Modelling of Nanoparticle Number Emissions from Road Transport—An Urban Scale Emission Inventory
Abstract
:1. Introduction
- This study uses detailed traffic flow and composition data. Data on road traffic flow and composition were estimated for both urban roads and motorways employing Leeds Transport Model.
- Emissions of NPs from both exhaust and non-exhaust emissions are estimated in this study. For this purpose, a detailed literature review was conducted to collect nanoparticle number emission factors (NPNEF) for exhaust emissions. NPNEF for non-exhaust emissions were calculated from mass-based EFs using previously established models.
- Two approaches were employed for the nanoparticle number emission estimation, which were referred to as ‘a detailed model’ and ‘a simple model’ (described in Section 2).
- Estimated emissions of the two models were compared using several statistical metrics, such as R, R2, RMSE, FAC2, and NMB.
- The road transport emission inventory developed for the estimation of nanoparticle number emissions and emission maps produced in this paper can be used for air quality management, assessing the impact of policy interventions, and for developing a dispersion model for the estimation of nanoparticle number concentrations in urban areas. However, no previous nanoparticle number emission inventory existed and there were no nanoparticle number monitoring stations in Leeds, which was a challenge for validating the models’ outputs.
2. Materials and Methods
2.1. Traffic Data
2.2. Nanoparticle Number Emission Factors
- Measure nanoparticle number concentrations (NPNC) at roadsides using differential mobility particle sizers (DMPS). The average NPNC was 27,100 particles/cm3.
- Measure NPNC at the background site (average NPNC at the background site was 5311 particles/cm3).
- Subtract background NPNC (5311) from the roadside NPNC (27,100) to calculate the contribution of road traffic, referred to as ∆C.
- Monitor traffic flow (AADT).
- Estimate dilution rate.
- Convert nanoparticle number concentrations to NPNEF using measured traffic volume and dilution rate [36]:PNEFi = [∆Ci(t) × D(t)]/N (total)
2.3. Nanoparticle Number Emission Estimation and Mapping
3. Results and Discussion
3.1. Calculation and Mapping of Nanoparticle Number Emissions
3.2. Discussion on Nanoparticle Number Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed]
- Sonwani, S.; Madaan, S.; Arora, J.; Suryanarayan, S.; Rangra, D.; Mongia, N.; Vats, T.; Saxena, P. Inhalation Exposure to Atmospheric Nanoparticles and Its Associated Impacts on Human Health: A Review. Front. Sustain. Cities 2021, 3, 690444. [Google Scholar] [CrossRef]
- Vouitsis, I.; Portugal, J.; Kontses, A.; Karlsson, H.L.; Faria, M.; Elihn, K.; Juárez-Facio, A.T.; Amato, F.; Piña, B.; Samaras, Z. Transport-related airborne nanoparticles: Sources, different aerosol modes, and their toxicity. Atmos. Environ. 2023, 301, 119698. [Google Scholar] [CrossRef]
- Oberdorster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef]
- Sager, T.; Castranova, V. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: Comparison to ultrafine titanium dioxide. Part. Fibre Toxicol. 2009, 6, 15. [Google Scholar] [CrossRef]
- Donaldson, K.; Li, X.Y.; MacNee, W. Ultrafine (nanometre) particle mediated lung injury. J. Aerosol Sci. 1998, 29, 553–560. [Google Scholar] [CrossRef]
- Okuda, T. Measurement of the specific surface area and particle size distribution of atmospheric aerosol reference materials. Atmos. Environ. 2013, 75, 1–5. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Alföldy, B.; Drossinos, Y. A metric for health effects studies of diesel exhaust particles. J. Aersol Sci. 2009, 40, 639–651. [Google Scholar]
- Lu, S.; Hao, X.; Liu, D.; Wang, Q.Q.; Zhang, W.; Liu, P.; Zhang, R.; Yu, S.; Pan, R.; Wu, M.; et al. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion. Atmos. Res. 2016, 169, 17–23. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, R.; Yao, Z.; Yi, F.; Ren, J.; Wu, M.; Feng, M.; Wang, Q. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 2012, 24, 882–890. [Google Scholar] [CrossRef]
- Health Effects Institute. Understanding the Health Effects of Ambient Ultrafine Particles; HEI Perspectives 3; Health Effects Institute: Boston, MA, USA, 2013; Available online: https://www.healtheffects.org/publication/understanding-health-effects-ambient-ultrafine-particles (accessed on 11 August 2023).
