Analytical Methods for Atmospheric Carbonyl Compounds: A Review
Abstract
:1. Introduction
2. Methodology
3. Sampling Methods for Atmospheric Carbonyl Compounds
3.1. Direct Sampling Methods
3.2. Indirect Sampling Methods
3.3. Applicability and Selection Principles of Sampling Methods
4. Analytical Methods for Atmospheric Formaldehyde
4.1. Offline Analytical Methods for Formaldehyde
4.2. Online Analytical Methods for Formaldehyde
Method | Principle | Optimization | LOD | TR | OP | Remarks | Ref. |
---|---|---|---|---|---|---|---|
DOAS | Spectral absorption characteristics | LP-DOAS | 0.45 ppb | 20 min | 5 km | Pathway located in the atmosphere; wide measurement range; no calibration required; poor time resolution | [99] |
Xenon lamp as light source | 540–1200 ppt | 10–20 min | 4.9–8.2 km | [79] | |||
Tungsten lamp as light source and different detectors | 198–1500 ppt | 5–20 min | 5–15 km | [100] | |||
Low optical path | 3–4 ppt | - 2 | 426 m | [101] | |||
MAX-DOAS | 0.7–4.2 ppb | 5 min | 40 km | [102] | |||
FTIR | Infrared spectral absorption | Eight-mirror multi-reflection unit system | 4 ppb | 10 min | 1.08 km | Simultaneous analysis of multiple components; requires appropriate gas qualitative and quantitative prediction models | [103] |
FTIR system equipment | 0.6 ppb | 5 min | 1 km | [80] | |||
Commercial FTIR | 1.05–1.1 ppm | 0.2–1 s | 3.2–10 m | [104] | |||
Hantzsch fluorimetry | Hantzsch reaction | Online analytical instrument based on Hantzsch reaction | 84 ppt | 120 s | - | Operate stably over the long term; significant differences between devices; requires independent design | [86] |
0.05 ppb | 18 min | - | [85] | ||||
LIF | Fluorescence signal intensity at a specific wavelength of the laser | Frequency-doubled tunable dye laser | 50 ppt | - | - | Laser as the light source; relatively complex calibration process; larger size; high measurement accuracy | [105] |
No sample collection, water extraction, or further chemical treatment required | 10 ppt | 100 s | - | [106] | |||
No background detection and aerial surveying used | 36 ppt | 1 s | - | [107] | |||
Direct in situ detection in a white multi-channel cell | 51 ppt | 1 s | - | [108] | |||
Non-resonant-LIF (NR-LIF) | 261 ppt | 10 s | - | [109] | |||
TDLAS | Molecular absorption spectroscopy | Lead salt laser | 0.75 ppb/300 ppt | 3 min | 33.5 m/153 m | High accuracy; relatively compact setup; suitable for airborne and other fields | [110,111] |
Difference frequency generation (DFG) laser | 222 ppt | 1 min | 100 m | [112] | |||
Quantum cascade laser (QCL) | 450 ppt/ 30–120 ppt | 1 min/1–10 s | 76 m/ 240 m | [113,114] | |||
Interband cascade laser (ICL) | 207 ppt/ 153 ppt | 90 s/ 10 s | 54.6 m/ 96 m | [115,116] | |||
CRDS | Vibrational absorption spectral characteristics | Pulsed CRDS | 300 ppb | - | - | Small sampling volume; unaffected by light source fluctuations. Interference by external environmental | [82] |
OPO (optical parametric oscillator) light source | 112 ppt | 1 s | 300 m | [83] | |||
System based on CRDS | 1–2 ppb/ 3 ppb | ~s | - | [117,118] | |||
CEAS | Beer–Lambert law | IBBCEAS | 1.14 ppb | 30 s | 2.15 km | High sensitivity requires proper technological integration; complex system with poor stability. High stability and resolution be achieved by sacrificing optical path. | [119,120] |
Mode-locked (ML)-CEAS | 3.3 ppb | - | - | [118] | |||
V-shaped CEAS | 15 ppt | 10 s | 1.97 km | [121] | |||
Pound–Drever–Hall (PDH) technique | 75 ppb | 1 s | 20 m | [122] | |||
Electrochemical sensor | Electrical signal generated by formaldehyde adsorption on the sensor material | 20~50 ppb | 20 s to 30 min | Good repeatability; high resolution; high cost; poor stability | [26] | ||
Optical sensor | Optical properties | 0.03~0.20 ppm | 15 min | High accuracy; affected by dust; expensive | [95,96] | ||
Semi-conductor sensor | Changes in electrical properties generated by the adsorption of gas molecules on semiconductor materials | 50 ppm to 10 ppb | 8~131 s | Performance is related to the semiconductor material. | [97] |
5. Simultaneous Analytical Methods for Multiple Atmospheric Carbonyl Compounds
5.1. Offline Analytical Methods for Multiple Carbonyl Compounds
5.1.1. DNPH-HPLC-UV
5.1.2. Chromatography Tandem MS
5.2. Online Analytical Methods for Multiple Carbonyl Compounds
5.2.1. GC-FID/MS
5.2.2. Online MS Techniques Without Chromatographic Separation
6. Analytical Methods for Carbonyl Compounds in Atmospheric Photochemical Smog Chamber Simulation Studies
7. Problems and Challenges
7.1. Sampling Methods
7.2. Analytical Methods of Formaldehyde
7.3. Analytical Methods of Multiple Carbonyl Compounds
7.3.1. Offline Analytical Methods
7.3.2. Online Analytical Methods
7.4. Analytical Methods in Smog Chamber Simulation Studies
8. Future Research Needs and Prospects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, L.; Dong, C.; Wang, T.; Mellouki, A.; Zhang, Q.; Wang, W. Gaseous carbonyls in China’s atmosphere: Tempo-spatial distributions, sources, photochemical formation, and impact on air quality. Atmos. Environ. 2019, 214, 116863. [Google Scholar] [CrossRef]
- Chen, T.; Xue, L.; Zheng, P.; Zhang, Y.; Liu, Y.; Sun, J.; Han, G.; Li, H.; Zhang, X.; Li, Y.; et al. Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmos. Chem. Phys. 2020, 20, 7069–7086. [Google Scholar] [CrossRef]
- Kroll, J.A.; Hansen, A.S.; Moller, K.H.; Axson, J.L.; Kjaergaard, H.G.; Vaida, V. Ultraviolet Spectroscopy of the Gas Phase Hydration of Methylglyoxal. ACS Earth Space Chem. 2017, 1, 345–352. [Google Scholar] [CrossRef]
- Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef]
- Ling, Z.H.; Guo, H.; Chen, G.X.; Lam, S.H.M.; Fan, S.J. Formaldehyde and Acetaldehyde at Different Elevations in Mountainous Areas in Hong Kong. Aerosol Air Qual. Res. 2016, 16, 1868–1878. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.F.; Han, Y.; Zhu, B.; He, L.Y. Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China. J. Geophys. Res. Atmos. 2017, 122, 2169–8996. [Google Scholar] [CrossRef]
- Chou, C.C.K.; Tsai, C.Y.; Chang, C.C.; Lin, P.H.; Liu, S.C.; Zhu, T. Photochemical production of ozone in Beijing during the 2008 Olympic Games. Atmos. Chem. Phys. 2011, 11, 9825–9837. [Google Scholar] [CrossRef]
- Turpin, B.J.; Saxena, P.; Andrews, E. Measuring and simulating particulate organics in the atmosphere: Problems and prospects. Atmos. Environ. 2000, 34, 2983–3013. [Google Scholar] [CrossRef]
- Du, Z.; Mo, J.; Zhang, Y. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Env. Int. 2014, 73, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Delikhoon, M.; Fazlzadeh, M.; Sorooshian, A.; Baghani, A.N.; Golaki, M.; Ashournejad, Q.; Barkhordari, A. Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ. Pollut. 2018, 242, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Flowers, L.; Broder, M.W.; Forsyth, C. Toxicological Review of Acetone; US Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- Li, L.; Jia, Q.; Zhang, Z. Advances in the study of crotonaldehyde toxicity. Chin. J. Ind. Hyg. Occup. Dis. 2016, 43, 758–761. [Google Scholar]
