Mapping Research on Government Actions and Carbon Emissions: A Bibliometric Science-Mapping (2010–2025)
Abstract
1. Introduction
2. Materials and Methods
2.1. Framework
2.2. Data Sources and Search Strategies
2.3. Screening Tools and Quality Assurance
2.4. Analysis Tools and Parameter Settings
2.5. Citing-Source Profiling and Citation-Context Coding
2.6. Methodology of Bibliometric Science-Mapping
3. Results
3.1. Overall Situation Analysis
3.1.1. Spatial-Tempo Analysis of Publications and Policies from Different Countries
3.1.2. Analysis of Journals and Highly Cited Papers
| Literature | Title | Corresponding/Last Author | Source (Journal) | Year | NCs | Total Citations | Average Annual Citations |
|---|---|---|---|---|---|---|---|
| 1 | Geographies of energy transition: Space, place and the low-carbon economy [41] | Bridge, G | Energy Policy | 2013 | 12.26 | 965 | 74.23 |
| 2 | Institutional quality, green innovation and energy efficiency [42] | Sun, HP | Energy Policy | 2019 | 11.82 | 573 | 81.86 |
| 3 | Lifetime of carbon capture and storage as a climate-change mitigation technology [43] | Szulczewski, ML | PNAS | 2012 | 7.97 | 401 | 28.64 |
| 4 | Global low-carbon energy transition in the post-COVID-19 era [44] | Tian, JF | Applied Energy | 2022 | 14.38 | 381 | 95.25 |
| 5 | The impacts of globalization, financial development, government expenditures, and institutional quality on CO2 emissions [45] | Le, HP | Environmental Science and Pollution Research | 2020 | 8.35 | 369 | 61.50 |
| 6 | Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China [46] | Chen, X | Energy Policy | 2021 | 9.21 | 360 | 72.00 |
| 7 | Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax [47] | Yang, HX | Omega-International Journal of Management Science | 2018 | 7.00 | 341 | 42.63 |
| 8 | The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries [48] | Anwar, A | Renewable Energy | 2021 | 8.62 | 337 | 67.40 |
| 9 | How does urbanization affect carbon emission efficiency? Evidence from China [49] | Sun, W | Journal of Cleaner Production | 2020 | 7.56 | 334 | 55.67 |
| 10 | Green credit financing versus trade credit financing in a supply chain with carbon emission limits [50] | An, SM | European Journal of Operational Research | 2021 | 8.52 | 333 | 66.60 |
| 11 | Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan [51] | Ali, R | Sustainable Cities and Society | 2019 | 6.68 | 324 | 46.29 |
| 12 | Role of renewable and non-renewable energy consumption on EKC: Evidence from Pakistan [52] | Danish | Journal of Cleaner Production | 2017 | 5.67 | 323 | 35.89 |
| 13 | Using evolutionary game theory to study governments and manufacturers’ strategies under carbon taxes and subsidies [53] | Chen, WT | Journal of Cleaner Production | 2018 | 6.46 | 315 | 39.38 |
| 14 | Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries [54] | Wang, WZ | Energy Policy | 2021 | 7.65 | 299 | 59.80 |
| 15 | Can China’s policy of carbon emission trading promote carbon emission reduction? [55] | Xuan, D | Journal of Cleaner Production | 2020 | 6.58 | 291 | 48.50 |
3.2. Collaborative Network of Research Forces
3.2.1. Author Collaboration Network Analysis
3.2.2. Institution Cooperation Network Analysis
3.2.3. Literature-Informed Implications for Policy Impacts (Narrative Synthesis)
3.3. Term Network Analysis
3.4. Limitations
4. Current Challenges and Future Research Projections
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Igielska, B. Climate change mitigation: Overview of the environmental policy instruments. Int. J. Green Econ. 2008, 2, 210–225. [Google Scholar] [CrossRef]
