The Impact of Climate Change on Solar Radiation and Photovoltaic Energy Yields in China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Calculation of Solar Radiation on a Tilted Surface at the Optimum Tilted Angle
2.2.2. Projection of the Energy Yields from Solar PV
3. Results
3.1. The Spatial Distribution of Yearly Optimum Tilted Angles (β) in China
3.2. Annual Energy Output of Photovoltaics in the Historical Period (1990–2010)
3.3. Projection of Changes in Solar Radiation
3.4. Projection of the Changes in Near-Surface Air Temperature
3.5. Projection of Changes in PV Energy Output in the Future
4. Discussion
5. Conclusions
- During the years of 2020–2099, under both emission scenarios, the overall trend of solar radiation in China increases. There are decreases in solar radiation in the northwest part of China, parts of the Tibetan Plateau, and Inner Mongolia. Increases in solar radiation are observed in other regions of China, especially in southeastern and central China.
- During the years of 2020–2099, under both scenarios, the temperature increases in northern China are greater than those in southern China. The largest temperature increase occurs under the SSP585 scenario during the years of 2061–2099. The increase in temperature becomes progressively more intense as time goes on and intensifies emissions.
- In terms of China’s PV energy potential, generally, under both scenarios, there is not much change, compared with that of the referenced period (1990–2010). However, there are imbalances in PV energy yield changes in different regions of China. Under both scenarios, generally, there are obvious increases in southeastern and central China, while decreases are observed in northwestern China, the Tibetan Plateau, and Inner Mongolia. This is mainly because the temperatures in these regions increase more and solar radiation increases less than that of southeastern and central China, and PV energy yield has direct positive and negative proportions to solar radiation and temperature, respectively.
- According to the above results, it is demonstrated that under the medium-emission scenario, climate change could increase the PV energy potential, while under the high-emission scenario, it will inhibit PV energy potential during the years of 2020–2099. Thus, the Chinese government’s carbon peaking and carbon neutrality goals will enhance the PV energy potential to some extent in the future. Meanwhile, there are some suggestions for China’s solar photovoltaic development. Firstly, improving photovoltaic technology, especially by improving PV cell efficiency, should be encouraged, which may compensate for the effect of extreme global warming. Secondly, the site selection of PV installation will become more important in the future. Currently, 60% percent of PV farms are installed in northwestern China, Tibet, and Inner Mongolia, due to their abundance of solar radiation and the vast areas of the Gobi Desert. Thus, the future plan of solar photovoltaic deployment should pay more attention to southeastern and central China, due to their significant rise in PV energy potential in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency (IEA). Snapshot of Global PV Markets 2023, Photovoltaic Power System Programme (PPSP). Available online: https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf (accessed on 3 April 2023).
- Wild, M.; Folini, D.; Henschel, F.; Fischer, N.; Müller, B. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy 2015, 116, 12–24. [Google Scholar] [CrossRef]
- Crook, J.; Jones, L.; Forster, P.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
- Müller, B.; Wild, M.; Driesse, A.; Behrens, K. Rethinking solar resource assessments in the context of global dimming and brightening. Sol. Energy 2014, 99, 272–282. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.; Dutton, E.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. 2009, 114, D00D16. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montavez, J.; Lopez-Romero, J.; Thais, F.; Bartok, B.; Christensen, O.; Colette, A.; Deque, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, M.; Huld, T.; Vignati, E.; Monforti-Ferrario, F.; Dosio, A.; Raes, F. The near future availability of photovoltaic energy in Europe and Africa in climate aerosol modeling experiments. Renew. Sustain. Energy Rev. 2014, 38, 706–716. [Google Scholar] [CrossRef]