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Zhang, K.; Duan, Y.; Huo, J.; Huang, L.; Wang, Y.; Fu, Q.; Wang, Y.; Li, L. Formation mechanism of HCHO pollution in the suburban Yangtze River Delta region, China: A box model study and policy implementations. Atmos. Environ. 2021, 267, 118755. [Google Scholar] [CrossRef]
- Bao, J.M.; Li, H.; Wu, Z.H.; Zhang, X.; Zhang, H.; Li, Y.F.; Qian, J.; Chen, J.H.; Deng, L.Q. Atmospheric carbonyls in a heavy ozone pollution episode at a metropolis in Southwest China: Character istics, health risk assessment, sources analysis. J. Environ. Sci. 2022, 113, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Wang, M.; Li, J.; Tang, G.; Zhang, G.; Chen, W. Pollution characteristics, sources, and photochemical roles of ambient carbonyl compounds in summer of Beijing, China. Environ. Pollut. 2023, 336, 122403. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.H.; Wang, S.X.; Ying, Q.; Duan, L.; Xing, J.; Cao, J.Y.; Wu, D.; Li, X.X.; Xing, C.Z.; Yan, X.; et al. Importance of Wintertime Anthropogenic Glyoxal and Methylglyoxal Emissions in Beijing and Implications for Secondary Organic Aerosol Formation in Megacities. Environ. Sci. Technol. 2020, 54, 11809–11817. [Google Scholar] [CrossRef]
- Doussin, J.-F.; Fuchs, H.; Kiendler-Scharr, A.; Seakins, P.; Wenger, J. A Practical Guide to Atmospheric Simulation Chambers, 1st ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2023; pp. 1–339. [Google Scholar]
- Liu, Q.; Gao, Y.; Huang, W.; Ling, Z.; Wang, Z.; Wang, X. Carbonyl compounds in the atmosphere: A review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 2022, 274, 106184. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Sheng, G.; Fu, J. Advances in the analysis of formaldehyde and carbonyl compounds in the atmosphere. Chin. J. Anal. Chem. 2005, 33, 134–140. [Google Scholar]
- Nier, A.O. Some reflections on the early days of mass spectrometry at the university of minnesota. Int. J. Mass. Spectrom. Ion Process. 1990, 100, 1–13. [Google Scholar] [CrossRef]
- Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, H.L.C.; de Andrade, M.V.; Pereira, P.A.P.; de Andrade, J.B. Spectrofluorimetric determination of formaldehyde in air after collection onto silica cartridges coated with Fluoral P. Microchem. J. 2004, 78, 15–20. [Google Scholar] [CrossRef]
- Yuan, B.; Koss, A.R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J.A. Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chem. Rev. 2017, 117, 13187–13229. [Google Scholar] [CrossRef]
- Chung, P.R.; Tzeng, C.T.; Ke, M.T.; Lee, C.Y. Formaldehyde Gas Sensors: A Review. Sensors 2013, 13, 4468–4484. [Google Scholar] [CrossRef]
- Wu, T.; Hu, R.; Xie, P.; Wang, J.; Liu, W. Research progress of atmospheric HCHO spectroscopy detection technology. J. Quantum Electron. 2021, 38, 699. [Google Scholar]
- Huang, M.; Ma, F.; Zhang, J.; Zhou, Y.; Wen, S.; Liu, Z. Research Progress of the Environmental Monitoring Analytical Methods of Aldehydes and Ketones Carbonyl Compounds. Sichuan Environ. 2023, 42, 300–305. [Google Scholar]
- Xu, Y.; Hui, L.; Zheng, P.; Liu, G.; Yu, J.Z.; Wang, Z. Monitoring techniques of airborne carbonyl compounds: Principles, performance and challenges. TrAC Trends Anal. Chem. 2023, 169, 117395. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Q.; Han, C.; Liu, L.; Fan, X.; Chen, N.; Pan, Y. On-Line Monitoring of VOCs in Ambient Air Based on Cryo-Trapping-GC-MS-FID. Chin. Environ. Monit. 2017, 33, 100–110. [Google Scholar]
- MEE. Determination of Volatile Organic Compounds in Ambient Air—Adsorbent Tube Sampling—Thermal Desorption/Gas Chromatography-Mass Spectrometry: HJ 644-2013; China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Jiang, M. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmos. Environ. 2018, 192, 55–71. [Google Scholar] [CrossRef]
- Druzik, C.M.; Grosjean, D.; Van Neste, A.; Parmar, S.S. Sampling of Atmospheric Carbonyls with Small DNPH-Coated C18 Cartridges and Liquid Chromatography Analysis with Diode Array Detection. Int. J. Environ. Anal. Chem. 1990, 38, 495–512. [Google Scholar] [CrossRef]
- Li, J.; Feng, Y.L.; Xie, C.J.; Huang, J.; Yu, J.Z.; Feng, J.L.; Sheng, G.Y.; Fu, J.M.; Wu, M.H. Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Anal. Chim. Acta. 2009, 635, 84–93. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. Compendium Method TO-14A: Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography. EPA/625/R-96/010b.PU.S; EPA: Cincinnati, OH, USA, 1999. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Method TO-15A: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography–Mass Spectrometry (GC-MS); U.S. EPA: Cincinnati, OH, USA, 2019. [Google Scholar]
- Batterman, S.A.; Zhang, G.-Z.; Baumann, M. Analysis and stability of aldehydes and terpenes in electropolished canisters. Atmos. Environ. 1998, 32, 1647–1655. [Google Scholar] [CrossRef]
- Kelly, T.J.; Holdren, M.W. Applicability of canisters for sample storage in the determination of hazardous air pollutants. Atmos. Environ. 1995, 29, 2595–2608. [Google Scholar] [CrossRef]
- Xie, X.; Lu, X.; Zhang, S. Comparison on Monitoring Methods of Environmental Air Volatile Organic Compounds in Nanjing. China Environ. Monit. 2020, 36, 11–15. [Google Scholar]
- Wang, M.; Zeng, L.; Lu, S.; Shao, M.; Liu, X.; Yu, X.; Chen, W.; Yuan, B.; Zhang, Q.; Hu, M.; et al. Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds. Anal. Methods 2014, 6, 9424–9434. [Google Scholar] [CrossRef]
- Li, X.; Lu, S.; Shao, M. Methods for Measurement of Oxygenated Volatile Organic Compounds in the Atmosphere. Peking. Univ. Sci. 2006, 42, 548–554. [Google Scholar]
- Liu, L.; Dong, Y.; Sun, X. Comparison of HPLC and GC-MS for the Determination of Aldehydes and Ketones in Ambient Air. Environ. Monit. Manag. Technol. 2023, 35, 45–48. [Google Scholar]
- Pal, R.; Kim, K.H. Experimental choices for the determination of carbonyl compounds in air. J. Sep. Sci. 2007, 30, 2708–2718. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Han, B.; Xia, L. The comparison between the MBTH and Acetylacetone spectrophotometric methods in Determination of Formaldehyde in Indoor Air. Energy Conserv. Environ. Prot. 2020, 06, 58–59. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology]. EPA/625/R-96/010b; U.S. EPA: Cincinnati, OH, USA, 1999. [Google Scholar]
- Pang, X.; Lewis, A.C.; Hamilton, J.F. Determination of airborne carbonyls via pentafluorophenylhydrazine derivatisation by GC–MS and its comparison with HPLC method. Talanta 2011, 85, 406–414. [Google Scholar] [CrossRef]