- Xu, B.; Sun, Q.; Wennersten, R.; Brandt, N. An analysis of Chinese policy instruments for climate change mitigation. Int. J. Clim. Change Strateg. Manag. 2010, 2, 380–392. [Google Scholar] [CrossRef]
- Geden, O. The Paris Agreement and the inherent inconsistency of climate policymaking. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 790–797. [Google Scholar] [CrossRef]
- Åhman, M.; Nilsson, L.J.; Johansson, B. Global climate policy and deep decarbonization of energy-intensive industries. Clim. Policy 2017, 17, 634–649. [Google Scholar] [CrossRef]
- Khurshid, A.; Rauf, A.; Qayyum, S.; Calin, A.C.; Duan, W. Green innovation and carbon emissions: The role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—Evidence from Central-Eastern Europe. Environ. Dev. Sustain. 2023, 25, 8777–8798. [Google Scholar] [CrossRef]
- Nicolini, M.; Tavoni, M. Are renewable energy subsidies effective? Evidence from Europe. Renew. Sustain. Energy Rev. 2017, 74, 412–423. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Viguié, V.; Hallegatte, S. Trade-offs and synergies in urban climate policies. Nat. Clim. Change 2012, 2, 334–337. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Lu, H. Carbon dioxide emissions, economic growth, and selected types of fossil energy consumption in China: Empirical evidence from 1965 to 2015. Sustainability 2017, 9, 697. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Pan, L.; Li, Z. Scenario analysis of carbon emission trajectory on energy system transition model: A case study of Sichuan Province. Energy Strateg. Rev. 2023, 45, 101015. [Google Scholar] [CrossRef]
- Xu, H.; Pan, X.; Li, J.; Feng, S.; Guo, S. Comparing the impacts of carbon tax and carbon emission trading, which regulation is more effective? J. Environ. Manag. 2023, 330, 117156. [Google Scholar] [CrossRef]
- Shen, X.; Gatto, P.; Pagliacci, F. Unravelling the role of institutions in market-based instruments: A systematic review on forest carbon mechanisms. Forests 2023, 14, 136. [Google Scholar] [CrossRef]
- Sajid, S.; Abas, A.; Hassan, S.S.U.; Arooj, M. The interaction of institutional quality, economic complexity, and carbon dioxide emission: An empirical examination for China and Pakistan. Sustain. Futures 2024, 7, 100222. [Google Scholar] [CrossRef]
- Lee, H. The Political Economy of Energy Taxes: An Assessment of the Opportunities and Obstacles. Pace Envtl. L. Rev. 1994, 12, 77. [Google Scholar] [CrossRef]
- Ellerman, A.D.; Joskow, P.L. The European Union’s Emissions Trading System in Perspective; Pew Center on Global Climate Change: Arlington, VA, USA, 2008. [Google Scholar]
- Liu, L.; Chen, C.; Zhao, Y.; Zhao, E. China’s carbon-emissions trading: Overview, challenges and future. Renew. Sustain. Energy Rev. 2015, 49, 254–266. [Google Scholar] [CrossRef]
- Kumar, S.; Rathore, K. Renewable energy for sustainable development goal of clean and affordable energy. Int. J. Mater. Manuf. Sustain. Technol. 2023, 2, 1–15. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ahmed, M.Y.; Owusu, P.A. Advancing COP26 climate goals: Leveraging energy innovation, governance readiness, and socio-economic factors for enhanced climate resilience and sustainability. J. Clean. Prod. 2023, 431, 139757. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.; Zhang, N. Carbon emissions and environmental management based on Big Data and Streaming Data: A bibliometric analysis. Sci. Total Environ. 2020, 733, 138984. [Google Scholar] [CrossRef]
- Zhong, S.; Chen, R.; Song, F.; Xu, Y. Knowledge mapping of carbon footprint research in a LCA perspective: A visual analysis using CiteSpace. Processes 2019, 7, 818. [Google Scholar] [CrossRef]
