Global Ionosphere Total Electron Content Prediction Based on Bidirectional Denoising Wavelet Transform Convolution
Abstract
1. Introduction
2. Data and Data Preprocessing
3. Methodology
3.1. Denoising Wavelet Transform Convolutional Long Short-Term Memory (DWTConvLSTM)
3.2. Bidirectional Denoising Wavelet Transform Convolutional Long Short-Term Memory Network (BiDWTConvLSTM)
3.3. Convolutional Additive Self-Attention (CASA)
3.4. Overall Structure of the Proposed TEC Spatiotemporal Prediction Model
3.5. Evaluation Metrics
4. Experiment and Analysis
4.1. Ablation Experiment
4.2. Comparison with Other Models
4.2.1. Overall Quantitative Comparison
4.2.2. Comparison from the Spatial Perspective
4.2.3. Comparison from the Temporal Perspective
4.2.4. Visually Comparison
4.2.5. Comparison of Geomagnetic Storm Periods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, S.; Meng, X.; Dardanelli, G.; Zhu, Y. Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress. Remote Sens. 2024, 16, 4800. [Google Scholar] [CrossRef]
- Ge, H.; Li, B.; Jia, S.; Nie, L.; Wu, T.; Yang, Z.; Shang, J.; Zheng, Y.; Ge, M. LEO Enhanced Global Navigation Satellite System (LeGNSS): Progress, Opportunities, and Challenges. Geo-Spat. Inf. Sci. 2022, 25, 1–13. [Google Scholar] [CrossRef]
- Joardar, S.; Siddique, T.A.; Alam, S.; Hossam-E-Haider, M. Analyses of Different Types of Errors for Better Precision in GNSS. In Proceedings of the 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 22–24 September 2016; pp. 1–6. [Google Scholar]
- Chen, L.; Guo, H. A Precise Regional Ionospheric Model Was Established Based on GNSS Technique. In Proceedings of the China Satellite Navigation Conference (CSNC) 2018 Proceedings, Harbin, China, 23–25 May 2018; Sun, J., Yang, C., Guo, S., Eds.; Springer: Singapore, 2018; pp. 649–659. [Google Scholar]
- Neubert, T.; Rycroft, M.; Farges, T.; Blanc, E.; Chanrion, O.; Arnone, E.; Odzimek, A.; Arnold, N.; Enell, C.-F.; Turunen, E.; et al. Recent Results from Studies of Electric Discharges in the Mesosphere. Surv. Geophys. 2008, 29, 71–137. [Google Scholar] [CrossRef]
- Molina, C.; Fernández-Niño, E.; Camps, A. Modern Ionospheric Ray Tracer for Earth Observation Satellite Missions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 13244–13260. [Google Scholar] [CrossRef]
- Tang, J.; Ding, M.; Yang, D.; Fan, C.; Khonsari, N.; Mao, W. Different Data-Driven Prediction of Global Ionospheric TEC Using Deep Learning Methods. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103889. [Google Scholar] [CrossRef]
- Scharroo, R.; Smith, W.H.F. A Global Positioning System–Based Climatology for the Total Electron Content in the Ionosphere. J. Geophys. Res. 2010, 115, 2009JA014719. [Google Scholar] [CrossRef]
- Reddy, C.D. Seismo-Ionospheric Anomalies and Implications from Recent GNSS Observations in India and South-East Asia. Geod. Geodyn. 2016, 7, 11–18. [Google Scholar] [CrossRef]
- Bilitza, D.; McKinnell, L.-A.; Reinisch, B.; Fuller-Rowell, T. The International Reference Ionosphere Today and in the Future. J. Geod. 2011, 85, 909–920. [Google Scholar] [CrossRef]