- Kuhn, T.; Biswas, S.; Sioutas, C. Diurnal and seasonal characteristics of particle volatility and chemical composition in the vicinity of a light-duty vehicle freeway. Atmos. Environ. 2005, 39, 7154–7166. [Google Scholar]
- Sardar, S.B.; Fine, P.M.; Mayo, P.R.; and Sioutas, C. Size-fractionated measurements of ambient ultrafine particle chemical composition in Los Angeles using the NanoMOUDI. Environ. Sci. Technol. 2005, 39, 932–944. [Google Scholar] [CrossRef] [PubMed]
- Pakkanen, T.A.; Kerminen, V.M.; Korhonen, C.H.; Hillamo, R.E.; Aarnio, P.; Koskentalo, T. Urban and rural ultrafine (PM0.1) particles in the Helsinki area. Atmos. Environ. 2001, 35, 4593–4607. [Google Scholar] [CrossRef]
- Ermolin, M.S.; Fedotov, P.S.; Malik, N.A.; Karandashev, V.K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 2018, 200, 16–22. [Google Scholar] [CrossRef]
- Stone, V.; Miller, M.R.; Clift, M.J.D.; Elder, A.; Mills, N.L.; Møller, P.; Schins, R.P.F.; Vogel, U.; Kreyling, W.G.; Alstrup-Jensen, K.; et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ. Health Perspect. 2017, 125, 106002. [Google Scholar]
- Miller, M.R.; Shaw, C.A.; Langrish, J.P. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 2012, 8, 577–602. [Google Scholar]
- Ronkko, T.; Kuuluvainen, H.; Karjalainen, P. Traffic is a major source of atmospheric nanocluster aerosol. Proc. Natl. Acad. Sci. USA 2017, 114, 7549–7554. [Google Scholar] [CrossRef]
- Belkacem, I.; Helali, A.; Khardi, S.; Chrouda, A.; Slimi, K. Road traffic nanoparticle characteristics: Sustainable environment and mobility. Geosci. Front. 2022, 13, 101196. [Google Scholar]
- Harrison, R.R.; Beddows, D.C.S.; Alam, M.S. Interpretation of particle number size distributions measured across an urban area during the FASTER campaign. Atmos. Chem. Phys. 2019, 19, 39–55. [Google Scholar]
- Air Quality Expert Group (AQEG). Non-Exhaust Emissions from Road Traffic. Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland. 2019. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1907101151_20190709_Non_Exhaust_Emissions_typeset_Final.pdf (accessed on 10 September 2023).
- European Environmental Agency (EEA). Emissions of Air Pollutants from Transport. Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-8 (accessed on 12 May 2023).
- Fujitani, Y.; Takahashi, K.; Saitoh, K.; Fushimi, A.; Hasegawa, S.; Kondo, Y.; Tanabe, K.; Takami, A.; Kobayashi, S. Contribution of industrial and traffic emissions to ultrafine, fine, coarse particles in the vicinity of industrial areas in Japan. Environ. Adv. 2021, 5, 100101. [Google Scholar]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Emission factors of ultrafine particulate matter (PM < 0.1 μm) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere 2021, 262, 127846. [Google Scholar] [PubMed]
- Pey, J.; Querol, X.; Alastuey, A.; Rodríguez, S.; Putaud, J.P.; Van Dingenen, R. Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. Atmos. Environ. 2009, 43, 4407–4415. [Google Scholar] [CrossRef]
- Nie, D.; Qiu, Z.; Wang, X.; Liu, Z. Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environ. Res. 2022, 215, 114209. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Guo, Y.T.; Yang, J.Y.; Liang, C.S. Review on main sources and impacts of urban ultrafine particles: Traffic emissions, nucleation, and climate modulation. Atmos. Environ. X 2023, 19, 100221. [Google Scholar] [CrossRef]
- Munir, S.; Chen, H.; Crowther, R. The effect of COVID-19 lockdown on atmospheric total particle numbers, nanoparticle numbers and mass concentrations in the UK. Atmos. Pollut. Res. 2022, 13, 101548. [Google Scholar] [CrossRef]
- Kukkonen, J.; Karl, M.; Keuken, M.P.; Denier van der Gon, H.A.C.; Denby, B.R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; et al. Modelling the dispersion of particle numbers in five European cities. Geosci. Model Dev. 2016, 9, 451–478. [Google Scholar] [CrossRef]
- RI-URBANS. Research Infrastructures Services Reinforcing Air Quality Monitoring Capacities in European Urban & Industrial AreaS (GA n. 101036245) by NOA. Available online: https://riurbans.eu/wp-content/uploads/2022/07/RI-URBANS_D17_D3.2.pdf (accessed on 2 March 2025).
- Dai, H.; Huang, G.; Wang, J.; Zeng, H. VAR-tree model based spatio-temporal characterization and of O3 concentration in China. Ecotoxicol. Environ. Saf. 2023, 257, 114960. [Google Scholar] [CrossRef]
- Leeds Clean Air Zone (LCAZ). Modelling Report 2020. Leeds City Council. 2020. Available online: https://datamillnorth.org/dataset/leeds-clean-air-zone---compliance-modelling-2021 (accessed on 13 December 2022).
