Aerosol Transport from Amazon Biomass Burning to Southern Brazil: A Case Study of an Extreme Event During September 2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fire Pixel Detection Using MODIS
2.3. MERRA-2 Reanalysis
2.4. WRF-Chem
- 1 No wet deposition is handled with Ferrier microphysics.
- 2 This includes a sub-gridscale plume rise algorithm.
2.5. Fire Climatology Based on MODIS and AOD Climatology Based on MERRA-2
2.6. Event Selection
3. Results
3.1. Fire Occurrence and Total AOD Concentrations During Events over São Paulo and São Martinho
3.2. Aerosol Transport from the Amazon to Southern Brazil
3.3. Statical Comparison with Historical Climatology
3.4. WRF-Chem System Performance Evaluation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twomey, S. The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Charlson, R.J.; Schwartz, S.; Hales, J.; Cess, R.D.; Coakley, J., Jr.; Hansen, J.; Hofmann, D. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.A.; Chen, H.B.; Wang, P.C.; Zhang, W.X.; Goloub, P.; Chatenet, B.; Eck, T.F.; Holben, B.N. Variation of column-integrated aerosol properties in a Chinese urban region. J. Geophys. Res. Atmos. 2006, 111, D05204. [Google Scholar] [CrossRef]
- Ali, M.A.; Bilal, M.; Wang, Y.; Qiu, Z.; Nichol, J.E.; de Leeuw, G.; Ke, S.; Mhawish, A.; Almazroui, M.; Mazhar, U.; et al. Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China. Geosci. Front. 2022, 13, 101325. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Bilal, M.; Su, B.; Zhang, C.; Guo, L. Comparison of MODIS- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin (China) from 2007 to 2015. Earth Syst. Environ. 2020, 4, 535–550. [Google Scholar] [CrossRef]
- Wang, M.; Penner, J.E. Aerosol indirect forcing in a global model with particle nucleation. Atmos. Chem. Phys. 2009, 9, 239–260. [Google Scholar] [CrossRef]
- Yu, F.; Luo, G. Simulation of particle size distribution with a global aerosol model: Contribution of nucleation to aerosol and CCN number concentrations. Atmos. Chem. Phys. 2009, 9, 7691–7710. [Google Scholar] [CrossRef]
- Pierce, J.R.; Adams, P.J. Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos. Chem. Phys. 2009, 9, 1339–1356. [Google Scholar] [CrossRef]
- Carslaw, K.S. Aerosols and Climate; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Yu, P.; Toon, O.B.; Neely, R.R.; Martinsson, B.G.; Brenninkmeijer, C.A.M. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer. Geophys. Res. Lett. 2015, 42, 2540–2546. [Google Scholar] [CrossRef]
- Lau, W.; Yuan, C.; Li, Z. Origin, Maintenance and Variability of the Asian Tropopause Aerosol Layer (ATAL): The roles of monsoon dynamics. Sci. Rep. 2018, 8, 3960. [Google Scholar] [CrossRef]
- Andreae, M.O.; Afchine, A.; Albrecht, R.; Holanda, B.A.; Artaxo, P.; Barbosa, H.M.J.; Borrmann, S.; Cecchini, M.A.; Costa, A.; Dollner, M.; et al. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmos. Chem. Phys. 2018, 18, 921–961. [Google Scholar] [CrossRef]
- Williamson, C.J.; Kupc, A.; Axisa, D.; Bilsback, K.R.; Bui, T.; Campuzano-Jost, P.; Dollner, M.; Froyd, K.D.; Hodshire, A.L.; Jimenez, J.L.; et al. A large source of cloud condensation nuclei from new particle formation in the tropics. Nature 2019, 574, 399–403. [Google Scholar] [CrossRef]
- Bresciani, C.; Herdies, D.L.; Figueroa, S.N.; Buchard, V.; da Silva, A.M.; Jones, C.; Carvalho, L.M.V. The South American Tropopause Aerosol Layer (SATAL). Bull. Am. Meteorol. Soc. 2024, 105, E176–E192. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Mishra, A.K.; Lehahn, Y.; Rudich, Y.; Koren, I. Co-variability of smoke and fire in the Amazon basin. Atmos. Environ. 2015, 109, 97–104. [Google Scholar] [CrossRef]