- Steinebach, Y.; Fernández-I-Marín, X.; Aschenbrenner, C. Who puts a price on carbon, why and how? A global empirical analysis of carbon pricing policies. Clim. Policy 2021, 21, 277–289. [Google Scholar] [CrossRef]
- Best, R.; Burke, P.J.; Jotzo, F. Carbon pricing efficacy: Cross-country evidence. Environ. Resour. Econ. 2020, 77, 69–94. [Google Scholar] [CrossRef]
- Bai, J.; Ru, H. Carbon emissions trading and environmental protection: International evidence. Manag. Sci. 2024, 70, 4593–4603. [Google Scholar] [CrossRef]
- Zelli, F. The fragmentation of the global climate governance architecture. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 255–270. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Strachan, N.; Dodds, P.E.; Pudjianto, D.; Strbac, G. Synergies and trade-offs between governance and costs in electricity system transition. Energy Policy 2015, 85, 170–181. [Google Scholar] [CrossRef]
- Adewumi, A.; Olu-Lawal, K.A.; Okoli, C.E.; Usman, F.O.; Usiagu, G.S. Sustainable energy solutions and climate change: A policy review of emerging trends and global responses. World J. Adv. Res. Rev. 2024, 21, 408–420. [Google Scholar]
- Ji, C.; Li, X.; Hu, Y.; Wang, X.; Tang, B. Research on carbon price in emissions trading scheme: A bibliometric analysis. Nat. Hazards 2019, 99, 1381–1396. [Google Scholar] [CrossRef]
- Einecker, R.; Kirby, A. Climate change: A bibliometric study of adaptation, mitigation and resilience. Sustainability 2020, 12, 6935. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Cooke, F.L. Low-carbon economy and policy implications: A systematic review and bibliometric analysis. Environ. Sci. Pollut. Res. 2022, 29, 65432–65451. [Google Scholar] [CrossRef]
- Zhang, L.; Ling, J.; Lin, M. Carbon neutrality: A comprehensive bibliometric analysis. Environ. Sci. Pollut. Res. 2023, 30, 45498–45514. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; García-Pintos, A.; Caballero, G.; Vázquez, X.H. The role of knowledge maps in sub-national climate change policymaking and governance. Clim. Policy 2022, 22, 273–284. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y. Government-led innovation and carbon emissions: Evidence from China. Environ. Dev. Sustain. 2024, 1–24. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W. Advances and future trends in research on carbon emissions reduction in China from the perspective of bibliometrics. PLoS ONE 2023, 18, e288661. [Google Scholar] [CrossRef] [PubMed]
- Huisingh, D.; Zhang, Z.; Moore, J.C.; Qiao, Q.; Li, Q. Recent advances in carbon emissions reduction: Policies, technologies, monitoring, assessment and modeling. J. Clean. Prod. 2015, 103, 1–12. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E. Big data and climate change. Big Data Cogn. Comput. 2019, 3, 12. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C.; Su, J. A bibliometrics-based research framework for exploring policy evolution: A case study of China’s information technology policies. Technol. Forecast. Soc. Change 2020, 157, 120116. [Google Scholar] [CrossRef]
- Schipper, E.L.F.; Dubash, N.K.; Mulugetta, Y. Climate change research and the search for solutions: Rethinking interdisciplinarity. Clim. Change 2021, 168, 18. [Google Scholar] [CrossRef]
- Liu, M.; Li, W.; Qiao, W.; Liang, L.; Wang, Z. Knowledge domain and emerging trends in HIV-MTB co-infection from 2017 to 2022: A scientometric analysis based on VOSviewer and CiteSpace. Front. Public Health 2023, 11, 1044426. [Google Scholar] [CrossRef]
- Iea. Policies Database. Available online: https://www.iea.org/policies (accessed on 25 June 2025).