- Arnts, R.R.; Tejada, S.B. 2,4-Dinitrophenylhydrazine-coated silica gel cartridge method for determination of formaldehyde in air: Identification of an ozone interference. Environ. Sci. Technol. 1989, 23, 1428–1430. [Google Scholar] [CrossRef]
- Williams, E.L.; Grosjean, D. Removal of atmospheric oxidants with annular denuders. Environ. Sci. Technol. 1990, 24, 811–814. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Ho, K.F.; Liu, W.D.; Lee, S.C.; Dai, W.T.; Cao, J.J.; Ip, H.S.S. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. Atmos. Environ. 2011, 45, 261–265. [Google Scholar] [CrossRef]
- Kahnt, A.; Iinuma, Y.; Böge, O.; Mutzel, A.; Herrmann, H. Denuder sampling techniques for the determination of gas-phase carbonyl compounds: A comparison and characterisation of in situ and ex situ derivatisation methods. J. Chromatogr. B 2011, 879, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Cecinato, A.; Di Palo, V.; Mabilia, R.; Possanzini, M. Pentafluorophenylhydrazine as a coating reagent for the HRGC-MS determination of semi-volatile carbonyl compounds in air. Chromatographia 2001, 54, 263–269. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Yu, J.Z. Determination of airborne carbonyls: Comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. Environ. Sci. Technol. 2004, 38, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Apel, E.C.; Calvert, J.G.; Riemer, D.; Pos, W.; Zika, R.; Kleindienst, T.E.; Lonneman, W.A.; Fung, K.; Fujita, E.; Shepson, P.B.; et al. Measurements comparison of oxygenated volatile organic compounds at a rural site during the 1995 SOS Nashville Intensive. J. Geophys. Res. Atmos. 1998, 103, 22295–22316. [Google Scholar] [CrossRef]
- Lomonaco, T.; Romani, A.; Ghimenti, S.; Biagini, D.; Bellagambi, F.G.; Onor, M.; Salvo, P.; Fuoco, R.; Di Francesco, F. Determination of carbonyl compounds in exhaled breath by on-sorbent derivatization coupled with thermal desorption and gas chromatography-tandem mass spectrometry. J. Breath. Res. 2018, 12, 046004. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.S.H.; Yu, J.Z. Feasibility of Collection and Analysis of Airborne Carbonyls by On-Sorbent Derivatization and Thermal Desorption. Anal. Chem. 2002, 74, 1232–1240. [Google Scholar] [CrossRef]
- Cecinato, A.; Yassaa, N.; Di Palo, V.; Possanzini, M.; Cecinato, A. Observation of volatile and semi-volatile carbonyls in an Algerian urban environment using dinitrophenylhydrazine/silica-HPLC and pentafluorophenylhydrazine/silica-GC-MS. J. Environ. Monit. 2002, 4, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Schmarr, H.G.; Sang, W.; Ganß, S.; Fischer, U.; Köpp, B.; Schulz, C.; Potouridis, T. Analysis of aldehydes via headspace SPME with on-fiber derivatization to their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives and comprehensive 2D-GC-MS. J. Sep. Sci. 2008, 31, 3458–3465. [Google Scholar] [CrossRef] [PubMed]
- Borrás, E.; Tortajada-Genaro, L.A.; Ródenas, M.; Vera, T.; Speak, T.; Seakins, P.; Shaw, M.D.; Lewis, A.C.; Muñoz, A. On-line solid phase microextraction derivatization for the sensitive determination of multi-oxygenated volatile compounds in air. Atmos. Meas. Tech. 2021, 14, 4989–4999. [Google Scholar] [CrossRef]
- Tumbiolo, S.; Gal, J.-F.; Maria, P.-C.; Zerbinati, O. Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction/gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 2004, 380, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Ghiasvand, A.R.; Hajipour, S.; Heidari, N. Cooling-assisted microextraction: Comparison of techniques and applications. TrAC 2016, 77, 54–65. [Google Scholar] [CrossRef]
- Bourdin, D.; Desauziers, V. Development of SPME on-fiber derivatization for the sampling of formaldehyde and other carbonyl compounds in indoor air. Anal. Bioanal. Chem. 2014, 406, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Tobias, H.J.; Kooiman, P.M.; Docherty, K.S.; Ziemann, P.J. Real-Time Chemical Analysis of Organic Aerosols Using a Thermal Desorption Particle Beam Mass Spectrometer. Aerosol Sci. Technol. 2000, 33, 170–190. [Google Scholar] [CrossRef]
- Williams, B.J.; Goldstein, A.H.; Kreisberg, N.M.; Hering, S.V. An in-situ instrument for speciated organic composition of atmospheric aerosols: T hermal desorption a erosol GC/MS-FID (TAG). Aerosol Sci. Technol. 2006, 40, 627–638. [Google Scholar] [CrossRef]
- Hohaus, T.; Trimborn, D.; Kiendler-Scharr, A.; Gensch, I.; Laumer, W.; Kammer, B.; Andres, S.; Boudries, H.; Smith, K.A.; Worsnop, D. A new aerosol collector for quasi on-line analysis of particulate organic matter: The Aerosol Collection Module (ACM) and first applications with a GC/MS-FID. Atmos. Meas. Tech. 2010, 3, 1423–1436. [Google Scholar] [CrossRef]
- Temime, B.; Healy, R.M.; Wenger, J.C. A denuder-filter sampling technique for the detection of gas and particle phase carbonyl compounds. Environ. Sci. Technol. 2007, 41, 6514–6520. [Google Scholar] [CrossRef]
- Eichler, P.; Müller, M.; D’Anna, B.; Wisthaler, A. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter. Atmos. Meas. Tech. 2015, 8, 1353–1360. [Google Scholar] [CrossRef]
- Vairavamurthy, A.; Roberts, J.M.; Newman, L. Methods for Determination of Low-Molecular-Weight Carbonyl-Compounds in the Atmosphere. Atmos. Env. Part. A-Gen. Topics. 1992, 26, 1965–1993. [Google Scholar] [CrossRef]
- Dong, B.; Song, X.; Tang, Y.; Lin, W. A rapid and facile fluorimetric method for detecting formaldehyde. Sens. Actuators B: Chemical. 2016, 222, 325–330. [Google Scholar] [CrossRef]
- Li, Q.; Sritharathikhun, P.; Motomizu, S. Development of Novel Reagent for Hantzsch Reaction for the Determination of Formaldehyde by Spectrophotometry and Fluorometry. Anal. Sci. 2007, 23, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Chen, J.; Chen, J.; Liu, B.; Song, G. Application of spectroscopic detection technology in formaldehyde concentration measurement. J. Mudanjiang Univ. 2010, 19, 131–132+136. [Google Scholar]
- Huang, Y. Determination of formaldehyde in air by spectrophotometric method with phenol reagent and acetylacetone spectrophotometry. Environ. Dev. 2018, 30, 115–116. [Google Scholar]
- Wang, D.; Jiang, Y.; Li, P.; Li, L.; Liu, Q.; Sun, Y. Comparison of phenol reagent spectrophotometry and acetylacetone spectrophotometry for determining formaldehyde content in air. Chin. Med. Instrum. Inf. 2017, 23, 13–15. [Google Scholar]
- Ji, K.; Su, Y.; Xiao, Y.; Liang, K.; Wang, J.; Liu, P.; Zhang, K.; Zhao, L. Key factor of the determination of formaldehyde in low concentration by phenol reagent spectrophotometry. Chem. Ind. Progr. 2020, 39, 281–286. [Google Scholar]
- GB/T 18204.2-2014; Examination Methods for Public Place. Part 2: Chemical Pollutant. Standards Press of China: Beijing, China, 2014.