- Hou, X.; Wild, M.; Folini, D.; Kazadzis, S.; Wohland, J. Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth Syst. Dynam. 2021, 12, 1099–1113. [Google Scholar] [CrossRef]
- Dutta, R.; Chanda, K.; Maity, R. Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- Danso, D.; Anquetin, S.; Diedhiou, A.; Lavaysse, C.; Hingray, B.; Raynaud, D.; Kobea, A. A CMIP6 assessment of the potential climate change impacts on solar photovoltaic energy and its atmospheric drivers in West Africa. Environ. Res. Lett. 2022, 17, 44016. [Google Scholar] [CrossRef]
- Zuluaga, C.; Avila-Diaz, A.; Justino, F.; Martins, F.; Ceron, W. The climate change perspective of photovoltaic power potential in Brazil. Renew. Energy. 2022, 193, 1019–1031. [Google Scholar] [CrossRef]
- Niu, J.; Wu, J.; Qin, W.; Wang, L.; Yang, C.; Zhang, M.; Zhang, Y.; Qi, Q. Projection of future carbon benefits by photovoltaic power potential in China using CMIP6 statistical downscaling data. Environ. Res. Lett. 2023, 18, 094013. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, C.; Tian, Z.; Mao, H.; Luo, Y.; Sun, D.; Fan, J.; Jiang, L.; Deng, J.; Rosen, M. Different photovoltaic power potential variations in East and West China. Appl. Energy 2023, 351, 121846. [Google Scholar] [CrossRef]
- Zuo, H.; Lu, H.; Sun, P.; Qiu, J.; Li, F. Changes in photovoltaic power output variability due to climate change in China: A multi-model ensemble mean analysis. J. Renew. Sustain. Energy 2024, 16, 023503. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Z.; Meng, J.; Zheng, H.; Fan, Y.; Ji, L.; Wang, X.; Liang, X. Picturing China’s photovoltaic energy future: Insights from CMIP6 climate projections. Renew. Sustain. Energy Rev. 2024, 189, 114026. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Xu, L.; Guan, X.; Gong, A.; Zhang, M. Assessment of future solar energy potential changes under the shared socio-economic pathways scenario 2–4.5 with WRF-chem: The roles of meteorology and emission. Atmos. Environ. 2023, 318, 120232. [Google Scholar] [CrossRef]
- Müller, J.; Folini, D.; Wild, M.; Pfenninger, S. CMIP-5 models project photovoltaics are a no-regrets investment in Europe irrespective of climate change. Energy 2019, 171, 135–148. [Google Scholar] [CrossRef]
- Lu, N.; Yao, L.; Qin, J.; Yang, K.; Wild, M.; Jiang, H. High emission scenario substantially damages China’s photovoltaic potential. Geophys. Res. Lett. 2022, 49, e2022GL100068. [Google Scholar] [CrossRef]
- Mark, Z.; Jacobson, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Chang, T. The Sun’s apparent position and the optimal tilt angle of a solar collector in the northern hemisphere. Sol. Energy 2009, 83, 1274–1284. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xin, X. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Adv. Clim. Change Res. 2019, 15, 519–525. [Google Scholar]
- Ren, X.; He, H.; Zhang, L.; Yu, G. Global radiation, photosynthetically active radiation, and the diffuse components dataset of China, 1981–2010. Earth Syst. Sci. Data 2018, 10, 1217–1226. [Google Scholar] [CrossRef]
- Liu, B.; Jordan, R. Daily insolation on surfaces tilted toward the equator. ASHRAE Trans. 1962, 10, 526–541. [Google Scholar] [CrossRef]
- Hay, J. Calculating solar radiation for inclined surfaces: Practical approaches. Renew. Energy 1993, 3, 373–380. [Google Scholar] [CrossRef]
- Hua, Y.; He, W.; Liu, P. Optimum tilt angles of solar panels: A case study for Gansu province, northwest China. Appl. Sol. Energy 2020, 56, 388–396. [Google Scholar]
- Skoplaki, E.; Palyvos, J. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Zondag, H. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 2008, 12, 891–959. [Google Scholar] [CrossRef]
- Evans, D. Simplified method for predicting photovoltaic array output. Sol. Energy 1981, 27, 555–560. [Google Scholar] [CrossRef]
- Lasiner, F. Photovoltaic Engineering Handbook; Higler, A., Ed.; Routledge: Princeton, NY, USA, 1990. [Google Scholar]