- National Atmospheric Emissions Inventory (NAEI), UK. Vehicle Fleet Composition Projections (Base 2019r). 2020. Available online: https://naei.energysecurity.gov.uk/sites/default/files/2024-05/rtp_fleet_projection_NAEI_2017_Base2019r_v1_1.xlsx (accessed on 2 March 2025).
- Giechaskiel, B.; Riccobono, F.; Vlachos, T.; Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Fontaras, G.; Bonnel, P.; Weiss, M. Vehicle Emission Factors of Solid Nanoparticles in the Laboratory and on the Road Using Portable Emission Measurement Systems (PEMS). Front. Environ. Sci. 2015, 3, 82. [Google Scholar] [CrossRef]
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road vehicle emission factors development: A review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- Wang, F.; Ketzel, M.; Ellermann, T.; Wahlin, P.; Jensen, S.S.; Fang, D.; Massling, A. Particle number, particle mass and NOx emission factors at a highway and an urban street in Copenhagen. Atmos. Chem. Phys. 2010, 10, 2745–2764. [Google Scholar] [CrossRef]
- nanoComposix. Nanoparticle Volume, Mass and Concentration. 2014. Available online: https://nanocomposix.com/pages/nanoparticle-volume-mass-and-concentration (accessed on 9 July 2023).
- Klockner, P.; Seiwert, B.; Eisentraut, P.; Braun, U.; Reemtsma, T.; Wagner, S. Characterization of tire and road wear particles from road runoff indicates highly dynamic particle properties. Water Res. 2020, 185, 116262. [Google Scholar] [CrossRef] [PubMed]
- Klockner, P.; Seiwert, B.; Weyrauch, S.; Escher, B.I.; Reemtsma, T.; Wagner, S. Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation. Chemosphere 2021, 279, 130530. [Google Scholar] [PubMed]
- Mamakos, A.; Arndt, M.; Hesse, D.; Augsburg, K. Physical characterization of brake-wear particles in a PM10 dilution tunnel. Atmosphere 2019, 10, 639. [Google Scholar] [CrossRef]
- Philippe, F.; Morgeneyer, M.; Xiang, M.; Manokaran, M.; Berthelot, B.; Chen, Y.M.; Charles, P.; Guingand, F.; Bressot, C. Representativeness of airborne brake wear emission for the automotive industry: A review. Proc. Inst. Mech. Eng. D-J. Automob. Eng. 2021, 235, 2651–2666. [Google Scholar] [CrossRef]
- Wagner, S.; Klöckner, P.; Reemtsma, T. Aging of tire and road wear particles in terrestrial and freshwater environments—A review on processes, testing, analysis and impact. Chemosphere 2022, 288, 132467. [Google Scholar] [CrossRef]
- Woo, S.H.; Kim, Y.; Lee, S.; Choi, Y.; Lee, S. Characteristics of brake wear particle (BWP) emissions under various test driving cycles. Wear 2021, 480, 203936. [Google Scholar]
- National Atmospheric Emissions Inventory (NAEI), UK. Emission Factors Detailed by Source and Fuel. Available online: https://naei.beis.gov.uk/data/ef-all (accessed on 14 December 2022).
- Munir, S.; Mayfield, M.; Coca, D.; Jubb, S.A.; Osammor, O. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities-a case study in Sheffield. Environ. Monit. Assess. 2019, 191, 94. [Google Scholar]
- Zeng, H.; Shao, B.; Dai, H.; Yan, Y.; Tian, N. Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM. Energy 2023, 263(Part E), 126125. [Google Scholar]
- Beddows, D.C.; Harrison, R.M. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmos. Environ. 2021, 244, 117886. [Google Scholar]
- Hicks, W.; Beevers, S.; Tremper, A.H.; Stewart, G.; Priestman, M.; Kelly, F.J.; Lanoisell’e, M.; Lowry, D.; Green, D.C. Quantification of non-exhaust particulate matter traffic emissions and the impact of COVID-19 lockdown at London Marylebone road. Atmosphere 2021, 12, 190. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Gao, J.; Li, Y.; Dave, K.; Chen, J.; Federici, M.; Perricone, G. Comparative analysis of non-exhaust airborne particles from electric and internal combustion engine vehicles. J. Hazard. Mater. 2021, 420, 126626. [Google Scholar] [PubMed]
- Office of the National Statics (ONS) Report—Road Transport and Air Emissions: Contribution of Road Transport to Greenhouse Gas and Air Pollutant Emissions–Further Analysis of the UK Environmental Accounts Data. 2019. Available online: https://www.ons.gov.uk/economy/environmentalaccounts/articles/roadtransportandairemissions/2019-09-16 (accessed on 2 August 2023).
