The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm
Abstract
:1. Introduction
2. Daily Rainfall of Henan 21.7 Rainstorm
3. Model Setup
3.1. The WRF Model Setup
3.2. The ICAR Model Setup
4. Results
4.1. The Synoptic Background That Caused the Henan 21.7 Rainstorm
4.1.1. Sea-Level Pressure and Orographic Height
4.1.2. The 850 hPa Height and Precipitable Water
4.1.3. The 500 hPa Height and Temperature
4.1.4. The 200 hPa Height and Potential Vorticity
4.2. Reliability of Forecasting and Predicatability
4.2.1. The 3-Day Accumulative Precipitation
4.2.2. The Daily Cumulative Precipitation
4.2.3. The Reliability of Severe Precipitation Prediction
4.3. Quantitative Evaluation of Rainfall Forecasting and Accuracy Improvement
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Definitions of BS, TS, POD and FAR
Observation YES | Observation NO | |
---|---|---|
Forecast YES | a | b |
Forecast NO | c | d |
References
- Liang, X.; Xia, R.; Bao, X.; Zhang, X.; Wang, X.; Su, A.; Fu, J.; Li, H.; Wu, C.; Yu, M.; et al. Preliminary investigation on the extreme rainfall event during July 2021 in Henan Province and its multi-scale processes. Chin. Sci. Bull. 2022, 67, 997–1011. (In Chinese) [Google Scholar] [CrossRef]
- Su, A.; Lu, X.; Cui, L.; Li, Z.; Xi, L.; Li, H. The basic observational analysis of “7.20” Extreme Rainstorm in Zhengzhou. Torrential Rain Disasters 2021, 40, 445–454. (In Chinese) [Google Scholar]
- Chyi, D.; He, L.; Wang, X.; Chen, S. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J. Appl. Meteorol. Sci. 2022, 33, 1–15. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Wang, X.; Shen, L.; Wang, D.; Li, H. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Trans. Atmos. Sci. 2021, 44, 672–687. (In Chinese) [Google Scholar] [CrossRef]
- Sun, J.; Fu, S.; Wang, H.; Zhang, Y.; Chen, Y.; Su, A.; Wang, Y.; Tang, H.; Ma, R. Primary characteristics of the extreme heavy rainfall event over Henan in July 2021. Atmos. Sci. Lett. 2022, 24, e1131. [Google Scholar] [CrossRef]
- Yin, L.; Ping, F.; Mao, J.; Jin, S. Analysis on Precipitation Efficiency of the “21.7” Henan Extremely Heavy Rainfall Event. Adv. Atmos. Sci. 2023, 40, 374–392. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Xie, J.; Lee, J.; Zhu, Z.; Li, Y.; Chen, B.; Zhang, S. Multiscale interactions driving the devastating floods in Henan Province, China during July 2021. Weather Clim. Extrem. 2023, 39, 100541. [Google Scholar] [CrossRef]
- Tran, T.-N.-D.; Le, M.H.; Zhang, R.; Nguyen, B.Q.; Bolten, J.D.; Lakshmi, V. Robustness of gridded precipitation products for Vietnam basins using the comprehensive assessment framework of rainfall. Atmos. Res. 2023, 293, 106923. [Google Scholar] [CrossRef]
- Aryal, A.; Tran, T.-N.-D.; Kumar, B.; Lakshmi, V. Evaluation of Satellite-Derived Precipitation Products for Streamflow Simulation of a Mountainous Himalayan Watershed: A Study of Myagdi Khola in Kali Gandaki Basin, Nepal. Remote Sens. 2023, 15, 4762. [Google Scholar] [CrossRef]
- Tao, S. Torrential Rain in China; Science Press: Beijing, China, 1980; pp. 1–225. (In Chinese) [Google Scholar]
- Ding, Y.; Cai, Z.; Li, J. A case study on the excessively severe rainstorm in Henan province in early August 1975. Chin. J. Atmos. Sci. 1978, 2, 276–289. (In Chinese) [Google Scholar]
- Chen, M.; Fu, B.; Yu, Q. Influence of topography on storm rainfall. Acta Geogr. Sin. 1995, 50, 256–263. (In Chinese) [Google Scholar]
- Sun, J. The effects of vertical distribution of the lower-level flow on precipitation location. Plateau Meteorol. 2005, 24, 62–69. (In Chinese) [Google Scholar]
- Chen, M.; Wang, Y.; Xiao, X.; Gao, F. Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 2l July 2012. Acta Meteorol. Sin. 2013, 71, 569–592. (In Chinese) [Google Scholar]
- Wang, C.; Yu, X.; Li, Z.; Li, J.; Wang, X. Investigation of extreme flash-rain events on the impact of Taihang Mountain. Meteorol. Mon. 2017, 43, 425–433. (In Chinese) [Google Scholar]
