Optimizing Livestock By-Products Storage to Reduce Ammonia and Greenhouse Gas Emissions Using Biochar and Wood Vinegar
Abstract
1. Introduction
2. Materials and Methods
2.1. Incubation Experiments
2.2. Gas Production Measurements
2.3. Statistical Analysis
3. Results
3.1. Incubation 1
3.2. Incubation 2
3.3. Incubation 3
3.4. pH Variations
3.5. Discriminant Function Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NH3 | Ammonia |
CH4 | Methane |
CO2 | Carbon dioxide |
N2O | Nitrous oxide |
GHG | Greenhouse gas |
N | Nitrogen |
PM | Particulate matter |
NVZs | Nitrate vulnerable zones |
OM | Organic matter |
C | Carbon |
C org | Organic C |
TN | Total nitrogen |
N-NH4 | Ammonium |
H:Corg | Hydrogen carbon ratio |
Ac. acid | Acetic acid |
ANOVA | Analysis of variance |
DFA | Discriminant function analysis |
References
- Nugrahaeningtyas, E.; Lee, J.S.; Park, K.H. Greenhouse gas emissions from livestock: Sources, estimation, and mitigation. J. Anim. Sci. Technol. 2024, 66, 1083–1098. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; pp. 1–115. [Google Scholar]
- Gavrilova, O.; Leip, A.; Dong, H.; MacDonald, J.D.; Gomez Bravo, C.A.; Amon, B.; Barahona Rosales, R.; del Prado, A.; Oy-hantçabal, W.; van der Weerden, T.J.; et al. Chapter 10: Emissions from Livestock and Manure Management. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use; IPCC National Greenhouse Gas Inventories Programme; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Groenestein, C.M.; Hutchings, N.J.; Haenel, H.D.; Amon, B.; Menzi, H.; Mikkelsen, M.H.; Misselbrook, T.H.; van Bruggen, C.; Kupper, T.; Webb, J. Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe. J. Clean. Prod. 2019, 211, 1162–1170. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; van Grinsven, H.; Grizzetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- ISPRA (Italian Institute for Environmental Protection and Research). Rapporto Rifiuti Speciali e Gestione degli Effluenti Zootecnici; ISPRA: Rome, Italy, 2023.
- Ogbuewu, I.P.; Odoemenam, V.U.; Omede, A.A.; Durunna, C.S.; Emenalom, O.O.; Uchegbu, M.C.; Ifeanyi Charles, O.; Iloeje, M.U. Livestock waste and its impact on the environment. Sci. J. Rev. 2012, 1, 17–32. [Google Scholar]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed]
- Zavattaro, L.; Bechini, L.; Grignani, C.; Van Evert, F.K.; Mallast, J.; Spiegel, H.; Sandén, T.; Pecio, A.; Giráldez Cervera, J.V.; Guzmán, G.; et al. Agronomic effects of bovine manure: A review of long-term European field experiments. Eur. J. Agron. 2017, 90, 127–138. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mallick, R.; Mukherjee, J. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Carraro, G.; Tonderski, K.; Enrich-Prast, A. Solid-liquid separation of digestate from biogas plants: A systematic review of the techniques’ performance. J. Environ. Manage. 2024, 356, 120585. [Google Scholar] [CrossRef]
- Kupper, T.; Häni, C.; Neftel, A.; Kincaid, C.; Bühler, M.; Amon, B.; VanderZaag, A. Ammonia and greenhouse gas emissions from slurry storage-A review. Agric. Ecosyst. Environ. 2020, 300, 106963. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G. Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Anim. Feed Sci. Technol. 2011, 166, 503–513. [Google Scholar] [CrossRef]