- Huang, C.; Lou, D.; Hu, Z.; Feng, Q.; Chen, Y.; Chen, C.; Tan, P.; Yao, D. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles. Atmos. Environ. 2013, 77, 703–710. [Google Scholar]
- Krecl, P.; Targino, A.C.; Landi, T.P.; Ketzel, M. Determination of black carbon, PM2.5, particle number and NOx emission factors from roadside measurements and their implications for emission inventory development. Atmos. Environ. 2018, 186, 229–240. [Google Scholar]
- Fujitani, Y.; Takahashi, K.; Fushimi, A.; Hasegawa, S.; Kondo, Y.; Tanabe, K.; Kobayashi, S. Particle number emission factors from diesel trucks at a traffic intersection: Long-term trend and relation to particle mass-based emission regulation. Atmos. Environ X 2020, 5, 100055. [Google Scholar]
- Kumar, P.; Fennell, P.; Hayhurst, A.; Britter, R.E. Street versus roof top level concentrations of fine particles in a Cambridge street canyon. Bound. Layer Meteorol. 2009, 131, 3–18. [Google Scholar] [CrossRef]
- Vouitsis, I.; Ntziachristos, L.; Samaras, C.; Samaras, Z. Particulate mass and number emission factors for road vehicles based on literature data and relevant gap filling methods. Atmos. Environ. 2017, 168, 75–89. [Google Scholar]
- Harrison, R.M.; MacKenzie, A.R.; Xu, H.; Alam, M.S.; Nikolova, I.; Zhong, J.; Singh, A.; Zeraati-Rezaei, S.; Stark, C.; Beddows, D.C.S.; et al. Diesel exhaust nanoparticles and their behaviour in the atmosphere. Proc. R. Soc. A 2018, 474, 20180492. [Google Scholar] [CrossRef]
- Frohn, L.M.; Ketzel, M.; Christensen, J.H.; Brandt, J.; Im, U.; Massling, A.; Andersen, C.; Plejdrup, M.S.; Nielsen, O.-K.; van der Gon, H.D. Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979-2018—Part 1: Regional and urban scale modelling and evaluation. Atmos. Environ. 2021, 264, 118631. [Google Scholar]
- Jones, A.M.; Harrison, R.M. Estimation of the emission factors of particle number and mass fractions from traffic at a site where mean vehicle speeds vary over short distances. Atmos. Environ. 2006, 40, 7125–7137. [Google Scholar] [CrossRef]
- Kumar, P.; Ketzel, M.; Vardoulakis, S.; Pirjola, L.; Britter, R. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—A review. J. Aerosol Sci. 2011, 42, 580–603. [Google Scholar] [CrossRef]
- Gidhagen, L.; Johansson, C.; Langner, J.; Foltescu, V.L. Urban scale modeling of particle number concentration in Stockholm. Atmos. Environ. 2005, 39, 1711–1725. [Google Scholar] [CrossRef]
- Wang, T.; Quiros, D.C.; Thiruvengadam, A.; Pradhan, S.; Hu, S.; Huai, T.; Lee, E.S.; Zhu, Y. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation. Environ. Sci. Technol. 2017, 51, 6990–6998. [Google Scholar] [PubMed]
- Lahde, T.; Giechaskiel, B. Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures. Atmosphere 2021, 12, 893. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Mamakos, A.; Samaras, Z.; Mathis, U.; Mohr, M.; Thompson, N.; Stradling, R.; Forti, L.; de Serves, C. Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Light-duty Vehicles. SAE Trans. 2004, 113, 1354–1373. [Google Scholar]
- Ntziachristos, L.; Samaras, Z. Combination of aerosol instrument data into reduced variables to study the consistency of vehicle exhaust particle measurements. Atmos. Environ. 2006, 40, 6032–6042. [Google Scholar]
- Vouitsis, E.; Ntziachristos, L.; Pistikopoulos, P.; Samaras, Z.; Chrysikou, L.; Samara, C.; Papadimitriou, C.; Samaras, P.; Sakellaropoulos, G. An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles. Environ. Pollut. 2009, 157, 2320–2327. [Google Scholar]
- Mamakos, A.; Martini, G.; Manfredi, U. Assessment of the legislated particle number measurement procedure for a Euro 5 and a Euro 6 compliant diesel passenger cars under regulated and unregulated conditions. J. Aerosol Sci. 2013, 55, 31–47. [Google Scholar]
- Carbone, R.; Ranchet, N.; Rickeard, D.J.; Rowntree, C.J.; Stradling, R.J.; Zemroch, P.J.; Hall, D.E.; Thompson, N.D. Fuel Effects on the Characteristics of Particle Emissions from Advanced Engines and Vehicles; CONCAWE Report No. 1/05. 2005. Available online: https://groupware.sinanet.isprambiente.it/expert_panel/library/report/rpt051-2005-00240-01-epd/download/en/1/CONCAWE_Rpt051-2005-00240-01-E.pdf (accessed on 2 March 2025).