- Wang, Q. Influence factors of determination of formaldehyde concentration by AHMT spectrophotometry. Chem. Eng. 2018, 32, 34–37. [Google Scholar]
- Wei, K.; Ma, L.; Ma, G.; Ji, C.; Yin, M. A two-step responsive colorimetric probe for fast detection of formaldehyde in weakly acidic environment. Dye. Pigments. 2019, 165, 294–300. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Mubarak, A.T.; Marestani, Z.M.H.; Fawy, K.F. Highly sensitive and selective catalytic determination of formaldehyde and acetaldehyde. Talanta. 2008, 74, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, L.M.; Brassington, D.J.; Allan, B.J.; Coe, H.; Alicke, B.; Platt, U.; Wilson, K.M.; Plane, J.M.C.; Penkett, S.A. Intercomparison of Formaldehyde Measurements in Clean and Polluted Atmospheres. J. Atmos. Chem. 2000, 37, 53–80. [Google Scholar] [CrossRef]
- Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A.S.H.; Junkermann, W.; Astorga-Lloréns, C.; et al. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air. Atmos. Chem. Phys. 2005, 5, 2881–2900. [Google Scholar] [CrossRef]
- Catoire, V.; Bernard, F.; Mébarki, Y.; Mellouki, A.; Eyglunent, G.; Daële, V.; Robert, C. A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation. J. Environ. Sci. 2012, 24, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Kleine, D.; Mürtz, M.; Lauterbach, J.; Dahnke, H.; Urban, W.; Hering, P.; Kleinermanns, K. Atmospheric trace gas analysis with cavity ring-down spectroscopy. Isr. J. Chemistry. 2001, 41, 111–116. [Google Scholar] [CrossRef]
- Peltola, J.; Vainio, M.; Ulvila, V.; Siltanen, M.; Metsälä, M.; Halonen, L. Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator. Appl. Phys. B 2012, 107, 839–847. [Google Scholar] [CrossRef]
- Motyka, K.; Mikuska, P. Continuous fluorescence determination of formaldehyde in air. Anal. Chim. Acta. 2004, 518, 51–57. [Google Scholar] [CrossRef]
- Xu, R.; Li, X.; Dong, H.; Wu, Z.; Chen, S.; Fang, X.; Gao, J.; Guo, S.; Hu, M.; Li, D.; et al. Measurement of gaseous and particulate formaldehyde in the Yangtze River Delta, China. Atmos. Environ. 2020, 224, 117114. [Google Scholar] [CrossRef]
- Jiang, J.; Zeng, L. The design and application of an online gaseous formaldehyde analyzer. Acta Sci. Circumst. 2018, 38, 3475–3481. [Google Scholar]
- Henry, S.B.; Kammrath, A.; Keutsch, F.N. Quantification of gas-phase glyoxal and methylglyoxal via the Laser-Induced Phosphorescence of (methyl)GLyOxal Spectrometry (LIPGLOS) Method. Atmos. Meas. Tech. 2012, 5, 181–192. [Google Scholar] [CrossRef]
- Volkamer, R.; Molina, L.T.; Molina, M.J.; Shirley, T.; Brune, W.H. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air. Geophys. Res. Lett. 2005, 32, L08806. [Google Scholar] [CrossRef]
- MacDonald, S.M.; Oetjen, H.; Mahajan, A.S.; Whalley, L.K.; Edwards, P.M.; Heard, D.E.; Jones, C.E.; Plane, J.M.C. DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest. Atmos. Chem. Phys. 2012, 12, 5949–5962. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Hu, Q.; Zhang, Y.; Xing, C.; Ou, J.; Tan, W.; Liu, H.; Huang, X.; Wu, Z. Vertical distribution and temporal evolution of formaldehyde and glyoxal derived from MAX-DOAS observations: The indicative role of VOC sources. J. Environ. Sci. 2022, 122, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Thalman, R.; Volkamer, R. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode. Atmos. Meas. Tech. 2010, 3, 1797–1814. [Google Scholar] [CrossRef]
- Washenfelder, R.A.; Langford, A.O.; Fuchs, H.; Brown, S.S. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer. Atmos. Chem. Phys. 2008, 8, 7779–7793. [Google Scholar] [CrossRef]
- Flowerday, C.E.; Thalman, R.; Asplund, M.C.; Hansen, J.C.J.T. Broadband Cavity-Enhanced Absorption Spectroscopy (BBCEAS) Coupled with an Interferometer for On-Band and Off-Band Detection of Glyoxal. Toxics 2023, 12, 26. [Google Scholar] [CrossRef]
- An, C.; Yan, Y.; Gao, X.; Yan, X.; Ji, Y.; Shang, F.; Li, J.; Tan, L.; Gao, R.; Bi, F.; et al. A Comparative Investigation of the Characteristics of Nocturnal Ozone Enhancement Events and Their Effects on Ground-Level Ozone and PM2.5 in the Central City of the Yellow River Delta, China, in 2022 and 2023. Atmosphere 2024, 15, 475. [Google Scholar] [CrossRef]
- Fang, B.; Yang, N.; Wang, C.; Zhao, W.; Zhou, H.; Zhang, W. Highly sensitive portable laser absorption spectroscopy formaldehyde sensor using compact spherical mirror multi-pass cell. Sens. Actuators B Chem. 2023, 394, 134379. [Google Scholar] [CrossRef]
- Darder, M.d.M.; Bedoya, M.; Serrano, L.A.; Alba, M.Á.; Orellana, G. Fiberoptic colorimetric sensor for in situ measurements of airborne formaldehyde in workplace environments. Sens. Actuators B Chem. 2022, 353, 131099. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, C.; Meng, F. Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review. Chemosensors. 2021, 9, 179. [Google Scholar] [CrossRef]
- Warneke, C.; Veres, P.; Holloway, J.S.; Stutz, J.; Tsai, C.; Alvarez, S.; Rappenglueck, B.; Fehsenfeld, F.C.; Graus, M.; Gilman, J.B.; et al. Airborne formaldehyde measurements using PTR-MS: Calibration, humidity dependence, inter-comparison and initial results. Atmos. Meas. Tech. 2011, 4, 2345–2358. [Google Scholar] [CrossRef]
- Platt, U.; Perner, D.; Pätz, H.W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption. J. Geophys. Res. Oceans 1979, 84, 6329–6335. [Google Scholar] [CrossRef]
- Stutz, J.; Platt, U. Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer. Appl. Opt. 1997, 36, 1105–1115. [Google Scholar] [CrossRef]
- Grutter, M.; Flores, E.; Andraca-Ayala, G.; Báez, A. Formaldehyde levels in downtown Mexico City during 2003. Atmos. Environ. 2005, 39, 1027–1034. [Google Scholar] [CrossRef]
- Heckel, A.; Richter, A.; Tarsu, T.; Wittrock, F.; Hak, C.; Pundt, I.; Junkermann, W.; Burrows, J.P. MAX-DOAS measurements of formaldehyde in the Po-Valley. Atmos. Chem. Phys. 2005, 5, 909–918. [Google Scholar] [CrossRef]
- Tuazon, E.C.; Graham, R.A.; Winer, A.M.; Easton, R.R.; Pitts, J.N.; Hanst, P.L. A kilometer pathlength fourier-transform infrared system for the study of trace pollutants in ambient and synthetic atmospheres. Atmos. Environ (1967) 1978, 12, 865–875. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Clairotte, M.; Arlitt, B.; Nakatani, S.; Hill, L.; Winkler, K.; Kaarsberg, C.; Knauf, T.; Zijlmans, R.; Boertien, H.J.F. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC. Fuel 2017, 203, 330–340. [Google Scholar] [CrossRef]
- Becker, K.H.; Schurath, U.; Tatarczyk, T. Fluorescence Determination of Low Formaldehyde Concentrations in Air by Dye Laser Excitation. Appl. Opt. 1975, 14, 310–313. [Google Scholar] [CrossRef]
- Möhlmann, G.R. Formaldehyde Detection in Air by Laser-Induced Fluorescence. Appl. Spectrosc. 1985, 39, 98–101. [Google Scholar] [CrossRef]
- Cazorla, M.; Wolfe, G.M.; Bailey, S.A.; Swanson, A.K.; Arkinson, H.L.; Hanisco, T.F. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere. Atmos. Meas. Tech. 2015, 8, 541–552. [Google Scholar] [CrossRef]
- Hottle, J.R.; Huisman, A.J.; Digangi, J.P.; Kammrath, A.; Galloway, M.M.; Coens, K.L.; Keutsch, F.N. A Laser Induced Fluorescence-Based Instrument for In-Situ Measurements of Atmospheric Formaldehyde. Environ. Sci. Technol. 2009, 43, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Clair, J.M.; Swanson, A.K.; Bailey, S.A.; Hanisco, T.F. CAFE: A new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde. Atmos. Meas. Tech. 2019, 12, 4581–4590. [Google Scholar] [CrossRef]