- Yang, S.; Yang, D.; Shi, W.; Deng, C.; Chen, C.; Feng, S. Global evaluation of carbon neutrality and peak carbon dioxide emissions: Current challenges and future outlook. Environ. Sci. Pollut. Res. 2023, 30, 81725–81744. [Google Scholar] [CrossRef]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Szulczewski, M.L.; Macminn, C.W.; Herzog, H.J.; Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl. Acad. Sci. USA 2012, 109, 5185–5189. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Le, H.P.; Ozturk, I. The impacts of globalization, financial development, government expenditures, and institutional quality on CO2 emissions in the presence of environmental Kuznets curve. Environ. Sci. Pollut. Res. 2020, 27, 22680–22697. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Yang, H.; Chen, W. Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus cost-sharing. Omega-Int. J. Manag. Sci. 2018, 78, 179–191. [Google Scholar] [CrossRef]
- Anwar, A.; Siddique, M.; Dogan, E.; Sharif, A. The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression. Renew. Energy 2021, 164, 956–967. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C. How does urbanization affect carbon emission efficiency? Evidence from China. J. Clean. Prod. 2020, 272, 122828. [Google Scholar] [CrossRef]
- An, S.; Li, B.; Song, D.; Chen, X. Green credit financing versus trade credit financing in a supply chain with carbon emission limits. Eur. J. Oper. Res. 2021, 292, 125–142. [Google Scholar] [CrossRef]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sust. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.; Wang, Z. Role of renewable energy and non-renewable energy consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar] [CrossRef]
- Chen, W.; Hu, Z. Using evolutionary game theory to study governments and manufacturers’ behavioral strategies under various carbon taxes and subsidies. J. Clean. Prod. 2018, 201, 123–141. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Liao, H.; Wei, Y. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Udara Willhelm Abeydeera, L.H.; Wadu Mesthrige, J.; Samarasinghalage, T.I. Global research on carbon emissions: A scientometric review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef]
- Lu, P.; Li, Z.; Wen, Y.; Liu, J.; Yuan, Y.; Niu, R.; Wang, Y.; Han, L. Fresh insights for sustainable development: Collaborative governance of carbon emissions based on social network analysis. Sustain. Dev. 2023, 31, 1873–1887. [Google Scholar] [CrossRef]
- Yin, C.; Gu, H.; Zhang, S. Measuring technological collaborations on carbon capture and storage based on patents: A social network analysis approach. J. Clean. Prod. 2020, 274, 122867. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, J.; Song, Y.; Fan, X.; Zhu, Y.; Zhang, C. Can industry-university-research collaborative innovation efficiency reduce carbon emissions? Technol. Forecast. Soc. Change 2020, 157, 120094. [Google Scholar] [CrossRef]
- De Pinto, A.; Loboguerrero, A.M.; Londoño, M.; Ovalle Sanabria, K.; Suarez Castaño, R. Informing climate policy through institutional collaboration: Reflections on the preparation of Colombia’s nationally determined contribution. Clim. Policy 2018, 18, 612–626. [Google Scholar] [CrossRef]
- Sun, Y.; Dai, Y.; Jin, X. Assessing the Impact of Democratic Institutions and Administrative Capacity on National Carbon Emissions Reduction. J. Public Aff. 2025, 25, e70051. [Google Scholar] [CrossRef]
- Wang, D.; Huangfu, Y.; Dong, Z.; Dong, Y. Research hotspots and evolution trends of carbon neutrality—Visual analysis of bibliometrics based on CiteSpace. Sustainability 2022, 14, 1078. [Google Scholar] [CrossRef]