- Mohr, M.; Lehmann, U.; Margaria, G. ACEA Programme on the Emissions of Fine Particulates from Passenger Cars (2). Part 1. Particle Characterization of a Wide Range of Engine Technologies. SAE Trans. 2003, 112, 1579–1589. [Google Scholar]
- Mamakos, A.; Dardiotis, C.; Martini, G. Assessment of Particle Number Limits for Petrol Vehicles. JRC Scientific Report, EUR 25592 EN-2012. 2012. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC76849/lbna25592enn.pdf (accessed on 2 March 2025).
- May, J.; Bosteels, D.; Favre, C. Particulate Emissions from Euro 3 to Euro 6 Light-Duty Vehicles Equipped with a Range of Emissions Control Technologies; AECC: Brussels, Belgium, 2011; Available online: https://www.aecc.eu/wp-content/uploads/2020/08/131127-AECC-IMechE-presentation-Emissions-from-Euro-3-to-Euro-6.pdf (accessed on 13 July 2023).
- Fontaras, G.; Karavalakis, G.; Kousoulidou, M.; Tzamkiozis, T.; Ntziachristos, L.; Bakeas, E.; Stournas, S.; Samaras, Z. Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel 2009, 88, 1608–1617. [Google Scholar]
- Fontaras, G.; Kousoulidou, M.; Karavalakis, G.; Tzamkiozis, T.; Pistikopoulos, P.; Ntziachristos, L.; Bakeas, E.; Stournas, S.; Samaras, Z. Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: Feedstock impact on regulated pollutants, fuel consumption and particle emissions. Environ. Pollut. 2010, 158, 1451–1460. [Google Scholar]
- Macor, A.; Avella, F.; Faedo, D. Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions from diesel engines. Appl. Energy 2011, 88, 4989–5001. [Google Scholar] [CrossRef]
- Schreiber, A.; Forss, M.; Mohr, M.; Dimopoulos, P. Particle Characterisation of Modern CNG, Gasoline and Diesel Passenger Cars. SAE Technol. Pap. 2007. [Google Scholar] [CrossRef]
- Lee, J.W.; Do, H.S.; Kweon, S.I.; Park, K.K.; Hong, J.H. Effect of various LPG supply systems on exhaust particle emissions in spark-ignited combustion engine. Int. J. Automot. Technol. 2010, 11, 793–800. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J. Quantitative analysis of vehicle particle emission by using calibrated CPC system. J. Mech. Sci. Technol. 2011, 25, 2959–2967. [Google Scholar]
- De Serves, C. Emissions from Flexible Fuel Vehicles with Different Ethanol Blends. REPORT No AVL MTC 5509. 2005. Available online: http://korridor.se/aryan/acadiane/e85/Etanolrapport.pdf (accessed on 2 March 2025).
Traffic Category | Motorway | Rural | Urban |
---|---|---|---|
Electric car | 0.4% | 0.5% | 0.5% |
Petrol car | 33.7% | 42.2% | 47.5% |
Diesel car | 38.9% | 35.3% | 33.1% |
Electric LGV | 0.0% | 0.0% | 0.0% |
Petrol LGV | 0.2% | 0.2% | 0.2% |
Diesel LGV | 14.9% | 15.9% | 15.4% |
Rigid HGV | 3.1% | 2.3% | 0.9% |
Artic HGV | 8.0% | 2.4% | 0.4% |
Vehicle Type | EF for PM0.1 (g/km) |
---|---|
Car—petrol | 3.26 × 10−7 |
Car—diesel | 2.04 × 10−6 |
Car—brake wear | 9.37 × 10−4 |
Car—tyre wear | 9.37 × 10−4 |
Car—road abrasion | 6.12 × 10−4 |
LGVs—petrol | 1.60 × 10−7 |