- Kaselimi, M.; Doulamis, N.; Voulodimos, A.; Doulamis, A.; Delikaraoglou, D. Spatio-Temporal Ionospheric TEC Prediction Using a Deep CNN-GRU Model on GNSS Measurements. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 8317–8320. [Google Scholar]
- Calabia, A.; Jin, S. New Modes and Mechanisms of Long-Term Ionospheric TEC Variations From Global Ionosphere Maps. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027703. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, Y.; Cai, J.; Liu, H.; Le, H.; Xiao, J.; Ma, Y. Spatiotemporal Prediction of Ionospheric TEC Based on Denoising Wavelet Transform Convolution. GPS Solut. 2025, 29, 131. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From Ionospheric Climate to Real-time Weather Predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Themens, D.R.; Haralambous, H.; Nava, B.; Coïsson, P. On the Analytical Description of the Topside Ionosphere by NeQuick: Modeling the Scale Height Through COSMIC/FORMOSAT-3 Selected Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1867–1878. [Google Scholar] [CrossRef]
- Bidaine, B.; Warnant, R. Assessment of the NeQuick Model at Mid-Latitudes Using GNSS TEC and Ionosonde Data. Adv. Space Res. 2010, 45, 1122–1128. [Google Scholar] [CrossRef]
- Wang, N.; Yuan, Y.; Li, Z.; Huo, X. Improvement of Klobuchar Model for GNSS Single-Frequency Ionospheric Delay Corrections. Adv. Space Res. 2016, 57, 1555–1569. [Google Scholar] [CrossRef]
- Ho, C.M.; Wilson, B.D.; Mannucci, A.J.; Lindqwister, U.J.; Yuan, D.N. A Comparative Study of Ionospheric Total Electron Content Measurements Using Global Ionospheric Maps of GPS, TO PEX Radar, and the Bent Model. Radio. Sci. 1997, 32, 1499–1512. [Google Scholar] [CrossRef]
- Meza, A.M.; Brunini, C.A.; Bosch, W.; VanZele, M.A. Comparing Vertical Total Electron Content from GPS, Bent and IRI Models with TOPEX-Poseidon. Adv. Space Res. 2002, 30, 401–406. [Google Scholar] [CrossRef]
- Li, X.; Guo, D. Modeling and Prediction of Ionospheric Total Electron Content by Time Series Analysis. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; Volume 2, pp. 375–379. [Google Scholar]
- Wang, C.; Xue, K.; Wang, Z.; Shi, C.; Fan, L.; Zhang, T. Global Ionospheric Maps Forecasting Based on an Adaptive Autoregressive Modeling of Grid Point VTEC Values. Astrophys. Space Sci. 2020, 365, 48. [Google Scholar] [CrossRef]
- Vankadara, R.K.; Sasmal, S.; Maurya, A.K.; Panda, S.K. An Autoregressive Integrated Moving Average (ARIMA) Based Forecasting of Ionospheric Total Electron Content at a Low Latitude Indian Location. In Proceedings of the 2022 URSI Regional Conference on Radio Science (USRI-RCRS), Indore, India, 1–4 December 2022; pp. 1–4. [Google Scholar]
- Sivavaraprasad, G.; Venkata Ratnam, D. Performance Evaluation of Ionospheric Time Delay Forecasting Models Using GPS Observations at a Low-Latitude Station. Adv. Space Res. 2017, 60, 475–490. [Google Scholar] [CrossRef]
- Tang, R.; Zeng, F.; Chen, Z.; Wang, J.-S.; Huang, C.-M.; Wu, Z. The Comparison of Predicting Storm-Time Ionospheric TEC by Three Methods: ARIMA, LSTM, and Seq2Seq. Atmosphere 2020, 11, 316. [Google Scholar] [CrossRef]
- Kiruthiga, S.; Mythili, S. Prediction of Ionospheric TEC during the Occurrence of Earthquakes in Indonesia Using ARMA and CoK Models. Front. Astron. Space Sci. 2024, 11, 1415323. [Google Scholar] [CrossRef]
