Mediating Effect of the Stay-at-Home Order on the Association between Mobility, Weather, and COVID-19 Infection and Mortality in Indiana and Kentucky: March to May 2020
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive
3.1.1. Cox Regression: COVID-19 Infection
3.1.2. Cox Regression: COVID-19 Mortality
3.1.3. Cox Regression: Sensitivity Analysis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Warner, M.E. COVID-19 Policy Differences across US States: Shutdowns, Reopening, and Mask Mandates. Int. J. Environ. Res. Public. Health 2020, 17, 9520. [Google Scholar] [CrossRef] [PubMed]
- Chiu, N.C.; Chi, H.; Tai, Y.L.; Peng, C.C.; Tseng, C.Y.; Chen, C.C.; Tan, B.F.; Lin, C.Y. Impact of Wearing Masks, Hand Hygiene, and Social Distancing on Influenza, Enterovirus, and All-Cause Pneumonia During the Coronavirus Pandemic: Retrospective National Epidemiological Surveillance Study. J. Med. Internet Res. 2020, 22, e21257. [Google Scholar] [CrossRef]
- McGrail, D.J.; Dai, J.; McAndrews, K.M.; Kalluri, R. Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates. PLoS ONE 2020, 15, e0236619. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.M.; Salunkhe, S.S.; White, K.B.; Alzahrani, S.A.; Little, B.; McKinney, W.P.; DuPre, N.; Mitra, R.; Chen, Y.; Popescu, M.M.; et al. Facial Mask Use and COVID-19 Protection Measures in Jefferson County, Kentucky: Results from an Observational Survey, November 5−11, 2020. Univ. Louisville J. Respir. Infect. 2021, 5, 7. [Google Scholar] [CrossRef]
- Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann. Intern. Med. 2021, 174, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Achaiah, N.C.; Subbarajasetty, S.B.; Shetty, R.M. R0 and Re of COVID-19: Can We Predict When the Pandemic Outbreak will be Contained? Indian. J. Crit. Care Med. 2020, 24, 1125–1127. [Google Scholar] [CrossRef]
- CDC. COVID Data Tracker. Available online: https://covid.cdc.gov/covid-data-tracker/#datatracker-home (accessed on 26 April 2023).
- Little, B.B.; Shakib, S.; Pena Reyes, M.E.; Karimi, S.; Vu, G.T.; Dupre, N.; McKinney, W.P.; Mitra, R. COVID-19 infection and mortality among non-pregnant indigenous adults in Mexico 2020–2022: Impact of marginalisation. J. Glob. Health 2023, 13, 06030. [Google Scholar] [CrossRef]
- Jacobs, M.M.; Evans, E.; Ellis, C. Racial, ethnic, and sex disparities in the incidence and cognitive symptomology of long COVID-19. J. Natl. Med. Assoc. 2023, 115, 233–243. [Google Scholar] [CrossRef]
- Baj, J.; Karakula-Juchnowicz, H.; Teresinski, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, R.; Forma, A.; Karakula, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef]
- McClymont, H.; Hu, W. Weather Variability and COVID-19 Transmission: A Review of Recent Research. Int. J. Environ. Res. Public Health 2021, 18, 396. [Google Scholar] [CrossRef]
- Karimi, S.M.; Majbouri, M.; DuPre, N.; White, K.B.; Little, B.B.; McKinney, W.P. Weather and COVID-19 Deaths During the Stay-at-Home Order in the United States. J. Occup. Environ. Med. 2021, 63, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci. Total Environ. 2020, 729, 139051. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Chin, Y.; Yu, S.; Huang, J.; Zhang, C.J.P.; Zhu, K.; Azarakhsh, N.; Sheng, J.; He, Y.; Jayavanth, P.; et al. The Influence of Average Temperature and Relative Humidity on New Cases of COVID-19: Time-Series Analysis. JMIR Public Health Surveill. 2021, 7, e20495. [Google Scholar] [CrossRef] [PubMed]
- Gozzi, N.; Tizzoni, M.; Chinazzi, M.; Ferres, L.; Vespignani, A.; Perra, N. Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile. Nat. Commun. 2021, 12, 2429. [Google Scholar] [CrossRef]
- Chang, S.; Pierson, E.; Koh, P.W.; Gerardin, J.; Redbird, B.; Grusky, D.; Leskovec, J. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 2021, 589, 82–87. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Rice, M.; Zhang, H.; Sha, D.; Li, M.; Su, Y.; Yang, C. The Impact of Policy Measures on Human Mobility, COVID-19 Cases, and Mortality in the US: A Spatiotemporal Perspective. Int. J. Environ. Res. Public Health 2021, 18, 996. [Google Scholar] [CrossRef]
- Heppner, Z.; Shreffler, J.; Polites, A.; Ross, A.; Thomas, J.J.; Huecker, M. COVID-19 and emergency department volume: The patients return but have different characteristics. Am. J. Emerg. Med. 2021, 45, 385–388. [Google Scholar] [CrossRef] [PubMed]
- McGuireWoods. State Governors’ “Stay-at-Home” and Prohibition on Elective Procedures Orders. Available online: https://www.mcguirewoods.com/client-resources/alerts/2020/10/state-governors-stay-at-home-prohibition-elective-procedures-orders/ (accessed on 28 July 2024).