- Li, X.; Hu, S.; Jiang, L.; Han, B.; Li, J.; Wei, X. Bibliometric analysis of the research (2000–2020) on land-use carbon emissions based on CiteSpace. Land 2023, 12, 165. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, Q. Recent progress of cooperation on climate mitigation: A bibliometric analysis. J. Clean. Prod. 2020, 277, 123495. [Google Scholar] [CrossRef]
- Liu, B.; Lu, C.; Yi, C. Research on green and low-carbon rural development in China: A scientometric analysis using citespace (1979–2021). Sustainability 2023, 15, 1907. [Google Scholar] [CrossRef]
- Yuan, K.; Ma, L.; Wang, R. Research Hotspots and Evolution Trends of Port Emission Reduction: A Bibliometric Analysis Based on CiteSpace. Sustainability 2025, 17, 1474. [Google Scholar] [CrossRef]
- Guo, Q.; Yao, P. Bibliometric review of carbon peak with CiteSpace: Evolution, trends, and framework. Environ. Sci. Pollut. Res. 2024, 31, 13592–13608. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Cui, Q.; Yu, S.; Wang, Y.; Hu, X.; Dong, B. Bibliometric and Visual Analyses of Low Carbon Technology Innovations: Developments, Hotspots, and Trends. Pol. J. Environ. Stud. 2025, 34, 4541–4556. [Google Scholar] [CrossRef]










| Set | Search Queries |
|---|---|
| Search terms | TS = ((government NEAR/3 (action OR policy OR regulation OR intervention OR instrument OR “public governance”)) AND (“carbon emission” OR “CO2 emission” OR “carbon neutrality” OR “carbon pricing” OR “carbon tax” OR “emissions trading” OR ETS OR “cap-and-trade” OR “green technology” OR decarbonization)) NOT (“blue carbon” OR ocean OR wetland OR mangrove) |
| Citation indexes | Science Citation Index Expanded (SCI-EXPANDED); Social Sciences Citation Index (SSCI); Emerging Sources Citation Index (ESCI) |
| Document type | Article OR Review |
| Time span | 2010–25 June 2025 (2025 is a partial year; reported separately) |
| Initial records | 2494 |
| Final sample | 2212 (after de-duplication and exclusions) |
| Exclusions | Corrections, Editorial Materials, Book Chapters, Data Papers, Retracted Publications |
| Rank | Journals | Publications | NCs | Total Citations | Average Annual Citations | IF (2025) | AY | JCR Quartile (SSCI/SCIE, 2025) | 5-Year IF (2025) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Sustainability | 226 | 0.4064 | 2761 | 2.69 | 3.3 | 2021.4 | Q2 | 3.6 |
| 2 | Journal of cleaner production | 217 | 324.2 | 11,082 | 9.23 | 10.0 | 2020.4 | Q1 | 10.7 |
| 3 | Energy policy | 173 | 1.4392 | 10,976 | 7.8 | 9.2 | 2017.8 | Q1 | 8.8 |
| 4 | Environmental science and pollution research | 129 | 1.1315 | 4060 | 8.2 | 5.8 | 2022.1 | Q2 | 5.8 |
| 5 | Journal of environmental management | 72 | 1.8582 | 2315 | 9.57 | 8.4 | 2022.6 | Q1 | 8.6 |
| 6 | Energies | 66 | 0.3659 | 701 | 2.41 | 3.2 | 2021.5 | Q3 | 3.1 |
| 7 | Applied energy | 59 | 1.7385 | 3773 | 10.12 | 11 | 2019.6 | Q1 | 11.2 |
| 8 | International journal of environmental research and public health | 59 | 0.5957 | 1205 | 4.17 | 3.5 | 2021.1 | Q2 | 3.5 |
| 9 | Environment development and sustainability | 56 | 0.9515 | 473 | 3.91 | 4.2 | 2023.8 | Q2 | 4.5 |
| 10 | Frontiers in environmental science | 52 | 0.4277 | 533 | 3.06 | 3.7 | 2022.6 | Q2 | 4.1 |
| 11 | Energy | 46 | 1.4702 | 1766 | 7.35 | 9.4 | 2020.7 | Q1 | 8.8 |
| 12 | Computers and industrial engineering | 36 | 1.1645 | 1265 | 7.76 | 6.5 | 2021.4 | Q1 | 7.0 |
| 13 | Science of the total environment | 30 | 1.7024 | 1529 | 9.27 | 8 | 2020.5 | Q1 | 8.7 |
| 14 | Heliyon | 26 | 0.7916 | 233 | 3.77 | 3.6 | 2023.6 | Q2 | 3.9 |
| 15 | Renewable energy | 23 | 2.2413 | 1350 | 11.53 | 9.1 | 2020.9 | Q1 | 8.3 |