- Harris, G.W.; Mackay, G.I.; Iguchi, T.; Mayne, L.K.; Schiff, H.I. Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy. J. Atmos. Chem. 1989, 8, 119–137. [Google Scholar] [CrossRef]
- Mackay, G.I.; Karecki, D.R.; Schiff, H.I. Tunable diode laser absorption measurements of H2O2 and HCHO during the Mauna Loa Observatory Photochemistry Experiment. J. Geophys. Res. Atmos. 1996, 101, 14721–14728. [Google Scholar] [CrossRef]
- Richter, D.; Fried, A.; Wert, B.P.; Walega, J.G.; Tittel, F.K. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection. Appl. Phys. B. 2002, 75, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Herndon, S.C.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.; McManus, J.B.; Jiménez, R.; Warneke, C.; de Gouw, J.A. Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer. J. Geophys. Res. Atmos. 2007, 112, D10. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt. 2011, 50, A74–A85. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Yu, Y.; Li, C.; So, S.; Tittel, F.K. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell. Opt. Express. 2015, 23, 19821–19830. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Yang, N.N.; Zhao, W.X.; Wang, C.H.; Zhang, W.J.; Song, W.; Venables, D.S.; Chen, W.D. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels. Appl. Opt. 2019, 58, 8743–8750. [Google Scholar] [CrossRef]
- Rella, C.; Hoffnagle, J.; Kim-Hak, D. Quantification of atmospheric formaldehyde by near-infrared cavity ring-down spectroscopy. EGU Gen. Assem. Conf. Abstr. 2018, 20, 11101. [Google Scholar]
- Hoffnagle, J.; Fleck, D.; Rella, C.; Kim-Hak, D. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy. EGU Gen. Assem. Conf. Abstr. 2017, 19, 8972. [Google Scholar]
- Liu, J.; Li, X.; Yang, Y.; Wang, H.; Wu, Y.; Lu, X.; Chen, M.; Hu, J.; Fan, X.; Zeng, L.; et al. An IBBCEAS system for atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO2 concentrations. Atmos. Meas. Tech. 2019, 12, 4439–4453. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Yang, Y.; Wang, H.; Kuang, C.; Zhu, Y.; Chen, M.; Hu, J.; Zeng, L.; Zhang, Y. Sensitive Detection of Ambient Formaldehyde by Incoherent Broadband Cavity Enhanced Absorption Spectroscopy. Anal. Chem. 2020, 92, 2697–2705. [Google Scholar] [CrossRef] [PubMed]
- Gorrotxategi-Carbajo, P.; Fasci, E.; Ventrillard, I.; Carras, M.; Maisons, G.; Romanini, D. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit. Appl. Phys. B. 2013, 110, 309–314. [Google Scholar] [CrossRef]
- He, Q.; Zheng, C.; Lou, M.; Ye, W.; Wang, Y.; Tittel, F.K.J.O.E. Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser. Optics 2018, 26, 15436–15444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Feng, S. Sampling by canister, combining with Agilent 5977B GC/MS to analysis 13 aldehyde and keystone volatile organic compounds in Air. Environ. Chem. 2019, 38, 697–700. [Google Scholar]
- Zhou, Z.; Feng, S. Analysis of 104 volatile organic compounds in the atmosphere using canister sampling-atmospheric preconcentration instrument coupled with Agilent 5977B single quadrupole GC-MS system. Environ. Chem. 2018, 37, 1869–1872. [Google Scholar]
- Cui, T.; Li, H.; Tang, S.; Liu, C.; Gao, X.; Li, Z.; Zhang, F.; Yang, G.; Jiang, W.; Liu, Z.; et al. Determination of Aldehydes and Ketones Compounds in Mainstream Cigarette Smoke by Supercritical Fluid Chromatography and Gas Chromatography—Mass Spectrometry. J. Anal. Test. 2018, 37, 766–771. [Google Scholar]
- Chien, Y.-C.; Yin, K.-G.; Chien, Y.-C. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis. J. Environ. Monit. 2009, 11, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jeffries, H.E.; Sexton, K.G. Atmospheric photooxidation of alkylbenzenes—I. Carbonyl product analyses. Atmos. Environ. 1997, 31, 2261–2280. [Google Scholar] [CrossRef]
- Poole, J.J.; Grandy, J.J.; Gómez-Ríos, G.A.; Gionfriddo, E.; Pawliszyn, J. Solid Phase Microextraction On-Fiber Derivatization Using a Stable, Portable, and Reusable Pentafluorophenyl Hydrazine Standard Gas Generating Vial. Anal. Chem. 2016, 88, 6859–6866. [Google Scholar] [CrossRef]
- Aiello, M.; McLaren, R. Measurement of Airborne Carbonyls Using an Automated Sampling and Analysis System. Environ. Sci. Technol. 2009, 43, 8901–8907. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Qiu, X.; Zhan, S. Determination of 13 aldehyde and ketone compounds in air using ultra-high performance liquid chromatography. Environ. Chem. 2013, 32, 1823–1825. [Google Scholar]
- Wang, F.; Wang, T.; Fan, Z.; Wu, W.; Ma, W.; Bai, Z. Determination of Carbonyl Compounds in Ambient Air by Temperature/Solvent Double-Gradient High Performance Liquid Chromatography. Anhui Agric. Bull. 2015, 21, 23–25. [Google Scholar]
- Si, L.; Xing, G.; Wang, C.; Tan, L.; Chen, Y.; Yu, J.; Liu, F.; Yuan, M. Determination of aldehydes and ketones in ambient air using adsorbent cartridge followed by high performance liquid chromatography. Environ. Chem. 2019, 38, 2222–2228. [Google Scholar]
- Fan, Z.; Wang, F.; He, Y.; Ma, W. Simultaneous Determination of Multiple Carbonyl Compounds in Ambient Air. Environ. Monit. Manag. Technol. 2018, 30, 43–45. [Google Scholar]
- Tao, M.; Yin, L.; Fu, X. Determination of 16 Aldehydes and Ketones in Ambient Air by Solution Absorption-High Performance Liquid Chromatography. Sci. Technol. Innov. 2024, 2, 107–110. [Google Scholar]
- Chi, Y.; Feng, Y.; Wen, S.; Lu, H.; Yu, Z.; Zhang, W.; Sheng, G.; Fu, J. Determination of carbonyl compounds in the atmosphere by DNPH derivatization and LC-ESI-MS/MS detection. Talanta 2007, 72, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kong, Y.; Cao, J.; Li, H.; Gao, R.; Zhang, Y.; Wang, K.; Li, Y.; Ren, Y.; Wang, W. A sensitive simultaneous detection approach for the determination of 30 atmospheric carbonyls by 2,4-dinitrophenylhydrazine derivatization with HPLC-MS technique and its preliminary application. Chemosphere 2022, 303, 134985. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Feng, X.; Chen, Y.; Zheng, P.; Hui, L.; Chen, Y.; Yu, J.Z.; Wang, Z. Development of an enhanced method for atmospheric carbonyls and characterizing their roles in photochemistry in subtropical Hong Kong. Sci. Total Environ. 2023, 896, 165135. [Google Scholar] [CrossRef] [PubMed]
- Fung, K.; Grosjean, D. Determination of nanogram amounts of carbonyls as 2,4-dinitrophenylhydrazones by high-performance liquid chromatography. Anal. Chem. 1981, 53, 168–171. [Google Scholar] [CrossRef]
- MEE. Ambient Air-Determination of Aldehyde and Ketone Compounds-High: HJ683-2014; China Environmental Science Press: Beijing, China, 2020. [Google Scholar]
- Guo, S.; Chen, M.; Tan, J. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China. Atmos. Res. 2016, 169, 46–53. [Google Scholar] [CrossRef]
- Possanzini, M.; DiPalo, V. Determination of olefinic aldehydes and other volatile carbonyls in air samples by DNPH-coated cartridges and HPLC. Chromatographia 1995, 40, 134–138. [Google Scholar] [CrossRef]
- Schulte-Ladbeck, R.; Lindahl, R.; Levin, J.-O.; Karst, U.; Schulte Ladbeck, R. Characterization of chemical interferences in the determination of unsaturated aldehydes using aromatic hydrazine reagents and liquid chromatography. J. Environ. Monit. 2001, 3, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Slemr, J. Determination of volatile carbonyl compounds in clean air. Fresenius J. Anal. Chem. 1991, 340, 672–677. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, H.; Pang, Y.; Jiang, X.; Tang, G. HPLC Determination of Major Carbonyl Compounds in Mainstream ofCigarette Smoke with Solvent Trapping. Phys. Chem. Test. (Chem. Sect.) 2013, 49, 19–22. [Google Scholar]