LGVs—diesel | 1.61 × 10−6 |
LGVs—brake wear | 1.46 × 10−3 |
LGVs—tyre wear | 1.09 × 10−3 |
LGVs—road abrasion | 6.12 × 10−4 |
Buses and coaches—diesel | 1.22 × 10−6 |
Buses and coaches—brake wear | 4.29 × 10−3 |
Buses and coaches—tyre wear | 1.69 × 10−3 |
Buses and coaches—road abrasion | 3.10 × 10−3 |
HGV articulated—diesel | 5.06 × 10−7 |
HGV articulated—brake wear | 4.08 × 10−3 |
HGV articulated tyre wear | 3.71 × 10−3 |
HGV articulated—road abrasion | 3.10 × 10−3 |
HGV—rigid diesel | 9.67 × 10−7 |
HGV—rigid brake wear | 4.08 × 10−3 |
HGV—rigid tyre wear | 1.64 × 10−3 |
HGV—rigid road abrasion | 3.10 × 10−3 |
Veh. Category | Road Type | Exhaust | Brake Wear | Tyre Wear | Road Wear | EE and NEE |
---|---|---|---|---|---|---|
Petrol car | Urban | 8.00 × 1012 a | 8.95 × 103 | 8.95 × 103 | 5.84 × 103 | 8.00 × 1012 |
Diesel car | Urban | 6.08 × 1014 b | 8.95 × 103 | 8.95 × 103 | 5.84 × 103 | 6.08 × 1014 |
LGV petrol | Urban | 5.00 × 1012 a,c | 1.39 × 104 | 1.04104 | 5.84 × 103 | 5.00 × 1012 |
LGV diesel | Urban | 4.86 × 1013 a,c | 1.39 × 104 | 1.04 × 104 | 5.84 × 103 | 4.86 × 1013 |
Coach | Urban | 7.06 × 1014 b | 4.09 × 104 | 1.61 × 104 | 2.96 × 104 | 7.06 × 1014 |
HGV artic | Urban | 3.45 × 1014 d | 3.89 × 104 | 3.54 × 104 | 2.96 × 104 | 3.45 × 1014 |
HGV rigid | Urban | 3.45 × 1014 d | 3.89 × 104 | 1.56 × 104 | 2.96 × 104 | 3.45 × 1014 |
Mixed fleet | Urban | 2.15 × 1014 e | 2.35 × 104 | 1.51 × 104 | 1.60 × 104 | 2.15 × 1014 |
Petrol car | Motorway | 1.64 × 1012 | 1.86 × 103 | 4.39 × 103 | 5.84 × 103 | 1.64 × 1012 |
Diesel car | Motorway | 4.380 × 1014 | 1.86 × 103 | 4.39 × 103 | 5.84 × 103 | 4.380 × 1014 |
LGV petrol | Motorway | 3.60 × 1013 g | 4.17 × 103 | 7.33 × 103 | 5.84 × 103 | 3.60 × 1013 |
LGV diesel | Motorway | 2.20 × 1014 | 4.17 × 103 | 7.33 × 103 | 5.84 × 103 | 2.20 × 1014 |
Coach | Motorway | 3.60 × 1013 g | 1.26 × 104 | 1.86 × 104 | 2.96 × 104 | 3.60 × 1013 |
HGV artic | Motorway | 7.02 × 1013 g | 1.85 × 104 | 2.79 × 104 | 2.96 × 104 | 7.02 × 1013 |
HGV rigid | Motorway | 3.60 × 1013 g | 1.85 × 104 | 1.24 × 104 | 2.96 × 104 | 3.60 × 1013 |
Mixed fleet | Motorway | 1.78 × 1014 e,f | 8.81 × 103 | 1.18 × 104 | 1.60 × 104 | 1.78 × 1014 |
Vehicle Category | NPN Emissions (AADT) |
---|---|
Petrol cars | 1.09 × 1020 |
Diesel cars | 8.81 × 1021 |
LGV | 8.63 × 1019 |
HGV | 1.76 × 1020 |
Artic HGV | 6.86 × 1019 |
Coaches | 3.37 × 1020 |
Detailed model | 9.58 × 1021 |
Simple model | 5.79 × 1021 |
TPN | Cars 1.4–2.0 L | |||
---|---|---|---|---|
Vehicle Type | Urban Rd | Rural Rd | Highways | |
Gasol. PFI Euro 4 | 15.3 | 12.2 | 16.4 | |
Gasol. DI Euro 4 | 163 | 148 | 1183 | |
Diesel Euro 4 | 1280 | 1080 | 1750 | |
B10 Euro 4 | 610 | 524 | 848 | |
B20 Euro 4 | 487 | 418 | 703 | |
B100 Euro 4 | 468 | 402 | 651 | |
E10 Euro 4 | 5.8 | 5.1 | 5.4 | |
E75 Euro 4 | 3.2 | 2.8 | 3.0 | |
CNG Euro 4 | 1.8 | 3.9 | 410 | |
LPG Euro 4 | 3.8 | 3.2 | 3.5 | |
Gasol. PFI Euro 5 and 6 | 9.2 | 7.3 | 9.8 | |