- Scotto di Perta, E.; Giudicianni, P.; Mautone, A.; Grottola, C.M.; Cervelli, E.; Ragucci, R.; Pindozzi, S. An Effective bio-char application for reducing nitrogen emissions from buffalo digestate storage tank. Appl. Sci. 2024, 14, 6456. [Google Scholar] [CrossRef]
- Cao, X.; Mašek, O.; Cross, A. Biochar for ammonia removal: Mechanisms, key parameters and application. Environ. Pollut. 2020, 266, 115185. [Google Scholar]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N.J.B.T. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Fryda, L.; Visser, R. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture 2015, 5, 1076–1115. [Google Scholar] [CrossRef]
- Sommer, S.G.; Clough, T.J.; Balaine, N.; Hafner, S.D.; Cameron, K.C. Transformation of organic matter and the emissions of methane and ammonia during storage of liquid manure as affected by acidification. J. Environ. Qual. 2017, 46, 514–521. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wang, Z.; Sun, G.; Li, J. Greenhouse gas reduction and nitrogen conservation during manure composting by combining biochar with wood vinegar. J. Environ. Manag. 2022, 324, 116349. [Google Scholar] [CrossRef] [PubMed]
- Regueiro, I.; Gómez-Muñoz, B.; Lübeck, M.; Hjorth, M.; Jensen, L.S. Bio-acidification of animal slurry: Efficiency, stability and the mechanisms involved. Bioresour. Technol. Rep. 2022, 19, 101135. [Google Scholar]
- Holly, M.A.; Larson, R.A.; Powell, J.M.; Ruark, M.D.; Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 2017, 239, 410–419. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N.; Cassidy, T.; Heyler, K. Nitrogen isotope fractionation and origin of ammonia nitrogen volatilized from cattle manure in simulated storage. Atmosphere 2011, 2, 256–270. [Google Scholar] [CrossRef]
- Misselbrook, T.; Hunt, J.; Perazzolo, F.; Provolo, G. Greenhouse gas and ammonia emissions from slurry storage: Impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). J. Environ. Qual. 2016, 45, 1520–1530. [Google Scholar] [CrossRef]
- Rodhe, L.K.; Ascue, J.; Willén, A.; Persson, B.V.; Nordberg, Å. Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry. Agric. Ecosyst. Environ. 2015, 199, 358–368. [Google Scholar] [CrossRef]
- Baral, K.R.; Jégo, G.; Amon, B.; Bol, R.; Chantigny, M.H.; Olesen, J.E.; Petersen, S.O. Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation. Agric. Syst. 2018, 166, 26–35. [Google Scholar] [CrossRef]
- Ahlberg-Eliasson, K.; Westerholm, M.; Isaksson, S.; Schnürer, A. Anaerobic digestion of animal manure and influence of organic loading rate and temperature on process performance, microbiology, and methane emission from digestates. Front. Energy Res. 2021, 9, 740314. [Google Scholar] [CrossRef]
- Silva, I.; Lapa, N.; Ribeiro, H.; Duarte, E. Pig Slurry Anaerobic Digestion: The Role of Biochar as an Additive Towards Biogas and Digestate Improvement. Appl. Sci. 2025, 15, 1037. [Google Scholar] [CrossRef]
- Akdeniz, N. A Systematic Review of Biochar Use in Animal Waste Composting. Waste Manag. 2019, 88, 291–300. [Google Scholar] [CrossRef]
