1057. [Google Scholar] [CrossRef]
- Chipanshi, A.; Ripley, E.; Lawford, R. Early Prediction of Spring Wheat Yields in Saskatchewan from Current and Historical Weather Data Using the CERES-Wheat Model. Agric. For. Meteorol. 1997, 84, 223–232. [Google Scholar] [CrossRef]
- Baigorria, G.A.; Jones, J.W.; O’Brien, J.J. Potential Predictability of Crop Yield Using an Ensemble Climate Forecast by a Regional Circulation Model. Agric. For. Meteorol. 2008, 148, 1353–1361. [Google Scholar] [CrossRef]
- Fraisse, C.W.; Breuer, N.E.; Zierden, D.; Bellow, J.G.; Paz, J.; Cabrera, V.E.; Garcia y Garcia, A.; Ingram, K.T.; Hatch, U.; Hoogenboom, G.; et al. AgClimate: A Climate Forecast Information System for Agricultural Risk Management in the Southeastern USA. Comput. Electron. Agric. 2006, 53, 13–27. [Google Scholar] [CrossRef]
- Hansen, J.W.; Challinor, A.; Ines, A.; Wheeler, T.; Moron, V. Translating Climate Forecasts into Agricultural Terms: Advances and Challenges. Clim. Res. 2006, 33, 27–41. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Schepen, A.; Brider, J.; Hammer, G.L. Lead Time and Skill of Australian Wheat Yield Forecasts Based on ENSO-Analogue or GCM-Derived Seasonal Climate Forecasts-A Comparative Analysis. Agric. For. Meteorol. 2022, 324, 109116. [Google Scholar] [CrossRef]
- Semenov, M.A.; Doblas-Reyes, F.J. Utility of Dynamical Seasonal Forecasts in Predicting Crop Yield. Clim. Res. 2007, 34, 71–81. [Google Scholar] [CrossRef]
- Wang, E.; McIntosh, P.; Jiang, Q.; Xu, J. Quantifying the Value of Historical Climate Knowledge and Climate Forecasts Using Agricultural Systems Modelling. Clim. Change 2009, 96, 45–61. [Google Scholar] [CrossRef]
- Dhakar, R.; Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N.; Mukherjee, J.; Ines, A.V.M.; Kumar, S.N.; Shirsath, P.B.; Roy, S.B. Field Scale Spatial Wheat Yield Forecasting System under Limited Field Data Availability by Integrating Crop Simulation Model with Weather Forecast and Satellite Remote Sensing. Agric. Syst. 2022, 195, 103299. [Google Scholar] [CrossRef]
- Gyamerah, S.A.; Ngare, P.; Ikpe, D. Probabilistic Forecasting of Crop Yields via Quantile Random Forest and Epanechnikov Kernel Function. Agric. For. Meteorol. 2020, 280, 107808. [Google Scholar] [CrossRef]
- Zhuo, W.; Fang, S.; Gao, X.; Wang, L.; Wu, D.; Fu, S.; Wu, Q.; Huang, J. Crop Yield Prediction Using MODIS LAI, TIGGE Weather Forecasts and WOFOST Model: A Case Study for Winter Wheat in Hebei, China during 2009–2013. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102668. [Google Scholar] [CrossRef]
- Juan, W.; Pengjuan, S. Analysis on the Level and Influencing Factors of Agricultural Sustainable Development in Qinghai Province. IOP Conf. Ser. Earth Environ. Sci. 2021, 792, 012015. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R.; Han, R.; Chen, L. Study on the Influencing Factors of Agricultural Development in Qinghai Province. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 032011. [Google Scholar] [CrossRef]
- Boogaard, H.L.; van Diepen, C.A.; Rotter, R.P.; Cabrera, J.M.C.A.; van Laar, H.H. WOFOST 7.1; User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and Wofost Control Center 1.5; SC-DLO: Wageningen, The Netherlands, 1998. [Google Scholar]
- de Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 Years of the WOFOST Cropping Systems Model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Almorox, J.; Hontoria, C. Global Solar Radiation Estimation Using Sunshine Duration in Spain. Energy Convers. Manag. 2004, 45, 1529–1535. [Google Scholar] [CrossRef]