- Liu, L.; Yuan, B.; Jin, Y. Analysis of 13 carbonyl compounds using ultra-high-performance liquid chromatography with a Carbonyl column. Environ. Chem. 2013, 32, 715–716. [Google Scholar]
- MEE. Determination of Aldehydes and Ketones in Ambient Air by Solution Absorption-High Performance Liquid Chromatography: HJ 1154-2020; China Environmental Science Press: Beijing, China, 2020. [Google Scholar]
- Castellani, F.; Antonucci, A.; Pindinello, I.; Protano, C.; Vitali, M. Determination of Carbonyl Compounds in Different Work Environments: Comparison between LC-UV/DAD and LC–MS/MS Detection Methods. Int. J. Environ. Res. Public Health. 2022, 19, 12052. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, V.; Coeckelberghs, H.; Vankerckhoven, H.; Compernolle, F.; Vinckier, C. Study of the carbonyl products of terpene/OH radical reactions: Detection of the 2,4-DNPH derivatives by HPLC-MS. Anal. BioAnal. Chem. 2004, 379, 484–494. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, S.M.; Hendriksen, L.; Karst, U. Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography–atmospheric pressure photoionization-mass spectrometry. J. Chromatogr. A 2004, 1058, 107–112. [Google Scholar] [CrossRef]
- Li, M.; Biswas, S.; Nantz, M.H.; Higashi, R.M.; Fu, X.-A. Preconcentration and Analysis of Trace Volatile Carbonyl Compounds. Anal. Chem. 2012, 84, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- MEE. Determination of 65 Volatile Organic Compounds in Ambient Air by Canister Sampling and Gas Chromatography-Mass Spectrometry: HJ 759–2023; China Environmental Science Press: Beijing, China, 2023. [Google Scholar]
- ZOU, T.; FENG, Y.; FU, Z.; MU, C.; ZHAI, J. Determination of mono- and dicarbonyls in the atmosphere using gas chromatography/mass spectrometry after PFBHA derivatization. ASC 2012, 32, 718–2724. [Google Scholar]
- Fuson, N.; Josien, M.-L.; Shelton, E.M. An Infrared Spectroscopic Study of the Carbonyl Stretching Frequency in Some Groups of Ketones and Quinones. J. Am. Chem. Soc. 1954, 76, 2526–2533. [Google Scholar] [CrossRef]
- Wang, F.; Ho, S.S.H.; Man, C.L.; Qu, L.; Wang, Z.; Ning, Z.; Ho, K.F. Characteristics and sources of oxygenated VOCs in Hong Kong: Implications for ozone formation. Sci. Total Environ. 2024, 912, 169156. [Google Scholar] [CrossRef] [PubMed]
- Olariu, R.I.; Klotz, B.; Barnes, I.; Becker, K.H.; Mocanu, R. FT–IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmos. Environ. 2002, 36, 3685–3697. [Google Scholar] [CrossRef]
- Delgado-Saborit, J.M.; Alam, M.S.; Godri Pollitt, K.J.; Stark, C.; Harrison, R.M. Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmos. Environ. 2013, 77, 974–982. [Google Scholar] [CrossRef]
- Chung, M.Y.; Lazaro, R.A.; Lim, D.; Jackson, J.; Lyon, J.; Rendulic, D.; Hasson, A.S. Aerosol-Borne Quinones and Reactive Oxygen Species Generation by Particulate Matter Extracts. Environ. Sci. Technol. 2006, 40, 4880–4886. [Google Scholar] [CrossRef] [PubMed]
- Sousa, E.T.; Cardoso, M.P.; Silva, L.A.; de Andrade, J.B. Direct determination of quinones in fine atmospheric particulate matter by GC–MS. Microchem. J. 2015, 118, 26–31. [Google Scholar] [CrossRef]
- Wnorowski, A.; Charland, J.-P. Profiling quinones in ambient air samples collected from the Athabasca region (Canada). Chemosphere 2017, 189, 55–66. [Google Scholar] [CrossRef]
- Dos Santos, R.R.; Cardeal, Z.d.L.; Menezes, H.C. Phase distribution of polycyclic aromatic hydrocarbons and their oxygenated and nitrated derivatives in the ambient air of a Brazilian urban area. Chemosphere 2020, 250, 126223. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Lee, J.-Y.; Jang, K.-S.; Matsuki, A.; Natsagdorj, A.; Ahn, Y.-G. Development of Quantitative Chemical Ionization Using Gas Chromatography/Mass Spectrometry and Gas Chromatography/Tandem Mass Spectrometry for Ambient Nitro- and Oxy-PAHs and Its Applications. Molecules 2023, 28, 775. [Google Scholar] [CrossRef] [PubMed]
- Apel, E.C.; Riemer, D.D.; Hills, A.; Baugh, W.; Orlando, J.; Faloona, I.; Tan, D.; Brune, W.; Lamb, B.; Westberg, H.; et al. Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive. J. Geophys. Res. Atmos. 2002, 107, 4034. [Google Scholar] [CrossRef]
- Hamilton, J.F.; Webb, P.J.; Lewis, A.C.; Hopkins, J.R.; Smith, S.; Davy, P. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmos. Chem. Phys. 2004, 4, 1279–1290. [Google Scholar] [CrossRef]
- Prazeller, P.; Palmer, P.T.; Boscaini, E.; Jobson, T.; Alexander, M. Proton transfer reaction ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Warneke, C.; Rosén, S.; Lovejoy, E.R.; de Gouw, J.A.; Fall, R. Two additional advantages of proton-transfer ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 18, 133–134. [Google Scholar] [CrossRef]
- Graus, M.; Müller, M.; Hansel, A. High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time. J. Am. Soc. Mass Spectrom. 2010, 21, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Guo, Y.; Li, M.; Li, J.; Yang, D.; Hou, K. Development and Application of a Chemical Ionization Focusing Integrated Ionization Source TOFMS for Online Detection of OVOCs in the Atmosphere. Molecules 2023, 28, 6600. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Li, X.; Yang, S.; Yu, X.; Zhou, S.; Yang, Y.; Chen, S.; Dong, H.; Liao, K.; Chen, Q.; et al. Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi’an, China. Atmos. Chem. Phys. 2021, 21, 4939–4958. [Google Scholar] [CrossRef]
- Apel, E.C.; Hills, A.J.; Lueb, R.; Zindel, S.; Eisele, S.; Riemer, D.D. A fast-GC/MS system to measure C2 to C4 carbonyls and methanol aboard aircraft. J. Geophys. Res. 2003, 108, 8794. [Google Scholar] [CrossRef]
- Waterman, D.; Horsfield, B.; Leistner, F.; Hall, K.; Smith, S. Quantification of Polycyclic Aromatic Hydrocarbons in the NIST Standard Reference Material (SRM1649A) Urban Dust Using Thermal Desorption GC/MS. Anal. Chem. 2000, 72, 3563–3567. [Google Scholar] [CrossRef]
- Williams, B.J.; Zhang, Y.; Zuo, X.; Martinez, R.E.; Walker, M.J.; Kreisberg, N.M.; Goldstein, A.H.; Docherty, K.S.; Jimenez, J.L. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. Atmos. Meas. Tech. 2016, 9, 1569–1586. [Google Scholar] [CrossRef]
- Maher, S.; Jjunju, F.P.M.; Taylor, S. Colloquium: 100 years of mass spectrometry: Perspectives and future trends. Rev. Mod. Phys. 2015, 87, 113–135. [Google Scholar] [CrossRef]
- Buiarelli, F.; Canepari, S.; Di Filippo, P.; Perrino, C.; Pomata, D.; Riccardi, C.; Speziale, R. Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol by HPLC–MS–MS and GC–MS. Talanta 2013, 105, 142–151. [Google Scholar] [CrossRef]
- Mirsaleh-Kohan, N.; Robertson, W.D.; Compton, R.N. Electron ionization time-of-flight mass spectrometry: Historical review and current applications. Mass Spectrom. Rev. 2008, 27, 237–285. [Google Scholar] [CrossRef]
- Bertram, T.H.; Kimmel, J.R.; Crisp, T.A.; Ryder, O.S.; Yatavelli, R.L.N.; Thornton, J.A.; Cubison, M.J.; Gonin, M.; Worsnop, D.R. A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmos. Meas. Tech. 2011, 4, 1471–1479. [Google Scholar] [CrossRef]
- Adam, T.; Zimmermann, R. Determination of single photon ionization cross sections for quantitative analysis of complex organic mixtures. Anal. BioAnal. Chem. 2007, 389, 1941–1951. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Fenn, J.B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459. [Google Scholar] [CrossRef]
- Awad, H.; Khamis, M.M.; El-Aneed, A. Mass Spectrometry, Review of the Basics: Ionization. Appl. Spectrosc. Rev. 2014, 50, 158–175. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef]