- Baral, K.R.; McIlroy, J.; Lyons, G.; Johnston, C. The Effect of Biochar and Acid Activated Biochar on Ammonia Emissions During Manure Storage. Environ. Pollut. 2023, 317, 120815. [Google Scholar] [CrossRef]
- Maurer, D.L.; Koziel, J.A.; Kalus, K.; Andersen, D.S.; Opalinski, S. Pilot-Scale Testing of Non-Activated Biochar for Swine Manure Treatment and Mitigation of Ammonia, Hydrogen Sulfide, Odorous VOCs, and Greenhouse Gas Emissions. Sustainability 2017, 9, 929. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Webber, J.B.W.; Ogbonnaya, U.O. Characteristics of Biochar Porosity by NMR and Study of Ammonium Ion Adsorption. J. Anal. Appl. Pyrolysis 2019, 143, 104687. [Google Scholar] [CrossRef]
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Yu, L.; Tang, J.; Zhang, R.; Wu, Q.; Gong, M. Effects of Biochar Application on Soil Methane Emission at Different Soil Moisture Levels. Biol. Fertil. Soils 2013, 49, 119–128. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining Biochar, Zeolite and Wood Vinegar for Composting of Pig Manure: The Effect on Greenhouse Gas Emission and Nitrogen Conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, S.; Hou, B.; Zheng, H.; Deng, W.; Liu, D.; Tang, W. Study on the Preparation of Wood Vinegar from Biomass Residues by Carbonization Process. Bioresour. Technol. 2015, 179, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Dai, K.; Wen, J.-L.; Zhang, F.; Zeng, R.J. Valuable Biochemical Production in Mixed Culture Fermentation: Fundamentals and Process Coupling. Appl. Microbiol. Biotechnol. 2017, 101, 6575–6586. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Fan, Q.; Zhao, Y.; Xu, H.; Chen, L.; Si, H.; Li, Y. Continuous anaerobic digestion of wood vinegar wastewater from pyrolysis: Microbial diversity and functional genes prediction. Front. Bioeng. Biotechnol. 2020, 8, 923. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Laird, D.A. Quantification and Characterization of Chemically- and Thermally-Labile and Recalcitrant Biochar Fractions. Chemosphere 2018, 194, 247–255. [Google Scholar] [CrossRef]
Livestock By-Products | pH | C org (%) | TN (%) | N-NH4 (%) | ||
---|---|---|---|---|---|---|
Raw digestate inc. 1 (RD1) | 8.1 | 53.1 | 8.79 | 2.73 | ||
Raw digestate inc. 2 (RD2) | 8.3 | 76.1 | 12.6 | 6.5 | ||
Digestate 1 liquid fraction (DLF) | 8.4 | n.d. | 13.9 | 3.31 | ||
Slurry inc. 2 (SL2) | 8.2 | 66.6 | 13.7 | 4.9 | ||
Slurry inc. 3 (SL3) | 7.1 | 40.2 | 9.8 | 3.97 | ||
Treatments | pH | C org (%) | TN (%) | N-NH4 (%) | Bulk Density (kg L−1) | H:Corg |
Biochar—pyrolysis (Bp) | 10.2 | 51.5 | 0.985 | 0.02 | 0.361 | 0.37 |
Biochar—gasification (Bg) | 12.0 | 69.1 | 1.02 | <0.001 | 0.204 | 0.19 |
pH | Ac. acid (%) | Total phenols (g kg−1) | Total polyphenols (g kg−1) | Bulk Density (kg L−1) | Heavy metals (mg kg−1) | |
Wood vinegar (WV) | 3.15 | 2.45 | 2.9 | 16 | 1.05 | <1 |
Incubation 1 Treatments | Labels |
---|---|
Raw digestate | RD1 |
Raw digestate covered with 5 cm biochar from pyrolysis | RD1_5Bp |
Digestate liquid fraction | DLF |
Digestate liquid fraction covered with 1 cm biochar from pyrolysis | DLF_1Bp |
Digestate liquid fraction covered with 2 cm biochar from pyrolysis | DLF_2Bp |
Digestate liquid fraction covered with 5 cm biochar from pyrolysis | DLF_5Bp |
Incubation 2 Treatments | Labels |