- Klein, S. Calculation of monthly average insolation on tilted surfaces. Sol. Energy 1977, 19, 325–329. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Li, J.; Lu, Y.; Gong, W.; Niu, Y. Global surface solar radiation and photovoltaic power from Coupled Model Intercomparison Project Phase 5 climate models. J. Clean. Prod. 2019, 224, 304–324. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G.; Lu, C.; Zhou, X.; Li, Y. Impacts of climate change on photovoltaic energy potential: A case study of China. Appl. Energ. 2020, 280, 115888. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.; Liu, T.; Li, Y.; Zhou, Y.; Gao, X. Projections of future changes in solar radiation in China based on CMIP5 climate models. Glob. Energy Interconnect. 2018, 1, 452–459. [Google Scholar] [CrossRef]
- Wu, J.; Han, Z.; Yan, Y.; Gao, X. Future projection of solar energy over China based on multi-regional climate model simulations. Earth Space Sci. 2022, 9, e2021EA002207. [Google Scholar] [CrossRef]
- Zhao, X.; Yue, X.; Tian, C.; Zhou, H.; Wang, B.; Chen, Y.; Zhao, Y.; Fu, W.; Hu, Y. Multimodel ensemble projection of photovoltaic power potential in China by the 2060s. Atmos. Ocean. Sci. Lett. 2023, 16, 100403. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Sun, F.; Wang, H. Correct and remap solar radiation and photovoltaic power in China based on machine learning models. Appl. Energy 2022, 312, 118775. [Google Scholar] [CrossRef]
GCMs | Model Name | Country | Units | Resolution (km) |
---|---|---|---|---|
tas | ACCESS-CM2 | Australia | CSIRO-BOM | 100 |
GISS-E2-1-H | America | GISS | 50 | |
GISS-E2-1-G | America | GISS | 250 | |
KIOST-ESM | Korea | KIOST | 100 | |
MRI-ESM2-0 | Japan | MRI | 60 | |
MPI-ESM-1-2-HAM | Germany | MPI-M | 110 | |
NorESM2-LM | Norway | NCC | 250 | |
rsds | BCC-CSM2-MR | China | BCC | 110 |
CCCR-IITM-ESM | India | IITM | 70 | |
KACE-1-0-G | Korea | KIAPS | 100 | |
MPI-ESM1-2-LR | Germany | MPI-M | 110 | |
MPI-ESM1-2-HR | Germany | MPI-M | 50 | |
NorESM2-MM | Norway | NCC | 110 | |
rsdsdiff | CESM2-WACCM | USA | NCCR | 100 |
Month | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 17 | 16 | 16 | 15 | 15 | 11 | 17 | 16 | 15 | 15 | 14 | 10 |
N | 17 | 47 | 75 | 105 | 135 | 162 | 198 | 228 | 258 | 288 | 318 | 344 |
Variable | Scenario | Period | China | Northwest | Tibet | Inner Mongolia | Southeast | Central |
---|---|---|---|---|---|---|---|---|
rsds change (%) | ssp245 | 2020–2060 | 0.80 | −0.06 | 0.05 | 0.51 | 3.58 | 3.66 |
2061–2099 | 2.15 | 0.28 | 0.03 | 1.93 | 8.67 | 9.35 | ||
ssp585 | 2020–2060 | 0.73 | −0.38 | −0.37 | 0.67 | 4.33 | 4.28 | |
2061–2099 | 1.35 | −0.60 | −1.29 | 0.48 | 8.27 | 8.61 |
Variable | Scenario | Period | China | Northwest | Tibet | Inner Mongolia | Southeast | Central |
---|---|---|---|---|---|---|---|---|
tas changes | ssp245 | 2020–2060 | 1.53 | 1.67 | 1.67 | 1.53 | 1.32 | 1.28 |
2061–2099 | 2.65 | 2.86 | 2.79 | 2.68 | 2.34 | 2.41 | ||
ssp585 | 2020–2060 | 1.82 | 1.97 | 1.97 | 1.81 | 1.58 | 1.58 | |
2061–2099 | 4.39 | 4.68 | 4.58 | 4.44 | 3.73 | 3.89 |
Variable | Scenario | Period | China | Northwest | Tibet | Inner Mongolia | Southeast | Central |
---|---|---|---|---|---|---|---|---|
Ppv change (%) | ssp245 | 2020–2060 | 0.28 | −0.85 | −0.19 | −0.30 | 3.51 | 3.66 |
2061–2099 | 1.21 | −1.05 | −0.61 | 0.64 | 8.56 | 9.25 | ||
ssp585 | 2020–2060 | 0.04 | −1.34 | −0.88 | −0.17 | 4.15 | 4.16 | |
2061–2099 | −0.33 | −2.71 | −2.40 | −1.67 | 7.67 | 7.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Y.; Wei, M.; Yuan, J.; He, W.; Chen, L.; Gao, Y. The Impact of Climate Change on Solar Radiation and Photovoltaic Energy Yields in China. Atmosphere 2024, 15, 939. https://doi.org/10.3390/atmos15080939
Hua Y, Wei M, Yuan J, He W, Chen L, Gao Y. The Impact of Climate Change on Solar Radiation and Photovoltaic Energy Yields in China. Atmosphere. 2024; 15(8):939. https://doi.org/10.3390/atmos15080939
Chicago/Turabian StyleHua, Yaping, Mingbang Wei, Jun Yuan, Wei He, Long Chen, and Yang Gao. 2024. "The Impact of Climate Change on Solar Radiation and Photovoltaic Energy Yields in China" Atmosphere 15, no. 8: 939. https://doi.org/10.3390/atmos15080939
APA StyleHua, Y., Wei, M., Yuan, J., He, W., Chen, L., & Gao, Y. (2024). The Impact of Climate Change on Solar Radiation and Photovoltaic Energy Yields in China. Atmosphere, 15(8), 939. https://doi.org/10.3390/atmos15080939