- Kim, S.; Karl, T.; Guenther, A.; Tyndall, G.; Orlando, J.; Harley, P.; Rasmussen, R.; Apel, E. Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC) in a ponderosa pine ecosystem: Interpretation of PTR-MS mass spectra. Atmos. Chem. Phys. 2010, 10, 1759–1771. [Google Scholar] [CrossRef]
- Steinbacher, M.; Dommen, J.; Ammann, C.; Spirig, C.; Neftel, A.; Prevot, A.S.H. Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements. Int. J. Mass Spectrom. 2004, 239, 117–128. [Google Scholar] [CrossRef]
- Müller, M.; Mikoviny, T.; Feil, S.; Haidacher, S.; Hanel, G.; Hartungen, E.; Jordan, A.; Märk, L.; Mutschlechner, P.; Schottkowsky, R.; et al. A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at high spatiotemporal resolution. Atmos. Meas. Tech. 2014, 7, 3763–3772. [Google Scholar] [CrossRef]
- Thalman, R.; Baeza-Romero, M.T.; Ball, S.M.; Borrás, E.; Daniels, M.J.S.; Goodall, I.C.A.; Henry, S.B.; Karl, T.; Keutsch, F.N.; Kim, S.; et al. Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions. Atmos. Meas. Tech. 2015, 8, 1835–1862. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, H.; Qi, F. Recent developments in synchrotron vacuum ultraviolet photoionization coupled to mass spectrometry. TrAC Trends Anal. Chem. 2011, 30, 1400–1409. [Google Scholar] [CrossRef]
- Lipson, R.H.; Dimov, S.S.; Wang, P.; Shi, Y.J.; Mao, D.M.; Hu, X.K.; Vanstone, J. VACUUM ULTRAVIOLET AND EXTREME ULTRAVIOLET LASERS: PRINCIPLES, INSTRUMENTATION, AND APPLICATIONS. Instrum. Sci. Technol. 2000, 28, 85–118. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Shu, J.; Ma, P.; Zhang, P.; Huang, J.; Li, Z.; Xu, C. A VUV-excited and CHCl/HO-amplified ionization-coupled mass spectrometry for oxygenated organics analysis. Anal. Chem. 2017, 90, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, Q.; Hua, L.; Chen, P.; Hu, F.; Wan, N.; Li, H. Highly selective and sensitive online measurement of trace exhaled HCN by acetone-assisted negative photoionization time-of-flight mass spectrometry with in-source CID. Anal. Chim. Acta. 2020, 1111, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Liu, R.; Dong, F.; Liu, B.; Hou, K. Vacuum ultraviolet photoionization on-line mass spectrometry: Instrumentation developments and applications. TrAC Trends Anal. Chem. 2022, 149, 116542. [Google Scholar] [CrossRef]
- Zogka, A.G.; Romanias, M.N.; Thevenet, F. Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS). Atmos. Meas. Tech. 2022, 15, 2001–2019. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Tillmann, R.; Hohaus, T.; Müller, M.; Eichler, P.; Xu, K.-M.; Schlag, P.; Schmitt, S.H.; Wegener, R.; Kaminski, M.; et al. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: A study on freshly formed and aged biogenic SOA. Atmos. Meas. Tech. 2018, 11, 1481–1500. [Google Scholar] [CrossRef]
- Timkovsky, J.; Dusek, U.; Henzing, J.S.; Kuipers, T.L.; Röckmann, T.; Holzinger, R. Offline thermal-desorption proton-transfer-reaction mass spectrometry to study composition of organic aerosol. J. Aerosol Sci. 2015, 79, 1–14. [Google Scholar] [CrossRef]
- Vogel, A.L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D.R.; Kulmala, M.; Williams, J.; Hoffmann, T. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol—A laboratory and field study. Atmos. Meas. Tech. 2013, 6, 431–443. [Google Scholar] [CrossRef]
- Thompson, S.L.; Yatavelli, R.L.N.; Stark, H.; Kimmel, J.R.; Krechmer, J.E.; Day, D.A.; Hu, W.; Isaacman-VanWertz, G.; Yee, L.; Goldstein, A.H.; et al. Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Sci. Technol. 2016, 51, 30–56. [Google Scholar] [CrossRef]
- Klotz, B.; Sørensen, S.; Barnes, I.; Becker, K.H.; Etzkorn, T.; Volkamer, R.; Platt, U.; Wirtz, K.; Martín-Reviejo, M. Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields. J. Phys. Chem. A 1998, 102, 10289–10299. [Google Scholar] [CrossRef]
- Romano, A.; Hanna, G.B. Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: An experimental workflow for the optimization of specificity, sensitivity, and accuracy. J. Mass Spectrom. 2018, 53, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, R.; Williams, J.; Herrmann, F.; Lelieveld, J.; Donahue, N.M.; Röckmann, T. Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): A new approach to study processing of organic aerosols. Atmos. Chem. Phys. 2010, 10, 2257–2267. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Hohaus, T.; Tillmann, R.; Gensch, I.; Müller, M.; Eichler, P.; Xu, K.-M.; Schlag, P.; Schmitt, S.H.; Yu, Z.; et al. Gas-to-particle partitioning of major biogenic oxidation products: A study on freshly formed and aged biogenic SOA. Atmos. Chem. Phys. 2018, 18, 12969–12989. [Google Scholar] [CrossRef]
- Kourtchev, I.; Bejan, I.; Sodeau, J.R.; Wenger, J.C. Gas-phase reaction of (E)-β-farnesene with ozone: Rate coefficient and carbonyl products. Atmos. Environ. 2009, 43, 3182–3190. [Google Scholar] [CrossRef]
- Kourtchev, I.; Bejan, I.; Sodeau, J.R.; Wenger, J.C. Gas phase reaction of OH radicals with (E)-β-farnesene at 296±2 K: Rate coefficient and carbonyl products. Atmos. Environ. 2012, 46, 338–345. [Google Scholar] [CrossRef]
- Spittler, M.; Barnes, I.; Bejan, I.; Brockmann, K.J.; Benter, T.; Wirtz, K. Reactions of NO3 radicals with limonene and α-pinene: Product and SOA formation. Atmos. Environ. 2006, 40, 116–127. [Google Scholar] [CrossRef]
- Gómez Alvarez, E.; Viidanoja, J.; Muñoz, A.; Wirtz, K.; Hjorth, J. Experimental Confirmation of the Dicarbonyl Route in the Photo-oxidation of Toluene and Benzene. Environ. Sci. Technol. 2007, 41, 8362–8369. [Google Scholar] [CrossRef] [PubMed]
- Löher, F.; Borrás, E.; Muñoz, A.; Nölscher, A.C. Characterization of a new Teflon chamber and on-line analysis of isomeric multifunctional photooxidation products. Atmos. Meas. Tech. 2024, 17, 4553–4579. [Google Scholar] [CrossRef]
- Komenda, M.; Schaub, A.; Koppmann, R. Description and characterization of an on-line system for long-term measurements of isoprene, methyl vinyl ketone, and methacrolein in ambient air. J. Chromatogr. A 2003, 995, 185–201. [Google Scholar] [CrossRef] [PubMed]
Method | Optimization | LOD 1 | TR 2 | Species | Remarks | Ref. |
---|---|---|---|---|---|---|
Canisters GC-MS | Optimize instrument parameters and column temperature box heating program | 0.49~1.1 μg/m3 | 30 min | 13 carbonyls | Suitable for the determination of low-concentration OVOCs (C4–C8) | [39,42] |
Combining Deans Switch center cutting technique | 0.009~0.134 nmol/mol | 1 h | 13 carbonyls | Improved separation performance of GC | [123,124] | |
Super-critical fluid chromatography (SFC)-GC-MS | Supercritical fluid as the mobile phase | - | 1 h | 57 carbonyls (13 aldehydes and 44 ketones) | Enhanced separation capability; addressing the limited peak capacity issue of GC-MS | [125] |
Liquid coating PFPH-GC-MS | PFPH as derivatization reagent | 3.7–11.6 ng/tube | 1 h | 20 carbonyls | Improved stability of derivatives and increased sampling efficiency | [34] |
3–10 ng/tube | C4-C11 Straight-chain aldehydes and some ketones | [51] | ||||
Multi-bed adsorbent and TD technique | 1.8~25.4 ng/tube | 1 h | 6 carbonyls | Achieved simultaneous detection of aldehydes, ketones, and aromatic hydrocarbons | [126] | |
TD technique | 0.3 ppb/24 L | 1 h | 16 carbonyls | Low detection limit and simplified operation process | [52] | |
Gas coating PFPH-GC-MS | Optimal sampling flow rate and solvent extraction | 0.08~0.20 ppb/24 L | 1 h | 21 carbonyls | Low species background concentration level | [46] |