- Morgan, W.T.; Darbyshire, E.; Spracklen, D.V.; Artaxo, P.; Coe, H. Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Sci. Rep. 2019, 9, 16975. [Google Scholar] [CrossRef] [PubMed]
- Artaxo, P.; Martins, J.V.; Yamasoe, M.A.; Procópio, A.S.; Pauliquevis, T.M.; Andreae, M.O.; Guyon, P.; Gatti, L.V.; Leal, A.M.C. Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res. Atmos. 2002, 107, LBA 49-1–LBA 49-14. [Google Scholar] [CrossRef]
- Hoelzemann, J.J.; Longo, K.M.; Fonseca, R.M.; Do Rosário, N.M.E.; Elbern, H.; Freitas, S.R.; Pires, C. Regional representativity of AERONET observation sites during the biomass burning season in South America determined by correlation studies with MODIS Aerosol Optical Depth. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Alvim, D.S.; Pendharkar, J.; Capistrano, V.B.; Frassoni, A.; Enoré, D.P.; Leandro de Menezes Neto, O.; Gutierrez, E.R.; Choudhury, A.D.; Kubota, P.Y.; da Silva, J.; et al. Aerosol distribution over Brazil with ECHAM-HAM and CAM5-MAM3 simulations and its comparison with ground-based and satellite data. Atmos. Pollut. Res. 2017, 8, 718–728. [Google Scholar] [CrossRef]
- Vara-Vela, A.L.; Herdies, D.L.; Alvim, D.S.; Vendrasco, É.P.; Figueroa, S.N.; Pendharkar, J.; Reyes Fernandez, J.P. A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America. Bull. Am. Meteorol. Soc. 2021, 102, E1700–E1713. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed]
- Souto-Oliveira, C.E.; Marques, M.T.; Nogueira, T.; Lopes, F.J.; Medeiros, J.A.; Medeiros, I.M.; Moreira, G.A.; Da Silva Dias, P.L.; Landulfo, E.; Andrade, M.D.F. Impact of extreme wildfires from the Brazilian Forests and sugarcane burning on the air quality of the biggest megacity on South America. Sci. Total Environ. 2023, 888, 163439. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.J.; Machado, L.A.T.; Artaxo, P.; Calheiros, A.; Correa, P.; Franco, M.A.; Shimbo, J.; Rizzo, L.V. Analyzing and forecasting the morphology of Amazon deforestation. For. Ecol. Manag. 2025, 586, 122662. [Google Scholar] [CrossRef]
- Reddington, C.L.; Butt, E.W.; Ridley, D.A.; Artaxo, P.; Morgan, W.T.; Coe, H.; Spracklen, D.V. Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci. 2015, 8, 768–771. [Google Scholar] [CrossRef]
- Rogers, H.M.; Ditto, J.C.; Gentner, D.R. Evidence for impacts on surface-level air quality in the northeastern US from long-distance transport of smoke from North American fires during the Long Island Sound Tropospheric Ozone Study (LISTOS) 2018. Atmos. Chem. Phys. 2020, 20, 671–682. [Google Scholar] [CrossRef]
- Chakraborty, S.; Guan, B.; Waliser, D.E.; da Silva, A.M.; Uluatam, S.; Hess, P. Extending the atmospheric river concept to aerosols: Climate and air quality impacts. Geophys. Res. Lett. 2021, 48, e2020GL091827. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Satar, E.; Berhanu, T.A.; Brunner, D.; Henne, S.; Leuenberger, M. Continuous CO2/CH4/CO measurements (2012–2014) at Beromünster tall tower station in Switzerland. Biogeosciences 2016, 13, 2623–2635. [Google Scholar] [CrossRef]
- Escobar, H. Amazon Fires Clearly Linked to Deforestation, Scientists Say; AAAS: Washington, DC, USA, 2019. [Google Scholar]
- IPAM-Amazônia. About 17.5% of Brazil has Burned at Least Once in the Last 20 Years. 2020. Available online: https://ipam.org.br/17-5-of-brazil-has-burned-at-least-once-in-the-last-20years (accessed on 24 March 2025).