- Lei, D.; Liu, H.; Le, H.; Huang, J.; Yuan, J.; Li, L.; Wang, Y. Ionospheric TEC Prediction Base on Attentional BiGRU. Atmosphere 2022, 13, 1039. [Google Scholar] [CrossRef]
- Ghaffari Razin, M.R.; Moradi, A.R.; Inyurt, S. Spatio-Temporal Analysis of TEC during Solar Activity Periods Using Support Vector Machine. GPS Solut. 2021, 25, 121. [Google Scholar] [CrossRef]
- Razin, M.R.G.; Voosoghi, B.; Mohammadzadeh, A. Efficiency of Artificial Neural Networks in Map of Total Electron Content over Iran. Acta Geod. Geophys. 2016, 51, 541–555. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhen, W.; Chen, L.; Ou, M.; Yu, X.; Chen, L. foF2 Estimation with TEC Observation over China Based on Random Forest Method. In Proceedings of the 2022 International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 31 October–3 November 20222; pp. 489–490. [Google Scholar]
- Han, Y.; Wang, L.; Fu, W.; Zhou, H.; Li, T.; Chen, R. Machine Learning-Based Short-Term GPS TEC Forecasting During High Solar Activity and Magnetic Storm Periods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 115–126. [Google Scholar] [CrossRef]
- Zhukov, A.V.; Yasyukevich, Y.V.; Bykov, A.E. GIMLi: Global Ionospheric Total Electron Content Model Based on Machine Learning. GPS Solut. 2021, 25, 19. [Google Scholar] [CrossRef]
- Monte-Moreno, E.; Yang, H.; Hernández-Pajares, M. Forecast of the Global TEC by Nearest Neighbour Technique. Remote Sens. 2022, 14, 1361. [Google Scholar] [CrossRef]
- Wen, Z.; Li, S.; Li, L.; Wu, B.; Fu, J. Ionospheric TEC Prediction Using Long Short-Term Memory Deep Learning Network. Astrophys. Space Sci. 2021, 366, 3. [Google Scholar] [CrossRef]
- Xiong, P.; Long, C.; Zhou, H.; Zhang, X.; Shen, X. GNSS TEC-Based Earthquake Ionospheric Perturbation Detection Using a Novel Deep Learning Framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4248–4263. [Google Scholar] [CrossRef]
- Ren, X.; Yang, P.; Liu, H.; Chen, J.; Liu, W. Deep Learning for Global Ionospheric TEC Forecasting: Different Approaches and Validation. Space Weather 2022, 20, e2021SW003011. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, K.; Wu, S.; Shi, J.; Hu, A.; Wu, H.; Li, Y. An Investigation of Ionospheric TEC Prediction Maps Over China Using Bidirectional Long Short-Term Memory Method. Space Weather 2022, 20, e2022SW003103. [Google Scholar] [CrossRef]
- Ruwali, A.; Kumar, A.J.S.; Prakash, K.B.; Sivavaraprasad, G.; Ratnam, D.V. Implementation of Hybrid Deep Learning Model (LSTM-CNN) for Ionospheric TEC Forecasting Using GPS Data. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1004–1008. [Google Scholar] [CrossRef]
- Tian, H.; Yuan, Z.; Yu, X. Modeling Earth’s Global Electron Density by Using LSTM-Attention Neural Networks. Space Weather 2025, 23, e2024SW004193. [Google Scholar] [CrossRef]