- Wang, L.; Miao, J.; Han, F. Overview of impact of topography on precipitation in China over last 10 years. Meteorol. Sci. Technol. 2018, 46, 64–75. (In Chinese) [Google Scholar]
- Zhong, S. Advances in the study of the influencing mechanism and forecast methods for orographic precipitation. Plateau Meteorol. 2020, 39, 1122–1132. (In Chinese) [Google Scholar] [CrossRef]
- Smith, R.B. The influence of mountains on the atmosphere. Adv. Geosci. 1979, 6, 77–81. [Google Scholar]
- Smith, R.B. Progress on the theory of orographic precipitation. In Tectonics, Climate, and Landscape Evolution: Geological Society of America Special Paper 398; Penrose Conference Series; Willett, S.D., Hovius, N., Brandon, M.T., Fisher, D.M., Eds.; The Geological Society of America: Boulder, CO, USA, 2006; pp. 1–16. [Google Scholar] [CrossRef]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, RG1001. [Google Scholar] [CrossRef]
- Tran, T.-N.-D.; Nguyen, B.Q.; Zhang, R.; Aryal, A.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin, Central Highland Vietnam. Remote Sens. 2023, 15, 1030. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Fu, S.; Wang, H.; Fu, Y.; Tang, H.; Wei, Q. Active Characteristics of Mesoscale Systems during the Heavy Rainfall in Henan Province in July 2021. Chin. J. Atmos. Sci. 2023, 47, 1196–1216. (In Chinese) [Google Scholar] [CrossRef]
- Wei, P.; Xu, X.; Xue, M.; Zhang, C.; Wang, Y.; Zhao, K.; Zhou, A.; Zhang, S.; Zhu, K. On key dynamical processes supporting the 21·7 Zhengzhou record-breaking hourly rainfall in China. Adv. Atmos. Sci. 2022, 40, 337–349. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Barstad, I.; Clark, M.P.; Arnold, J.R.; Rasmussen, R.M. The Intermediate Complexity Atmospheric Research Model (ICAR). J. Hydrometeorol. 2016, 17, 957–973. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; NCAR: Boulder, CO, USA, 2008; 113p. [Google Scholar] [CrossRef]
- Miao, C.; Han, J.; Guo, J. The Daily Precipitation Dataset of China (1961–2022, 0.1°/0.25°/0.5°); National Tibetan Plateau Data Center: Beijing, China, 2023. (In Chinese) [Google Scholar] [CrossRef]
- Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth Syst. Sci. Data 2023, 15, 3147–3161. [Google Scholar] [CrossRef]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical accuracy of freely available global digital. Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Lakshmi, S.E.; Yarrakula, K. Review and critical analysis on digital elevation models. Geofizika 2019, 35, 129–157. [Google Scholar] [CrossRef]
- Tran, T.-N.; Nguyen, B.Q.; Vo, N.D.; Le, M.-H.; Nguyen, Q.-D.; Lakshmi, V.; Bolten, J.D. Quantification of global Digital Elevation Model (DEM)—A case study of the newly released NASADEM for a river basin in Central Vietnam. J. Hydrol. Reg. Stud. 2023, 45, 101282. [Google Scholar] [CrossRef]
- Wang, X.; Cui, C.; Wang, J.; Yang, J.; Zhou, W. Diagnostic analysis on water vapor and jet characteristics of the July 2021 severe torrential rain in Henan Province. Meteorol. Mon. 2022, 48, 533–544. (In Chinese) [Google Scholar]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Thompson, G.; Rasmussen, R.M.; Manning, K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I Descr. Sensit. Anal. Mon. Weather Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Grell, G.; Dudhia, J.; Stauffer, D. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Technical Note NCAR/TN-398 + STR; NCAR: Boulder, CO, USA, 1994; p. 117. [Google Scholar]
- Dudhia, J. A multilayer soil temperature model for MM5. In Proceedings of the Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, USA, 22–24 July 1996; pp. 49–50. [Google Scholar]
- Dudhia, J.; Gill, D.; Manning, K.; Wang, W.; Bruyere, C. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: Mm5 Modelling System Version 3; PSU/NCAR: Boulder, CO, USA, 2004; p. 390. [Google Scholar]