- Mega, E.R. ‘Apocalyptic’ fires are ravaging the world’s largest tropical wetland. Nature 2020, 586, 20–21. [Google Scholar] [CrossRef]
- NASA Earth Observatory. Fires Char the Pantanal. 2020. Available online: https://earthobservatory.nasa.gov/images/147269/fires-char-the-pantanal (accessed on 24 March 2025).
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Duflot, V.; Royer, P.; Chazette, P.; Baray, J.L.; Courcoux, Y.; Delmas, R. Marine and biomass burning aerosols in the southern Indian Ocean: Retrieval of aerosol optical properties from shipborne lidar and Sun photometer measurements. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Bègue, N.; Shikwambana, L.; Bencherif, H.; Pallotta, J.; Sivakumar, V.; Wolfram, E.; Mbatha, N.; Orte, F.; Du Preez, D.J.; Ranaivombola, M.; et al. Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations. Ann. Geophys. 2020, 38, 395–420. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Solazzo, E.; Bianconi, R.; Hogrefe, C.; Curci, G.; Tuccella, P.; Alyuz, U.; Balzarini, A.; Baró, R.; Bellasio, R.; Bieser, J.; et al. Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: Multivariable temporal and spatial breakdown. Atmos. Chem. Phys. 2017, 17, 3001–3054. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.K.; Brasseur, G.P.; Bouarar, I.; Flemming, J.; Gauss, M.; Jiang, F.; Kouznetsov, R.; Kranenburg, R.; Mijling, B.; Peuch, V.H.; et al. Ensemble forecasts of air quality in eastern China—Part 2: Evaluation of the MarcoPolo–Panda prediction system, version 1. Geosci. Model Dev. 2019, 12, 1241–1266. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Espinoza, J.C.; Fu, R.; Schöngart, J.; Jimenez, J.C.; Costa, M.C.; Ribeiro, J.M.; Wongchuig, S.; Zhao, S. The drought of Amazonia in 2023–2024. Am. J. Clim. Chang. 2024, 13, 567–597. [Google Scholar] [CrossRef]
- Toreti, A.; Bavera, D.; Acosta, N.J.; Acquafresca, L.; Azas, K.; Barbosa, P.; De, J.A.; Ficchi, A.; Fioravanti, G.; Grimaldi, S.; et al. Global Drought Overview September 2024; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Holben, B.N.; Eck, T.F.; Slutsker, I.a.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Flynn, C.J. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Yang, D. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos. Environ. 2020, 225, 117216. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Yu, H. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate 2017, 30, 6851–6872. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J.G.; Peters, J.A.; et al. EDGAR v4. 3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012. Earth Syst. Sci. Data Discuss. 2017, 2017, 1–55. [Google Scholar]
- Longo, K.M.; Freitas, S.R.; Andreae, M.O.; Setzer, A.; Prins, E.; Artaxo, P. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 2: Model sensitivity to the biomass burning inventories. Atmos. Chem. Phys. 2010, 10, 5785–5795. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Alonso, M.F.; Pirre, M.; Marecal, V.; Grell, G.; Stockler, R.; Mello, R.F.; Sánchez Gácita, M. PREP-CHEM-SRC – 1.0: A preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geosci. Model Dev. 2011, 4, 419–433. [Google Scholar] [CrossRef]
- Emmons, L.K.; Apel, E.C.; Lamarque, J.F.; Hess, P.G.; Avery, M.; Blake, D.; Brune, W.; Campos, T.; Crawford, J.; DeCarlo, P.F.; et al. Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmos. Chem. Phys. 2010, 10, 6195–6212. [Google Scholar] [CrossRef]