- Han, C.; Guo, Y.; Ou, M.; Wang, D.; Song, C.; Jin, R.; Zhen, W.; Bai, P.; Chong, X.; Wang, X. A Lightweight Prediction Model for Global Ionospheric Total Electron Content Based on Attention-BiLSTM. Adv. Space Res. 2025, 75, 3614–3629. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Yuan, J.; Li, L.; Zhang, L. TEC Prediction Based on Att-CNN-BiLSTM. IEEE Access 2024, 12, 68471–68484. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, B.; Ren, Z.; Wang, Y.; Xiong, B. Deep Learning-Based Prediction of Global Ionospheric TEC During Storm Periods: Mixed CNN-BiLSTM Method. Space Weather 2024, 22, e2024SW003877. [Google Scholar] [CrossRef]
- Kong, Q.; Huang, Y.; Mi, X.; Bai, Q.; Han, J.; Chen, Y.; Wang, S. A New High-Precision Short-Term Ionospheric TEC Prediction Model Based on the DBO-BiLSTM Algorithm: A Case Study of Europe. Adv. Space Res. 2025, 75, 7726–7738. [Google Scholar] [CrossRef]
- Tang, J.; Liu, C.; Yang, D.; Ding, M. Prediction of Ionospheric TEC Using a GRU Mechanism Method. Adv. Space Res. 2024, 74, 260–270. [Google Scholar] [CrossRef]
- Yang, T.Y.; Lu, J.Y.; Yang, Y.Y.; Hao, Y.H.; Wang, M.; Li, J.Y.; Wei, G.C. GNSS–VTEC Prediction Based on CNN–GRU Neural Network Model during High Solar Activities. Sci. Rep. 2025, 15, 9109. [Google Scholar] [CrossRef]
- Mukesh, R.; Dass, S.C.; Kiruthiga, S.; Mythili, S.; Vijay, M.; Likitha Shree, K.; Abinesh, M.; Ambika, T. Pooja Prediction of Ionospheric TEC Using RNN During the Indonesia Earthquakes Based on GPS Data and Comparison with the IRI Model. In Proceedings of the Fourth Congress on Intelligent Systems, Bangalore, India, 4–5 September 2023; Kumar, S., K., B., Kim, J.H., Bansal, J.C., Eds.; Springer Nature: Singapore, 2024; pp. 401–415. [Google Scholar]
- Yuan, T.; Chen, Y.; Liu, S.; Gong, J. Prediction Model for Ionospheric Total Electron Content Based on Deep Learning Recurrent Neural Networkormalsize. Chin. J. Space Sci. 2018, 38, 48. [Google Scholar] [CrossRef]
- Chen, J.; Zhi, N.; Liao, H.; Lu, M.; Feng, S. Global Forecasting of Ionospheric Vertical Total Electron Contents via ConvLSTM with Spectrum Analysis. GPS Solut. 2022, 26, 69. [Google Scholar] [CrossRef]
- Xue, K.; Shi, C.; Wang, C. RA-ConvLSTM: Recurrent-Architecture Attentional ConvLSTM Networks for Prediction of Global Total Electron Content. Space Weather 2025, 23, e2024SW004173. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Zhang, H.; Hu, Z.; Yang, G.; Yuan, H. A New and Tested Ionospheric TEC Prediction Method Based on SegED-ConvLSTM. Remote Sens. 2025, 17, 885. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Le, H.; Yuan, J.; Shan, W.; Wu, Y.; Chen, Y. CGAOA-STRA-BiConvLSTM: An Automated Deep Learning Framework for Global TEC Map Prediction. GPS Solut. 2025, 29, 55. [Google Scholar] [CrossRef]
- Luo, H.; Gong, Y.; Chen, S.; Yu, C.; Yang, G.; Yu, F.; Hu, Z.; Tian, X. Prediction of Global Ionospheric Total Electron Content (TEC) Based on SAM-ConvLSTM Model. Space Weather 2023, 21, e2023SW003707. [Google Scholar] [CrossRef]
- Xia, G.; Zhang, F.; Wang, C.; Zhou, C. ED-ConvLSTM: A Novel Global Ionospheric Total Electron Content Medium-Term Forecast Model. Space Weather 2022, 20, e2021SW002959. [Google Scholar] [CrossRef]
- Wang, C.; Xue, K.; Shi, C. An Optimized Model With Encoder-Decoder ConvLSTM for Global Ionospheric Forecasting. IEEE Geosci. Remote Sens. Lett. 2025, 22, 1–5. [Google Scholar] [CrossRef]
- Tang, J.; Zhong, Z.; Ding, M.; Yang, D.; Liu, H. Forecast of Ionospheric TEC Maps Using ConvGRU Deep Learning Over China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3334–3344. [Google Scholar] [CrossRef]