- Keller, J.H.; Jones, S.C.; Evans, J.L.; Harr, P.A. Characteristics of the TIGGE Multimodel Ensemble Prediction System in Representing Forecast Variability Associated with Extratropical Transition: ET IN TIGGE. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Swinbank, R.; Kyouda, M.; Buchanan, P.; Froude, L.; Hamill, T.M.; Hewson, T.D.; Keller, J.H.; Matsueda, M.; Methven, J.; Pappenberger, F.; et al. The TIGGE Project and Its Achievements. Bull. Am. Meteorol. Soc. 2016, 97, 49–67. [Google Scholar] [CrossRef]
- Lin, L.I. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Lu, G.; Liu, J.; Qin, C.; Zhou, C. Spatial Prediction Based on Third Law of Geography. Ann. GIS 2018, 24, 225–240. [Google Scholar] [CrossRef]
- Buishand, T.A.; Brandsma, T. Multisite Simulation of Daily Precipitation and Temperature in the Rhine Basin by Nearest-Neighbor Resampling. Water Resour. Res. 2001, 37, 2761–2776. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Lall, U. A K-Nearest-Neighbor Simulator for Daily Precipitation and Other Weather Variables. Water Resour. Res. 1999, 35, 3089–3101. [Google Scholar] [CrossRef]
- Bannayan, M.; Hoogenboom, G. Weather Analogue: A Tool for Real-Time Prediction of Daily Weather Data Realizations Based on a Modified k-Nearest Neighbor Approach. Environ. Model. Softw. 2008, 23, 703–713. [Google Scholar] [CrossRef]
- Brown, J.N.; Hochman, Z.; Holzworth, D.; Horan, H. Seasonal Climate Forecasts Provide More Definitive and Accurate Crop Yield Predictions. Agric. For. Meteorol. 2018, 260–261, 247–254. [Google Scholar] [CrossRef]
- Li, Z.; Song, M.; Feng, H.; Zhao, Y. Within-season yield prediction with different nitrogen inputs under rain-fed condition using CERES-Wheat model in the northwest of China. J. Sci. Food Agric. 2016, 96, 2906–2916. [Google Scholar] [CrossRef]
- Togliatti, K.; Archontoulis, S.V.; Dietzel, R.; Puntel, L.; VanLoocke, A. How Does Inclusion of Weather Forecasting Impact In-Season Crop Model Predictions? Field Crops Res. 2017, 214, 261–272. [Google Scholar] [CrossRef]
Station | Crop Type | Years | Crop Varieties | Average Yield (kg/ha) |
---|---|---|---|---|
Guinan | Highland barley | 2010, 2011, 2013, 2014 | Dulihuang | 3937 |
Guinan | Highland barley | 2015, 2016, 2017 | Kunlun No. 15 | 3667 |
Menyuan | Highland barley | 2010, 2011, 2012, 2013, 2017 | Beiqing No. 8 | 4425 |
Datong | Wheat | 2007, 2008, 2010, 2013 | White Wheat | 3056 |
Huzhu | Wheat | 2011, 2012, 2014, 2015 | Humai No. 12 | 3173 |
huangyuan | Wheat | 2007, 2009, 2013, 2016, 2018 | Qingchun No. 38 | 5044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; He, L.; Wang, X.; Zhao, M.; Li, F.; Jin, N.; Yao, N.; Chen, C.; Tian, Q.; Chen, B.; et al. The Forecasting Yield of Highland Barley and Wheat by Combining a Crop Model with Different Weather Fusion Methods in the Study of the Northeastern Tibetan Plateau. Atmosphere 2025, 16, 551. https://doi.org/10.3390/atmos16050551
Li P, He L, Wang X, Zhao M, Li F, Jin N, Yao N, Chen C, Tian Q, Chen B, et al. The Forecasting Yield of Highland Barley and Wheat by Combining a Crop Model with Different Weather Fusion Methods in the Study of the Northeastern Tibetan Plateau. Atmosphere. 2025; 16(5):551. https://doi.org/10.3390/atmos16050551
Chicago/Turabian StyleLi, Peng, Liang He, Xuetong Wang, Mengfan Zhao, Fan Li, Ning Jin, Ning Yao, Chao Chen, Qi Tian, Bin Chen, and et al. 2025. "The Forecasting Yield of Highland Barley and Wheat by Combining a Crop Model with Different Weather Fusion Methods in the Study of the Northeastern Tibetan Plateau" Atmosphere 16, no. 5: 551. https://doi.org/10.3390/atmos16050551
APA StyleLi, P., He, L., Wang, X., Zhao, M., Li, F., Jin, N., Yao, N., Chen, C., Tian, Q., Chen, B., Zhao, G., & Yu, Q. (2025). The Forecasting Yield of Highland Barley and Wheat by Combining a Crop Model with Different Weather Fusion Methods in the Study of the Northeastern Tibetan Plateau. Atmosphere, 16(5), 551. https://doi.org/10.3390/atmos16050551