- Jacobs, P.; Ohinmaa, A.P. The enforcement of statewide mask wearing mandates to prevent COVID-19 in the US: An overview. F1000Research 2020, 9, 1100. [Google Scholar] [CrossRef]
- The New York Times. COVID-19 Data (GitHub Repository). Available online: https://github.com/nytimes/covid-19-data (accessed on 15 December 2020).
- Sulyok, M.; Walker, M. Community movement and COVID-19: A global study using Google’s Community Mobility Reports. Epidemiol. Infect. 2020, 148, e284. [Google Scholar] [CrossRef]
- USDA Economic Research Service. Rural-Urban Continuum Codes. Available online: https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/ (accessed on 11 December 2020).
- OpenWeather. Available online: https://openweathermap.org/ (accessed on 12 December 2020).
- Li, P.; Stuart, E.A.; Allison, D.B. Multiple Imputation: A Flexible Tool for Handling Missing Data. JAMA 2015, 314, 1966–1967. [Google Scholar] [CrossRef]
- Li, C. Little’s Test of Missing Completely at Random. Stata J. 2013, 13, 795–809. [Google Scholar] [CrossRef]
- Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L.M. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kwek, K.; Li, M.; Shen, H. Effects of Social Mobility and Stringency Measures on the COVID-19 Outcomes: Evidence From the United States. Front. Public Health 2021, 9, 779501. [Google Scholar] [CrossRef]
- Ganslmeier, M.; Furceri, D.; Ostry, J.D. The impact of weather on COVID-19 pandemic. Sci. Rep. 2021, 11, 22027. [Google Scholar] [CrossRef]
- Bashir, M.F.; Ma, B.; Bilal; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef]
- Ward, M.P.; Xiao, S.; Zhang, Z. The role of climate during the COVID-19 epidemic in New South Wales, Australia. Transbound. Emerg. Dis. 2020, 67, 2313–2317. [Google Scholar] [CrossRef]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, O.A.I.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef] [PubMed]
- Menebo, M.M. Temperature and precipitation associate with COVID-19 new daily cases: A correlation study between weather and COVID-19 pandemic in Oslo, Norway. Sci. Total Environ. 2020, 737, 139659. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Chen, Y.; He, K.; Zhang, T.; Tan, M.; Zhang, Y.; Zhang, X. Influence of socio-ecological factors on COVID-19 risk: A cross-sectional study based on 178 countries/regions worldwide. medRxiv 2020. [Google Scholar] [CrossRef]
- Anis, A. The Effect of Temperature upon Transmission of COVID-19: Australia And Egypt Case Study. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3567639 (accessed on 15 February 2021).