- Xie, B.; Meng, J.; Li, B.; Harland, A. Biosignal-Based Transferable Attention Bi-ConvGRU Deep Network for Hand-Gesture Recognition towards Online Upper-Limb Prosthesis Control. Comput. Methods Programs Biomed. 2022, 224, 106999. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs. Adv. Neural Inf. Process. Syst. 2017, 30, 879–888. [Google Scholar]
- Liu, H.; Ma, Y.; Le, H.; Li, L.; Zhou, R.; Xiao, J.; Shan, W.; Wu, Z.; Li, Y. Global Ionospheric TEC Map Prediction Based on Multichannel ED-PredRNN. Atmosphere 2025, 16, 422. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.u.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Zhang, F.; Wang, R.; Zhou, F.; Luo, Y.; Li, J. PSAM: Parameter-Free Spatiotemporal Attention Mechanism for Video Question Answering. IEEE Trans. Multimed. 2023, 1–16. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Zhou, Y.; Liu, W.; Qian, C.; Hwang, J.-N.; Ji, X. CAS-ViT: Convolutional Additive Self-Attention Vision Transformers for Efficient Mobile Applications. arXiv 2024, arXiv:2408.03703. [Google Scholar]
- Noll, C.E. The Crustal Dynamics Data Information System: A Resource to Support Scientific Analysis Using Space Geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef]
Solar Activity | Model | (TECU) | |
---|---|---|---|
2015 (High) | DWTConvLSTM | 3.5917 | 15.26% |
BiDWTConvLSTM | 3.2961 | 14.49% | |
CASA-BiDWTConvLSTM | 3.1788 | 13.57% | |
2019 (Low) | DWTConvLSTM | 1.2992 | 14.15% |
BiDWTConvLSTM | 1.2573 | 13.82% | |
CASA-BiDWTConvLSTM | 1.1959 | 12.12% |
Solar Activity | Model | (TECU) | |
---|---|---|---|
High (2015) | C1PG | 4.2296 | 19.88% |
ConvGRU | 3.8102 | 17.10% | |
ConvLSTM | 3.6752 | 15.79% | |
PredRNN | 3.5436 | 14.98% | |
CASA-BiDWTConvLSTM | 3.1788 | 13.57% | |
Low (2019) | C1PG | 1.6186 | 19.32% |
ConvGRU | 1.4380 | 18.16% | |
ConvLSTM | 1.3541 | 14.68% | |
PredRNN | 1.2865 | 13.39% | |
CASA-BiDWTConvLSTM | 1.1959 | 12.12% |
Storm Event | DOYs | |
---|---|---|
Case1 | 76–77 | −234 |
Case2 | 173–174 | −198 |
Case3 | 280–281 | −130 |
Case4 | 354–355 | −166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Yuan, G.; Le, H.; Yao, X.; Li, S.; Liu, H. Global Ionosphere Total Electron Content Prediction Based on Bidirectional Denoising Wavelet Transform Convolution. Atmosphere 2025, 16, 1139. https://doi.org/10.3390/atmos16101139
Sun L, Yuan G, Le H, Yao X, Li S, Liu H. Global Ionosphere Total Electron Content Prediction Based on Bidirectional Denoising Wavelet Transform Convolution. Atmosphere. 2025; 16(10):1139. https://doi.org/10.3390/atmos16101139
Chicago/Turabian StyleSun, Liwei, Guoming Yuan, Huijun Le, Xingyue Yao, Shijia Li, and Haijun Liu. 2025. "Global Ionosphere Total Electron Content Prediction Based on Bidirectional Denoising Wavelet Transform Convolution" Atmosphere 16, no. 10: 1139. https://doi.org/10.3390/atmos16101139
APA StyleSun, L., Yuan, G., Le, H., Yao, X., Li, S., & Liu, H. (2025). Global Ionosphere Total Electron Content Prediction Based on Bidirectional Denoising Wavelet Transform Convolution. Atmosphere, 16(10), 1139. https://doi.org/10.3390/atmos16101139