| Rank | Authors | Publications | Country/Region (by Corresponding Author Affiliation) | FY | AY | Total Citations | NCs |
|---|---|---|---|---|---|---|---|
| 1 | Lin, Boqiang | 23 | China | 2013 | 2019.6 | 1693 | 41.9678 |
| 2 | Geng, Yong | 9 | China | 2012 | 2019.2 | 516 | 12.0385 |
| 3 | Kirikkaleli, Dervis | 8 | Cyprus | 2020 | 2022.6 | 401 | 14.8958 |
| 4 | Wang, Qunwei | 8 | China | 2016 | 2019.4 | 484 | 10.2886 |
| 5 | Zhou, Dequn | 8 | China | 2016 | 2020.5 | 301 | 7.6622 |
| 6 | Wang, Chuanxu | 8 | China | 2017 | 2020.8 | 509 | 12.3889 |
| 7 | Du, Qiangqiang | 8 | China | 2018 | 2022.4 | 233 | 13.0108 |
| 8 | Long, Ruyin | 7 | China | 2018 | 2019.4 | 183 | 3.9042 |
| 9 | Ullah, Irfan | 6 | Pakistan | 2019 | 2021.7 | 157 | 5.7376 |
| 10 | Lee, Chien-Chiang | 6 | China | 2022 | 2023.0 | 229 | 13.8207 |
| Rank | Country | Publications | NCs | Total Citations | FY | AY | TLS |
|---|---|---|---|---|---|---|---|
| 1 | China | 1465 | 1522.9304 | 42,318 | 2010 | 2021.6 | 1772 |
| 2 | UK | 213 | 233.0311 | 9049 | 2010 | 2019.1 | 262 |
| 3 | USA | 210 | 218.0373 | 7621 | 2010 | 2018.8 | 525 |
| 4 | Australia | 132 | 146.5078 | 5615 | 2010 | 2018.8 | 311 |
| 5 | Canada | 75 | 61.3958 | 2051 | 2010 | 2020.3 | 242 |
| 6 | India | 72 | 75.2406 | 1976 | 2013 | 2021.5 | 151 |
| 7 | South Korea | 67 | 60.2349 | 1621 | 2012 | 2020.5 | 99 |
| 8 | Pakistan | 65 | 123.3628 | 3425 | 2019 | 2022.1 | 172 |
| 9 | Turkey | 51 | 59.2950 | 2339 | 2022 | 2020.6 | 108 |
| 10 | Japan | 50 | 47.6588 | 1503 | 2010 | 2018.4 | 86 |
| Keywords | Year | Strength | Begin | End | 2010–2025 |
|---|---|---|---|---|---|
| energy policy | 2010 | 5 | 2010 | 2019 | ![]() |
| electricity generation | 2011 | 4.59 | 2011 | 2019 | |
| management | 2011 | 4.16 | 2011 | 2013 | |
| choice | 2011 | 3.76 | 2011 | 2018 | |
| cost | 2011 | 3.74 | 2011 | 2018 | |
| model | 2011 | 3.67 | 2011 | 2014 | |
| capture | 2011 | 3.55 | 2011 | 2016 | |
| policy | 2010 | 5.84 | 2013 | 2015 | |
| uncertainty | 2013 | 4.77 | 2013 | 2020 | |
| impacts | 2013 | 4.09 | 2013 | 2016 | |
| generation | 2014 | 3.8 | 2014 | 2017 | |
| energy efficiency | 2010 | 4.02 | 2015 | 2017 | |
| mitigation | 2015 | 3.69 | 2015 | 2019 | |
| greenhouse gas emissions | 2011 | 4.55 | 2017 | 2021 | |
| products | 2018 | 4.74 | 2018 | 2020 | |
| supply chain coordination | 2018 | 4.15 | 2018 | 2020 | |
| time series | 2019 | 4.62 | 2019 | 2021 | |
| electric vehicles | 2019 | 4.16 | 2019 | 2021 | |
| electricity consumption | 2019 | 3.52 | 2019 | 2022 | |
| energy transition | 2019 | 3.5 | 2019 | 2022 | |
| preferences | 2020 | 3.6 | 2020 | 2021 | |
| carbon neutrality | 2022 | 4.99 | 2022 | 2023 | |
| research and development | 2020 | 4.26 | 2022 | 2023 | |
| hypothesis | 2022 | 4.12 | 2022 | 2023 | |
| tests | 2023 | 4.18 | 2023 | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, M.; Chen, L. Mapping Research on Government Actions and Carbon Emissions: A Bibliometric Science-Mapping (2010–2025). Atmosphere 2025, 16, 1348. https://doi.org/10.3390/atmos16121348
Hong M, Chen L. Mapping Research on Government Actions and Carbon Emissions: A Bibliometric Science-Mapping (2010–2025). Atmosphere. 2025; 16(12):1348. https://doi.org/10.3390/atmos16121348
Chicago/Turabian StyleHong, Meiling, and Lei Chen. 2025. "Mapping Research on Government Actions and Carbon Emissions: A Bibliometric Science-Mapping (2010–2025)" Atmosphere 16, no. 12: 1348. https://doi.org/10.3390/atmos16121348
APA StyleHong, M., & Chen, L. (2025). Mapping Research on Government Actions and Carbon Emissions: A Bibliometric Science-Mapping (2010–2025). Atmosphere, 16(12), 1348. https://doi.org/10.3390/atmos16121348