GC-MS | Impinger containing PFBHA | 5~679 ppb | Several to dozens of hours | Aromatic aldehydes, quinones, di-carbonyls | Suitable for the detection and identification of various carbonyl compounds in smog | [127] |
Denuder coated with PFBHA and XAD-4 | 0.2–0.7 μg/m3 | Several tens of minutes | 23 carbonyls | Suitable for gas-particle distribution research, with strong ability to distinguish isomers | [66] | |
GC-MS | Derivatization with PFBHA on SPME fiber | - | Several minutes | C4~C9 linear aldehydes | In situ derivatization | [128] |
GC-MS/GC-FID | 0.2–1.9 μg/m3 | <30 min | 5 carbonyls | [62] | ||
Solid adsorption DNPH-HPLC-UV | Single-use micro-silica DNPH column and automated system | - | 2 h | 6 carbonyls | Achieved continuous operation of sampling and analysis, reducing manual intervention | [129] |
Ultra-HPLC (UHPLC) | 0.002~0.004 mg/L | 4 min | 13 carbonyls | Significantly shortened analysis time, addressing the high-throughput sample demand | [130] | |
Temperature and binary solvent gradient | 0.04~0.19 μg/m3 | 35 min | Addressed the issue of difficulty in separating C3 and C4 components | [131] | ||
Acidic DNPH adsorption tube sampling, elution time controlled within 6 h | 0.16~0.71 μg/m3 | 30 min | From reaction kinetics perspective, addressed the issue of the impact of hydrazone derivatives of unsaturated aldehydes on quantification | [132] | ||
New type of chromatography column and column temperature regulation | 0.025~0.091 μg/m3 | 40 min | 22 carbonyls | Improved chromatographic separation capability | [133] | |
DNPH-HPLC-UV | Solution absorption | 0.001~0.002 mg/m3 | 40 min | 16 carbonyls | Liquid-phase sampling method | [134] |
HPLC-ESI-TOF-MS | Denuder coated by XAD-4 and 2,4- DNPH | 0.9 ppt–0.3 ppb | 1 h | 12 carbonyls | In situ derivatization | [50] |
DNPH-HPLC/ESI-MS/MS | ESI ion source | 0.4–9.4 ng/m3 | 1 h | 32 carbonyls | Difficult to distinguish compounds with the same molecular weight or similar chemical properties | [135] |
DNPH-HPLC/APCI-MS | APCI ion source | 0.005–0.049 μg/m3 | 1 h | 30 carbonyls | Difficult to distinguish isomers with similar retention times | [136] |
DNPH-UHPLC-MS/MS | MS/MS | 0.002~0.07 μg/m3 | 1 h | 47 carbonyls | Capable of analyzing multiple types of OVOCs | [137] |
Method | Optimization | LOD | TR | Species | Remarks | Ref. |
---|---|---|---|---|---|---|
GC-FID/MS | Ultra-low-temperature pre-concentration | - | 10 min | C2–C3 hydrocarbons; C5–C12 hydrocarbons, halogenated hydrocarbons, and OVOCs | Detection limit lower than that of manual sampling detection | [39] |
Three-stage trap pre-concentration | <5 ppt | 30 min | MAC and MVK | Improved detection capability for low-concentration compounds | [162] | |
Low-temperature empty tube cryo-concentration technique | 0.03~0.7 μg/m3 | 1 h | 13 carbonyls | Addressed the irreversible loss in adsorption tube sampling; improved capture capability for polar aldehydes and ketones | [30] | |
Refrigeration system without refrigerant | 0.008~ 0.026 ppb | 60 min | C3–C6 carbonyls | Suitable for remote areas or regions lacking liquid nitrogen supply | [40] | |
Ultra-low-temperature freezing collection device and thermal desorption | 0.004~ 0.012 ppb | 1 h | 12 carbonyls | Species loss is reduced through cold trap water removal and PTFE tubing | [32] | |
GC-MS | Online SPME derivatization | 6–100 pptv | <20 min | 12 carbonyls | Direct sampling and derivatization | [59] |
GC×GC-TOF/MS | Online TD combined with two-dimensional GC | 10,000 components/10 μg | - | Linear C5 to C9 aldehydes, C8 to C13 ketones, and some cyclic products such as furanone | In situ testing; used in conjunction with PTR-MS; complex data | [163] |
PTR-IT-MS | Ion trap (IT) | ~100 ppb | 220 ms | Acetaldehyde, acetone, MVK, and propionaldehyde | Capable of detecting species overlooked by GC-MS low detection limits | [164,165] |
PTR-TOF-MS | Time-of-flight (TOF) | ~ppt | - | Acrolein, acetone, 2-butanone, hexanone | Suitable for the differentiation of isomers | [166] |
CIFI-TOF-MS | Chemical ionization focused integrated (CIFI) ionization source | 6~200 ppt | 40 μs | 12 carbonyls | Complex ion source design and instrument setup | [167] |
Type | Method | Problem | Challenge |
---|---|---|---|
Sampling method | Tube sampling | Simultaneous sampling of multiple carbonyl species | Developing novel adsorbents or efficient solvents |
Canister sampling | Designing canisters made from new materials | ||
Cryogenic enrichment | Advancing cryogen-free enrichment techniques and optimizing cold trap devices | ||
Derivatization technique | Sample loss; time consumption | Designing derivatization reagents with immediate derivatization, high derivative stability, and good sensitivity and selectivity; efficient combination of sampling equipment and derivative materials | |
Online analytical methods | Spectroscopic | Poor stability; bulky volume; multiple program units for derivative fluorescence equipment | Research on optical path improvement technique and design of precision equipment |
Gas sensors | Significant environmental impact; limitations in sensor materials | Developing new sensor materials | |
GC-FID/MS | Unstable instrument status; lack of standard gas; single capture technique | Instrument maintenance; development of new standard gas and sampling technique | |
Other online MS | Poor stability of ion source; difficult to distinguish between isomers; complex mass spectrum | Ion source optimization; MS maintenance; combining big data technique | |
Offline analytical methods | Fluorescence and spectrophotometry methods | Multiple types of reagents; low time resolution | Optimization of analysis conditions; reagent selection |
DNPH-HPLC-UV | High blanks; sampling parameter settings; derivative products impacting on detection results; limited availability of standards | Standardization of sampling methods; exploration of derivatization mechanisms | |
Chromatography tandem MS | Complex MS operations; multiple pre-experiments | Improving MS operation techniques; determining the instrument analysis conditions | |
Analytical methods for chamber | Spectroscopic | Poor stability | Complex environment detection |
PTR-MS | Difficult to distinguish between isomers | Use of multiple methods combined | |
GC-MS | Poor time resolution | ||
PTR-MS/GC-MS | Complex data processing and operation, significant influence of chamber itself and sampling system | Combining big data technique; conduct research on the impact of chamber itself and sampling system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhang, X.; Nie, Y.; Bao, J.; Li, J.; Gao, R.; Li, Y.; Wei, W.; Yan, X.; Yan, Y.; et al. Analytical Methods for Atmospheric Carbonyl Compounds: A Review. Atmosphere 2025, 16, 107. https://doi.org/10.3390/atmos16010107
Gao X, Zhang X, Nie Y, Bao J, Li J, Gao R, Li Y, Wei W, Yan X, Yan Y, et al. Analytical Methods for Atmospheric Carbonyl Compounds: A Review. Atmosphere. 2025; 16(1):107. https://doi.org/10.3390/atmos16010107
Chicago/Turabian StyleGao, Xiaoshuai, Xin Zhang, Yan Nie, Jiemeng Bao, Junling Li, Rui Gao, Yunfeng Li, Wei Wei, Xiaoyu Yan, Yongxin Yan, and et al. 2025. "Analytical Methods for Atmospheric Carbonyl Compounds: A Review" Atmosphere 16, no. 1: 107. https://doi.org/10.3390/atmos16010107
APA StyleGao, X., Zhang, X., Nie, Y., Bao, J., Li, J., Gao, R., Li, Y., Wei, W., Yan, X., Yan, Y., & Li, H. (2025). Analytical Methods for Atmospheric Carbonyl Compounds: A Review. Atmosphere, 16(1), 107. https://doi.org/10.3390/atmos16010107