Gasol. DI Euro 5 and 6 | 12.1 | 10.9 | 87.5 | |
Diesel Euro 5 and 6 | 4.1 | 1.6 | 16.4 | |
B10 Euro 5 and 6 | 2.0 | 0.8 | 7.9 | |
B20 Euro 5 and 6 | 1.6 | 0.6 | 6.6 | |
B100 Euro 5 and 6 | 1.5 | 0.6 | 6.1 | |
E10 Euro 5 and 6 | 3.5 | 3.1 | 3.2 | |
E75 Euro 5 and 6 | 1.9 | 1.7 | 1.8 | |
CNG Euro 5 and 6 | 1.1 | 2.3 | 245 | |
LPG Euro 5 and 6 | 2.3 | 1.9 | 2.1 | |
SPN | Cars 1.4 0 2.0 L | |||
Gasol. PFI Euro 4 | 9.0 | 7.9 | 8.4 | |
Gasol. DI Euro 4 | 95 | 76 | 606 | |
Diesel Euro 4 | 748 | 552 | 900 | |
B10 Euro 4 | 357 | 269 | 469 | |
B20 Euro 4 | 282 | 213 | 387 | |
B100 Euro 4 | 271 | 213 | 358 | |
E10 Euro 4 | 1.0 | 1.0 | 3.0 | |
E75 Euro 4 | 0.5 | 1.0 | 1.0 | |
CNG Euro 4 | 1.7 | 3.9 | 13.6 | |
LPG Euro 4 | 3.0 | 2.6 | 2.8 | |
Gasol. PFI Euro 5and6 | 3.6 | 3.1 | 1.3 | |
Gasol. DI Euro 5and6 | 20 | 11 | 7.5 | |
Diesel Euro 5 and 6 | 2.2 | 0.9 | 2.3 | |
B10 Euro 5 and 6 | 1.2 | 0.4 | 4.3 | |
B20 Euro 5 and 6 | 0.9 | 0.3 | 3.6 | |
B100 Euro 5 and 6 | 0.9 | 0.3 | 3.6 | |
E10 Euro 5 and 6 | 0.4 | 0.4 | 0.5 | |
E75 Euro 5 and 6 | 0.2 | 0.4 | 0.4 | |
CNG Euro 5 and 6 | 0.7 | 1.5 | 2.1 | |
LPG Euro 5 and 6 | 0.5 | 0.4 | 1.0 | |
TPN | Heavy-Duty Vehicles | |||
Rigid < 7.5 t | ||||
Euro I | 4594 | 3917 | 10,066 | |
Euro II | 3190 | 2720 | 6990 | |
Euro III | 3190 | 2720 | 6990 | |
Euro IV | 673 | 682 | 1880 | |
Euro V | 673 | 682 | 1880 | |
Euro VI | 0.7 | 0.7 | 1.9 | |
Rigid 7.5–14 t | ||||
Euro I | 9749 | 7186 | 14,832 | |
Euro II | 6770 | 4990 | 10,300 | |
Euro III | 6770 | 4990 | 10,300 | |
Euro IV | 1430 | 1250 | 2770 | |
Euro V | 1430 | 1250 | 2770 | |
Euro VI | 1.4 | 1.2 | 2.8 | |
Rigid and Articulated > 14 t | ||||
Euro I | 15,264 | 11,102 | 19,584 | |
Euro II | 10,600 | 7710 | 13,600 | |
Euro III | 10,600 | 7710 | 13,600 | |
Euro IV | 2240 | 1930 | 3670 | |
Euro V | 2240 | 1930 | 3670 | |
Euro VI | 2.2 | 1.9 | 3.7 | |
SPN | Heavy-Duty Vehicles | |||
Rigid < 7.5 t | ||||
Euro I | 3170 | 1528 | 1913 | |
Euro II | 2210 | 1060 | 1340 | |
Euro III | 2210 | 1060 | 1340 | |
Euro IV | 467 | 266 | 360 | |
Euro V | 467 | 266 | 360 | |
Euro VI | 0.5 | 0.3 | 0.4 | |
Rigid 7.5–14 t | ||||
Euro I | 6727 | 2803 | 2818 | |
Euro II | 4700 | 1950 | 1970 | |
Euro III | 4700 | 1950 | 1970 | |
Euro IV | 992 | 489 | 530 | |
Euro V | 992 | 489 | 530 | |
Euro VI | 1.0 | 0.5 | 0.5 | |
Rigid and articulated > 14 t | ||||
Euro I | 10,532 | 4330 | 3720 | |
Euro II | 7350 | 3010 | 2610 | |
Euro III | 7350 | 3010 | 2610 | |
Euro IV | 1550 | 755 | 702 | |
Euro V | 1550 | 755 | 702 | |
Euro VI | 1.6 | 0.8 | 0.7 |
Vehicle Type | Fuel Type | Emission Factors (p/km) | Reference |
---|---|---|---|
HDV, Euro V | Diesel with DPF | 2 × 1013 | [34] |
HDV, Euro VI | Diesel with DPF | 6 × 1010 | |
LDV | Diesel with DPF | 8 × 1011 | |
Car PFI | Gasoline with TWC | 1 × 1012 | |
Car GDI | Gasoline with TWC | 8 × 1011–8 × 1012 | |
Buses | Diesel | 7.06 × 1014 | [51] |
Car | Diesel | 6.08 × 1014 | |