- Chin, M.; Rood, R.B.; Lin, S.; Müller, J.; Thompson, A.M. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res. Atmos. 2000, 105, 24671–24687. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.; Duncan, B.; Martin, R.; Logan, J.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Silva Dias, M.A.F.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar] [CrossRef]
- Grell, G.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303. [Google Scholar] [CrossRef]
- Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; du Preez, D.J.; Cadet, J.M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. [Google Scholar] [CrossRef]
- Vidal-Riveros, C.; Souza-Alonso, P.; Bravo, S.; Laino, R.; Ngo Bieng, M.A. A review of wildfires effects across the Gran Chaco region. For. Ecol. Manag. 2023, 549, 121432. [Google Scholar] [CrossRef]
- Jones, C. Recent changes in the South America low-level jet. NPJ Clim. Atmos. Sci. 2019, 2, 20. [Google Scholar] [CrossRef]
- Montini, T.L.; Jones, C.; Carvalho, L.M.V. The South American Low-Level Jet: A New Climatology, Variability, and Changes. J. Geophys. Res. Atmos. 2019, 124, 1200–1218. [Google Scholar] [CrossRef]
- Jones, C.; Mu, Y.; Carvalho, L.M.; Ding, Q. The South America Low-Level Jet: Form, variability and large-scale forcings. NPJ Clim. Atmos. Sci. 2023, 6, 175. [Google Scholar] [CrossRef]
- Ulke, A.G.; Longo, K.M.; Freitas, S.R. Biomass Burning in South America: Transport Patterns and Impacts; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Silva Dias, M.A.F.; Chatfield, R.; Silva Dias, P.; Artaxo, P.; Andreae, M.O.; Grell, G.; Rodrigues, L.F.; Fazenda, A.; et al. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 1: Model description and evaluation. Atmos. Chem. Phys. 2009, 9, 2843–2861. [Google Scholar] [CrossRef]
- Martins, L.D.; Hallak, R.; Alves, R.C.; De Almeida, D.S.; Squizzato, R.; Moreira, C.A.; Beal, A.; Da Silva, I.; Rudke, A.; Martins, J.A. Long-range Transport of Aerosols from Biomass Burning over Southeastern South America and their Implications on Air Quality. Aerosol Air Qual. Res. 2018, 18, 1734–1745. [Google Scholar] [CrossRef]
- Chakraborty, S.; Guan, B.; Waliser, D.; da Silva, A. Aerosol atmospheric rivers: Climatology, event characteristics, and detection algorithm sensitivities. Atmos. Chem. Phys. Discuss. 2022, 2022, 1–41. [Google Scholar] [CrossRef]
- Chakraborty, S.; Guan, B.; Waliser, D.E.; Jiang, J.H. Aerosol Atmospheric Rivers as Drivers of Extreme Poor Air Quality Events and Record PM2. 5 Levels. Authorea Preprints 2023. [Google Scholar] [CrossRef]
- Sena, E.T.; Artaxo, P.; Correia, A.L. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmos. Chem. Phys. 2013, 13, 1261–1275. [Google Scholar] [CrossRef]
- Herdies, D.L.; da Silva, A.; Silva Dias, M.A.F.; Nieto Ferreira, R. Moisture budget of the bimodal pattern of the summer circulation over South America. J. Geophys. Res. Atmos. 2002, 107, LBA 42-1–LBA 42-10. [Google Scholar] [CrossRef]
- De Miranda, R.M.; Lopes, F.; Do Rosário, N.É.; Yamasoe, M.A.; Landulfo, E.; De Fatima Andrade, M. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: A case study for São Paulo city, Brazil. Environ. Monit. Assess. 2017, 189, 6. [Google Scholar] [CrossRef] [PubMed]
- Mulena, G.C.; Asmi, E.M.; Ruiz, J.J.; Pallotta, J.V.; Jin, Y. Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study. Remote Sens. 2024, 16, 1780. [Google Scholar] [CrossRef]
- Fast, J.D.; Varble, A.C.; Mei, F.; Pekour, M.; Tomlinson, J.; Zelenyuk, A.; Sedlacek, A.J., III; Zawadowicz, M.; Emmons, L. Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign. Atmos. Chem. Phys. 2024, 24, 13477–13502. [Google Scholar] [CrossRef]