- Jimenez, P.A.; Dudhia, J.; Gonzalez-Ruoco, J.F.; Navarro, J.; Montavez, J.P.; Garcia-Bustamente, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Ding, Y. On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment. Acta Meteorol. Sin. 2015, 73, 411–424. (In Chinese) [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Yang, S.; Dai, K.; Chen, T.; Yao, R.; Xu, J. Analysis and thinking on the extremes of the 2l July 2012 torrential rain in Beijing Part I: Preliminary causation analysis and thinking. Meteorol. Mon. 2012, 38, 1267–1277. (In Chinese) [Google Scholar]
- Xu, J.; Yang, S.; Sun, J.; Zhang, F.; Chen, Y. Discussion on the formation of a warm sector torrential rain case in North China. Meteorol. Mon. 2014, 40, 1455–1463. (In Chinese) [Google Scholar]
- Ran, L.; Li, S.; Zhou, Y.; Yang, S.; Ma, S.; Zhou, K.; Shen, D.; Jiao, B.; Li, N. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan Province, 2021. Chin. J. Atmos. Sci. 2021, 45, 1366–1383. (In Chinese) [Google Scholar] [CrossRef]
- Bueh, C.; Zhuge, A.; Xie, Z.; Gao, C.; Lin, D. Water vapor transportation features and key synoptic-scale systems of the “7.20” rainstorm in Henan Province. Chin. J. Atmos. Sci. 2022, 46, 725–744. (In Chinese) [Google Scholar] [CrossRef]
- Ertel, H. Ein neuer hydrodynamische wirbdsatz. Meteorol. Z. Braunschw. 1942, 59, 277–281. [Google Scholar]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Haynes, P.H.; McIntyre, M.E. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 1987, 44, 828–841. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, X.; Lü, L.; Xu, W. Analysis on extremity and characteristics of the 19 July 2016 severe torrential rain in the north of Henan Province. Meteorol. Mon. 2018, 44, 1136–1147. (In Chinese) [Google Scholar] [CrossRef]
- Weijenborg, C.; Friederichs, P.; Hense, A. Organisation of potential vorticity on the mesoscale during deep moist convection. Tellus A 2015, 67, 25705. [Google Scholar] [CrossRef]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Rotunno, R.; Snyder, C. A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci. 2008, 65, 1063–1076. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Zhang, F. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci. 2016, 73, 1419–1438. [Google Scholar] [CrossRef]
- Weyn, J.A.; Durran, D.R. The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci. 2017, 74, 2191–2210. [Google Scholar] [CrossRef]
- Judt, F. Insights into atmospheric predictability through lobal convection-permitting model simulations. J. Atmos. Sci. 2018, 75, 1477–1497. [Google Scholar] [CrossRef]
- Zhang, F.; Snyder, C.; Rotunno, R. Effects of moist convection on mesoscale predictability. J. Atmos. Sci. 2003, 60, 1173–1185. [Google Scholar] [CrossRef]
- Zhang, F.; Bei, N.; Epifanio, C.C.; Rotunno, R.; Snyder, C. A multistage error-growth conceptual model for mesoscale predictability. Bull. Amer. Meteorol. Soc. 2006, 87, 287–288. [Google Scholar]
- Zhang, F.; Odins, A.M.; Nielsen-Gammon, J.W. Mesoscale predictability of an extreme warm-season precipitation event. Weather Forecast. 2006, 21, 149–166. [Google Scholar] [CrossRef]
- Hohenegger, C.; Lüthi, D.; Schär, C. Predictability mysteries in cloud-resolving models. Mon. Weather Rev. 2006, 134, 2095–2107. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef]
- Melhauser, C.; Zhang, F. Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci. 2012, 69, 3350–3371. [Google Scholar] [CrossRef]
- Walser, A.; Lüthi, D.; Schär, C. Predictability of precipitation in a cloud-resolving model. Mon. Weather Rev. 2004, 132, 560–577. [Google Scholar] [CrossRef]
- Wang, X.; Steinle, P.; Seed, A.; Xiao, Y. The Sensitivity of Heavy Precipitation to Horizontal Resolution, Domain Size, and Rain Rate Assimilation: Case Studies with a Convection-Permitting Model. Adv. Meteorol. 2016, 2016, 7943845. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, C.; Xue, M.; Yang, N. Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking “21·7” extreme rainfall event in Henan Province, China. Sci. China Earth Sci. 2022, 65, 1879–1902. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Zhang, M.; Yang, Y.; Meng, Z. Uncertainties and error growth in forecasting the record-breaking rainfall in Zhengzhou, Henan on 19–20 July 2021. Sci. China Earth Sci. 2022, 65, 1903–1920. [Google Scholar] [CrossRef]