- Mecenas, P.; Bastos, R.; Vallinoto, A.C.R.; Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE 2020, 15, e0238339. [Google Scholar] [CrossRef]
- Harmooshi, N.N.; Shirbandi, K.; Rahim, F. Environmental concern regarding the effect of humidity and temperature on 2019-nCoV survival: Fact or fiction. Environ. Sci. Pollut. Res. 2020, 27, 36027–36036. [Google Scholar] [CrossRef] [PubMed]
- Majumder, P.; Ray, P.P. A systematic review and meta-analysis on correlation of weather with COVID-19. Sci. Rep. 2021, 11, 10746. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Timms, P.M.; Bothamley, G.H.; Hanifa, Y.; Islam, K.; Claxton, A.P.; Packe, G.E.; Moore-Gillon, J.C.; Darmalingam, M.; Davidson, R.N.; et al. High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: A double-blind randomised controlled trial. Lancet 2011, 377, 242–250. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef]
- Meltzer, D.O.; Best, T.J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D Status and Other Clinical Characteristics with COVID-19 Test Results. JAMA Netw. Open 2020, 3, e2019722. [Google Scholar] [CrossRef]
- Takagi, H.; Kuno, T.; Yokoyama, Y.; Ueyama, H.; Matsushiro, T.; Hari, Y.; Ando, T. The higher temperature and ultraviolet, the lower COVID-19 prevalence-meta-regression of data from large US cities. Am. J. Infect. Control 2020, 48, 1281–1285. [Google Scholar] [CrossRef]
- Moozhipurath, R.K.; Kraft, L.; Skiera, B. Evidence of protective role of Ultraviolet-B (UVB) radiation in reducing COVID-19 deaths. Sci. Rep. 2020, 10, 17705. [Google Scholar] [CrossRef]
- Buonanno, M.; Welch, D.; Shuryak, I.; Brenner, D.J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 2020, 10, 10285. [Google Scholar] [CrossRef]
- Raeiszadeh, M.; Adeli, B. A Critical Review on Ultraviolet Disinfection Systems against COVID-19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics 2020, 7, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Maciejko, L.A.; Fox, J.M.; Steffens, M.T.; Patten, C.A.; Newman, H.R.; Decker, P.A.; Wheeler, P.; Juhn, Y.J.; Wi, C.I.; Gorfine, M.; et al. Rural and urban residents’ attitudes and preferences toward COVID-19 prevention behaviors in a midwestern community. PLoS ONE 2023, 18, e0286953. [Google Scholar] [CrossRef]
- Kaufman, B.G.; Whitaker, R.; Pink, G.; Holmes, G.M. Half of Rural Residents at High Risk of Serious Illness Due to COVID-19, Creating Stress on Rural Hospitals. J. Rural Health 2020, 36, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, T.; Lueck, J.A.; Trujillo, K.L.; Ferdinand, A.O. Rural and Urban Differences in COVID-19 Prevention Behaviors. J. Rural Health 2021, 37, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Gaynor, S.M.; Quick, C.; Chen, J.T.; Stephenson, B.J.K.; Coull, B.A.; Lin, X. Identifying US County-level characteristics associated with high COVID-19 burden. BMC Public Health 2021, 21, 1007. [Google Scholar] [CrossRef]
- Matthews, K.A.; Ullrich, F.; Gaglioti, A.H.; Dugan, S.; Chen, M.S.; Hall, D.M. Nonmetropolitan COVID-19 Incidence and Mortality Rates Surpassed Metropolitan Rates within the First 24 Weeks of the Pandemic Declaration: United States, March 1–October 18, 2020. J. Rural Health 2021, 37, 272–277. [Google Scholar] [CrossRef]
- Lundberg, D.J.; Wrigley-Field, E.; Cho, A.; Raquib, R.; Nsoesie, E.O.; Paglino, E.; Chen, R.; Kiang, M.V.; Riley, A.R.; Chen, Y.H.; et al. COVID-19 Mortality by Race and Ethnicity in US Metropolitan and Nonmetropolitan Areas, March 2020 to February 2022. JAMA Netw. Open 2023, 6, e2311098. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, K.J.G.; Monnat, S.M. Rural-urban and within-rural differences in COVID-19 mortality rates. J. Rural Soc. Sci. 2022, 37, 3. [Google Scholar]
- Peters, D.J. Community Susceptibility and Resiliency to COVID-19 Across the Rural-Urban Continuum in the United States. J. Rural Health 2020, 36, 446–456. [Google Scholar] [CrossRef]