Car | Petrol | 1.57 × 1014 | |
HDV | Diesel | 1.1–4.9 × 1014 | [53] |
HDV | Diesel | 0.5–7.4 × 1014 | |
HDV | Diesel | 1.00 × 1016 | |
HDV | Diesel with DPF | 1.4 × 1013 | |
Mixed vehicle fleet | 1.5%HDV | 5.9 × 1014–3.3 × 1014 | [52] |
LDV | Gasoline | 1.93 × 1014 | |
LDV | Gasoline | 4.29 × 1013 | |
LDV | Gasoline | 3.52 × 1013 | |
LDV | Gasoline | 1.00 × 1013 | |
LDV | Diesel | 5.91 × 1014 | |
LDV | Diesel | 1.53 × 1014 | |
LDV | Diesel | 3.33 × 1014 | |
LDV | Diesel | 9.64 × 1013 | |
Car Euro 2 | Diesel | 4.380 × 1014 | [63] |
Car Euro 3 | Diesel | 2.747 × 1014 | [64] |
Car Euro 4 | Diesel | 2.327 × 1014 | [65] |
Euro3 + DPF | Diesel | 3.5 × 1011 | [63] |
Euro4 + DPF | Diesel | 2.2 × 1012 | [65] |
Euro 5 | Diesel | 1.7 × 1011 | [66] |
Euro3, DI | Gasoline | 2.97 × 1013 | [63] |
PFI Euro 1 | Gasoline | 1.88 × 1013 | [67] |
PFI Euro 3 | Gasoline | 2.5 × 1011 | [68] |
PFI Euro 4 | Gasoline | 1.64 × 1012 | [65] |
PFI Euro 5 | Gasoline | 5.7 × 1011 | [69] |
DI Euro 3 | Gasoline | 7.8 × 1012 | [70] |
DI Euro 4 | Gasoline | 5.9 × 1012 | |
DI Euro 5 | Gasoline | 3.7 × 1011 | |
Car Euro 2 | Biodiesel | 1.3 × 1014 | [71] |
Car Euro 2 B50 | Biodiesel | 1.95 × 1014 | |
Car Euro 2 B100 | Biodiesel | 4.45 × 1014 | |
Car Euro 3 | Biodiesel | 1.20 × 1014 | [72] |
Car Euro 3 B10 | Biodiesel | 9.58 × 1013 | |
Car Euro 3 | Biodiesel | 3.32 × 1013 | [73] |
Car Euro 3 | Biodiesel | 2.75 × 1013 | |
Car Euro 2 | Biodiesel | 1.64 × 1014 | [71] |
Car Euro 2 B50 | Biodiesel | 1.82 × 1014 | |
Car Euro 2 B100 | Biodiesel | 1.76 × 1014 | |
Car Euro 3 | Biodiesel | 1.60 × 1014 | [72] |
Car Euro 3 B10 | Biodiesel | 1.32 × 1014 | |
Car Euro 3 | Biodiesel | 2.52 × 1013 | [73] |
Car Euro 3 | Biodiesel | 2.21 × 1013 | |
Car Euro 4 | CNG | 1.8 × 1011 | [74] |
Car Euro 4 | CNG | 4.10 × 1013 | |
Car EU5 | LPG | 2.00 × 1010 | [75] |
Car EU4 | LPG | 7.00 × 1010 | [76] |
Car EU4 + E10 | Bioethanol | 6.00 × 1010 | [77] |
Car EU4 + E10 | Bioethanol | 1.8 × 1011 | |
Car EU4 + E > 10 | Bioethanol | 5.10 × 1010 | |
Car EU4 + E > 10 | Bioethanol | 1.00 × 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, S.; Chen, H.; Crowther, R. Modelling of Nanoparticle Number Emissions from Road Transport—An Urban Scale Emission Inventory. Atmosphere 2025, 16, 417. https://doi.org/10.3390/atmos16040417
Munir S, Chen H, Crowther R. Modelling of Nanoparticle Number Emissions from Road Transport—An Urban Scale Emission Inventory. Atmosphere. 2025; 16(4):417. https://doi.org/10.3390/atmos16040417
Chicago/Turabian StyleMunir, Said, Haibo Chen, and Richard Crowther. 2025. "Modelling of Nanoparticle Number Emissions from Road Transport—An Urban Scale Emission Inventory" Atmosphere 16, no. 4: 417. https://doi.org/10.3390/atmos16040417
APA StyleMunir, S., Chen, H., & Crowther, R. (2025). Modelling of Nanoparticle Number Emissions from Road Transport—An Urban Scale Emission Inventory. Atmosphere, 16(4), 417. https://doi.org/10.3390/atmos16040417