- Darmenov, A.; da Silva, A. The quick fire emissions dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4. NASA Tech. Rep. Ser. Glob. Model. Data Assim. NASA TM-2013 2015, 32, 183. [Google Scholar]
- Ulke, A.G. Influence of Regional Transport Mechanisms on the Fingerprint of Biomass-Burning Aerosols in Buenos Aires. Adv. Meteorol. 2019, 2019, 6792161. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Mariano, G.L.; Alonso, M.F.; Mariano, E.V.C. Analysis of incoming biomass burning aerosol plumes over southern Brazil. Atmos. Sci. Lett. 2016, 17, 577–585. [Google Scholar] [CrossRef]
- Arbex, M.A.; Martins, L.C.; de Oliveira, R.C.; Pereira, L.A.A.; Arbex, F.F.; Cançado, J.E.D.; Saldiva, P.H.N.; Braga, A.L.F. Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. J. Epidemiol. Community Health 2007, 61, 395–400. [Google Scholar] [CrossRef]
- Ignotti, E.; Valente, J.G.; Longo, K.M.; Freitas, S.R.; Hacon, S.d.S.; Artaxo Netto, P. Impact on human health of particulate matter emitted from burnings in the Brazilian Amazon region. Rev. Saude Publica 2010, 44, 121–130. [Google Scholar] [CrossRef]









| Attributes | Settings |
|---|---|
| Physical Options | |
| Boundary layer | Yonsei University scheme |
| Surface | Unified Noah |
| Cloud microphysics | Ferrier 1 |
| Surface layer | Revised Monin–Obukhov scheme |
| Radiation | Short wave and long wave: RRTMG scheme |
| Cumulus | Grell–Freitas |
| Chemistry Options | |
| Gas phase chemistry | MOZART |
| Aerosol module | GOCART |
| Dry deposition | Wesely |
| Advection | Positive definite and monotonic |
| Data | |
| Meteorological initial and boundary condition | ERA5 |
| Chemical initial and boundary condition | Whole Atmosphere Community Climate Model |
| Biogenic emissions | MEGAN |
| Anthropogenic emissions | HTAPv2.2 |
| Biomass burning emissions | 3BEM 2 |
| Station | Latitude | Longitude | Altitude (m.a.s.l) | AOD (Climatology) | SD | 2 SD | Reference Value (September) |
|---|---|---|---|---|---|---|---|
| São Paulo | −23.56 | −46.73 | 786 | 0.24 | 0.18 | 0.36 | 0.47 |
| São Martinho | −29.44 | −53.82 | 786 | 0.34 | 0.19 | 0.39 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forgioni, F.P.; Bresciani, C.; Reis, A.; Müller, G.V.; Herdies, D.L.; Cabral Júnior, J.B.; dos Santos Silva, F.D. Aerosol Transport from Amazon Biomass Burning to Southern Brazil: A Case Study of an Extreme Event During September 2024. Atmosphere 2025, 16, 1138. https://doi.org/10.3390/atmos16101138
Forgioni FP, Bresciani C, Reis A, Müller GV, Herdies DL, Cabral Júnior JB, dos Santos Silva FD. Aerosol Transport from Amazon Biomass Burning to Southern Brazil: A Case Study of an Extreme Event During September 2024. Atmosphere. 2025; 16(10):1138. https://doi.org/10.3390/atmos16101138
Chicago/Turabian StyleForgioni, Fernando Primo, Caroline Bresciani, André Reis, Gabriela Viviana Müller, Dirceu Luis Herdies, Jório Bezerra Cabral Júnior, and Fabrício Daniel dos Santos Silva. 2025. "Aerosol Transport from Amazon Biomass Burning to Southern Brazil: A Case Study of an Extreme Event During September 2024" Atmosphere 16, no. 10: 1138. https://doi.org/10.3390/atmos16101138
APA StyleForgioni, F. P., Bresciani, C., Reis, A., Müller, G. V., Herdies, D. L., Cabral Júnior, J. B., & dos Santos Silva, F. D. (2025). Aerosol Transport from Amazon Biomass Burning to Southern Brazil: A Case Study of an Extreme Event During September 2024. Atmosphere, 16(10), 1138. https://doi.org/10.3390/atmos16101138