- Pan, W.; Miyazaki, Y.; Tsumura, H.; Miyazaki, E.; Yang, W. Identification of county-level health factors associated with COVID-19 mortality in the United States. J. Biomed. Res. 2020, 34, 437–445. [Google Scholar] [CrossRef]
- Coclite, D.; Napoletano, A.; Gianola, S.; Del Monaco, A.; D’Angelo, D.; Fauci, A.; Iacorossi, L.; Latina, R.; Torre, G.; Mastroianni, C.M.; et al. Face Mask Use in the Community for Reducing the Spread of COVID-19: A Systematic Review. Front. Med. 2020, 7, 594269. [Google Scholar] [CrossRef] [PubMed]
Kentucky | Indiana | |
---|---|---|
Total Number of COVID-19 Infections | 7829 | 27,433 |
Total Number of COVID-19 Mortality | 358 | 1739 |
Population Based on the 2020 Census | 4,477,000 | 6,755,000 |
COVID-19 Infection Rate per 100,000 | 175 | 406 |
COVID-19 Mortality Rate per 100,000 | 8 | 26 |
Total | |||
---|---|---|---|
Mean | SD | p-Value 3 | |
Kentucky 1 | |||
Mobility | |||
Retail/Recreation (%) | −15.3 | 18.7 | <0.001 |
Grocery/Pharmacy (%) | 4.4 | 14.6 | <0.001 |
Workplace (%) | −26.8 | 15.6 | <0.001 |
Weather | |||
Precipitation (mm, 24 h sum) | 46.6 | 93.0 | <0.001 |
Temperature minimum (°F) | 41.1 | 9.2 | <0.001 |
Temperature maximum (°F) | 63.6 | 10.3 | <0.001 |
UV Index | 6.6 | 1.4 | <0.001 |
Indiana 2 | |||
Mobility | |||
Retail/Recreation (%) | −18.8 | 21.0 | |
Grocery/Pharmacy (%) | 2.6 | 16.5 | |
Workplace (%) | −28.1 | 17.5 | |
Weather | |||
Precipitation (mm, 24 h sum) | 29.3 | 73.1 | |
Temperature minimum (°F) | 37.4 | 8.9 | |
Temperature maximum (°F) | 58.3 | 11.0 | |
UV Index | 5.9 | 1.3 |
HR | 95% CI | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Mobility | ||||
Retail/Recreation | 0.97 | 0.96 | 0.97 | <0.001 |
Grocery/Pharmacy | 0.991 | 0.989 | 0.994 | <0.001 |
Workplace | 0.99 | 0.98 | 0.99 | <0.001 |
Weather | ||||
Precipitation (24 h sum) | 0.999 | 0.998 | 0.999 | <0.001 |
Temperature minimum | 1.01 | 1.01 | 1.02 | <0.001 |
Temperature maximum | 1.01 | 1.01 | 1.02 | <0.001 |
UV Index | 0.37 | 0.36 | 0.39 | <0.001 |
Geographics | ||||
Metropolitan Status (ref: non-metro) | 1.12 | 1.05 | 1.19 | <0.001 |
State (ref: Kentucky) | 1.18 | 1.10 | 1.26 | <0.001 |
HR | 95% CI | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Mobility | ||||
Retail/Recreation | 0.937 | 0.937 | 0.938 | <0.001 |
Grocery/Pharmacy | 0.992 | 0.992 | 0.993 | <0.001 |
Workplace | 0.965 | 0.965 | 0.966 | <0.001 |
Weather | ||||
Precipitation (24 h sum) | 0.9978 | 0.9977 | 0.9978 | <0.001 |
Temperature minimum | 0.994 | 0.993 | 0.994 | <0.001 |
Temperature maximum | 1.001 | 1.001 | 1.002 | <0.001 |
UV Index | 0.748 | 0.746 | 0.751 | <0.001 |
Geographics | ||||
Metropolitan Status (ref: non-metro) | 2.05 | 2.02 | 2.07 | <0.001 |
State (ref: Kentucky) | 1.59 | 1.57 | 1.60 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakib, S.H.; Little, B.B.; Karimi, S.; McKinney, W.P.; Goldsby, M.; Kong, M. Mediating Effect of the Stay-at-Home Order on the Association between Mobility, Weather, and COVID-19 Infection and Mortality in Indiana and Kentucky: March to May 2020. Atmosphere 2024, 15, 1100. https://doi.org/10.3390/atmos15091100
Shakib SH, Little BB, Karimi S, McKinney WP, Goldsby M, Kong M. Mediating Effect of the Stay-at-Home Order on the Association between Mobility, Weather, and COVID-19 Infection and Mortality in Indiana and Kentucky: March to May 2020. Atmosphere. 2024; 15(9):1100. https://doi.org/10.3390/atmos15091100
Chicago/Turabian StyleShakib, Shaminul H., Bert B. Little, Seyed Karimi, William Paul McKinney, Michael Goldsby, and Maiying Kong. 2024. "Mediating Effect of the Stay-at-Home Order on the Association between Mobility, Weather, and COVID-19 Infection and Mortality in Indiana and Kentucky: March to May 2020" Atmosphere 15, no. 9: 1100. https://doi.org/10.3390/atmos15091100
APA StyleShakib, S. H., Little, B. B., Karimi, S., McKinney, W. P., Goldsby, M., & Kong, M. (2024). Mediating Effect of the Stay-at-Home Order on the Association between Mobility, Weather, and COVID-19 Infection and Mortality in Indiana and Kentucky: March to May 2020. Atmosphere, 15(9), 1100. https://doi.org/10.3390/atmos15091100