---|---|
Raw digestate | RD2 |
Raw digestate covered with 5 cm biochar from pyrolysis | RD2_5Bp |
Raw digestate covered with 5 cm biochar from pyrolysis activated with wood vinegar | RD2_5Bp_WV |
Slurry | SL2 |
Slurry covered with 5 cm biochar from pyrolysis | SL2_5Bp |
Slurry covered with 5 cm biochar from pyrolysis activated with wood vinegar | SL2_5Bp_WV |
Incubation 3 Treatments | Labels |
---|---|
Slurry | SL3 |
Slurry covered with 5 cm biochar from pyrolysis | SL3_5Bp |
Slurry covered with 5 cm biochar from gasification | SL3_5Bg |
Slurry mixed with biochar from pyrolysis | SL3_MBp |
Slurry mixed with biochar from gasification | SL3_MBg |
Slurry covered with 5 cm biochar from gasification activated with wood vinegar | SL2_5Bg_WV |
Slurry mixed with biochar from pyrolysis activated with wood vinegar | SL2_MBp_WV |
NH3 | CH4 | CO2 | N2O | pH Initial | pH Final | |
---|---|---|---|---|---|---|
DLF vs. RD | 58 * | −60 n.s. | −14 n.s. | −47 n.s. | 4 * | n.d. |
RD vs. SL | 56 * | 17 n.s. | 24 * | 41 n.s. | 3 * | −2 n.s. |
Cover 5Bp (DLF) | −59 * | −13 n.s. | −53 * | 384 n.s. | n.d. | n.d. |
Cover 5Bp (RD) | −39 * | 14 n.s. | −42 * | n.d. | n.d. | n.d. |
Cover 5Bp (SL) | −44 * | 42 n.s. | −50 * | −59 n.s. | 2 * | −6 * |
Cover 5Bp vs. MBp (SL) | −81 * | −2 n.s. | 4 n.s. | 485 * | n.d. | n.d. |
Cover 5Bg vs. MBg (SL) | 13 n.s. | 329 * | 214 * | 326 n.s. | n.d. | n.d. |
MBp (SL) | −21 n.s. | 59 n.s. | 3 n.s. | 706 n.s. | 2 * | 4 n.s. |
MBg (SL) | −23 n.s. | −36 n.s. | −30 n.s. | 188 n.s. | 14 * | 1 n.s. |
5Bp vs. 5Bg (SL cover) | −83 * | −43 * | −51 * | 285 * | n.d. | n.d. |
MBp vs. MBg (SL mixture) | 3 n.s. | 149 * | 47 n.s. | 180 n.s. | −11 * | 2 n.s. |
Wood vinegar (RD cover Bp) | −63 * | 86 n.s. | 28 n.s. | n.d. | −4 * | −5 n.s. |
Wood vinegar (SL cover Bp) | −66 * | 231 * | 90 * | n.d. | −3 * | −6 n.s. |
Wood vinegar (SL cover Bg) | −55 * | −50 * | 18 * | 257 * | n.d. | n.d. |
Wood vinegar (SL mixed Bp) | 7 n.s. | −55* | −7 n.s. | −94 n.s. | 0 n.s. | −1 n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagomarsino, A.; Verga, E.; Valagussa, M.; Rispoli, S.; Rocchi, F.; Becagli, C.; Tosca, A. Optimizing Livestock By-Products Storage to Reduce Ammonia and Greenhouse Gas Emissions Using Biochar and Wood Vinegar. Atmosphere 2025, 16, 509. https://doi.org/10.3390/atmos16050509
Lagomarsino A, Verga E, Valagussa M, Rispoli S, Rocchi F, Becagli C, Tosca A. Optimizing Livestock By-Products Storage to Reduce Ammonia and Greenhouse Gas Emissions Using Biochar and Wood Vinegar. Atmosphere. 2025; 16(5):509. https://doi.org/10.3390/atmos16050509
Chicago/Turabian StyleLagomarsino, Alessandra, Edoardo Verga, Massimo Valagussa, Stefano Rispoli, Filippo Rocchi, Claudia Becagli, and Alberto Tosca. 2025. "Optimizing Livestock By-Products Storage to Reduce Ammonia and Greenhouse Gas Emissions Using Biochar and Wood Vinegar" Atmosphere 16, no. 5: 509. https://doi.org/10.3390/atmos16050509
APA StyleLagomarsino, A., Verga, E., Valagussa, M., Rispoli, S., Rocchi, F., Becagli, C., & Tosca, A. (2025). Optimizing Livestock By-Products Storage to Reduce Ammonia and Greenhouse Gas Emissions Using Biochar and Wood Vinegar. Atmosphere, 16(5), 509. https://doi.org/10.3390/atmos16050509