- Zhang, F.; Bei, N.; Rotunno, R.; Snyder, C.; Epifanio, C. Mesoscale predictability of moist baroclinic waves: Convection permitting experiments and multistage error growth dynamics. J. Atmos. Sci. 2007, 64, 3579–3594. [Google Scholar] [CrossRef]
- Selz, T.; Craig, G.C. Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. Mon. Weather Rev. 2015, 143, 813–827. [Google Scholar] [CrossRef]
- Hohenegger, C.; Schar, C. Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Am. Meteorol. Soc. 2007, 88, 1783–1793. [Google Scholar] [CrossRef]
- Hohenegger, C.; Schar, C. Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci. 2007, 64, 4467–4478. [Google Scholar] [CrossRef]
- Done, J.M.; Craig, G.C.; Gray, S.L.; Clark, P.A. Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteorol. Soc. 2012, 138, 638–648. [Google Scholar] [CrossRef]
- Flack, D.L.; Gray, S.L.; Plant, R.S.; Lean, H.W.; Craig, G.C. Convective-scale perturbation growth across the spectrum of convective regimes. Mon. Weather Rev. 2018, 146, 387–405. [Google Scholar] [CrossRef]
- Keil, C.; Heinlein, F.; Craig, G.C. The convective adjustment time-scale as indicator of predictability of convective precipitation. Quart. J. R. Meteorol. Soc. 2014, 140, 480–490. [Google Scholar] [CrossRef]
- Surcel, M.; Zawadzki, I.; Yau, M.K. The case-to-case variability of the predictability of precipitation by a storm-scale ensemble forecasting system. Mon. Weather Rev. 2016, 144, 193–212. [Google Scholar] [CrossRef]
- Bachmann, K.; Keil, C.; Weissmann, M. Impact of radar data assimilation and orography on predictability of deep convection. Quart. J. Roy. Meteorol. Soc. 2019, 145, 117–130. [Google Scholar] [CrossRef]
- Bachmann, K.; Keil, C.; Craig, G.C.; Weissmann, M.; Welzbacher, C.A. Predictability of deep convection in idealized and operational forecasts: Effects of radar data assimilation, orography, and synoptic weather regime. Mon. Weather Rev. 2020, 148, 63–81. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Takemi, T. The impact of topography on the initial error growth associated with moist convection. SOLA 2021, 17, 134–139. [Google Scholar] [CrossRef]
- Wu, P.; Takemi, T. Impacts of mountain topography and background flow conditions on the predictability of thermally induced thunderstorms and the associated error growth. J. Atmos. Sci. 2023, 80, 1177–1199. [Google Scholar] [CrossRef]
- Wang, X.; Yau, M.K.; Nagarajan, B.; Fillion, L. The impact of assimilating radar-estimated rain rates on simulation of precipitation in the 17–18 July 1996 Chicago floods. Adv. Atmos. Sci. 2010, 27, 195–210. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; 676p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xu, Q.; Deng, X.; Zhang, H.; Tang, Q.; Zhou, T.; Qi, F.; Peng, W. The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm. Atmosphere 2024, 15, 959. https://doi.org/10.3390/atmos15080959
Wang X, Xu Q, Deng X, Zhang H, Tang Q, Zhou T, Qi F, Peng W. The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm. Atmosphere. 2024; 15(8):959. https://doi.org/10.3390/atmos15080959
Chicago/Turabian StyleWang, Xingbao, Qun Xu, Xiajun Deng, Hongjie Zhang, Qianhong Tang, Tingting Zhou, Fengcai Qi, and Wenwu Peng. 2024. "The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm" Atmosphere 15, no. 8: 959. https://doi.org/10.3390/atmos15080959
APA StyleWang, X., Xu, Q., Deng, X., Zhang, H., Tang, Q., Zhou, T., Qi, F., & Peng, W. (2024). The Application of an Intermediate Complexity Atmospheric Research Model in the Forecasting of the Henan 21.7 Rainstorm. Atmosphere, 15(8), 959. https://doi.org/10.3390/atmos15080959