Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis
Abstract
:1. Introduction
2. Experiments
2.1. Site Description
2.2. Field Sampling
2.3. Chemical Analysis
2.4. Backward Trajectories Analysis
2.5. Positive Matrix Factorization Model
3. Results and Discussion
3.1. Spatial–Temporal Variations in PM2.5 Mass Concentrations
3.2. Spatial–Temporal Variations in Water-Soluble Ionic Species
3.2.1. Primary Chemical Species Leading to Polluted Days
3.2.2. Importance and Mechanisms of Nitrate and Sulfate Formation
3.3. PM2.5 Source Apportionment
3.4. Backward Trajectory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.B.; Krall, J.R.; Peng, R.D.; Bell, M.L. Is the Relation Between Ozone and Mortality Confounded by Chemical Components of Particulate Matter? Analysis of 7 Components in 57 US Communities. Am. J. Epidemiol. 2012, 176, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Yang, C.; Liao, X.; Zhang, Y.; Chai, X.; Gao, W.; Guo, S.; Bi, Y.; Tsang, S.Y.; Chen, Z.F.; et al. Investigation of PM2.5 pollution during COVID-19 pandemic in Guangzhou, China. J. Environ. Sci. 2022, 115, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Wang, Q.Y.; Chow, J.C.; Watson, J.G.; Tie, X.; Shen, Z.; Wang, P.; An, Z. Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmos. Environ. 2012, 59, 559–566. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Hu, Q.; Li, G.; Ding, X.; Zhang, Y.; He, Q.; Liu, T.; Zhang, Z.; Yu, Q.; et al. Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region. J. Environ. Sci. 2016, 40, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Shi, H.; Tang, H.; Yang, X. Geographical and temporal encoding for improving the estimation of PM2.5 concentrations in China using end-to-end gradient boosting. Remote Sens. Environ. 2022, 269, 112828. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Mahowald, N. Aerosol Indirect Effect on Biogeochemical Cycles and Climate. Science 2011, 334, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Lu, P.; Deng, S.; Li, G.; Li, J.; Xu, K.; Lu, Z. Spatial distribution of primary and secondary PM2.5 concentrations emitted by vehicles in the Guanzhong Plain, China. Atmosphere 2022, 13, 347. [Google Scholar] [CrossRef]
- Wei, F.; Teng, E.; Wu, G.; Hu, W.; Wilson, W.E.; Chapman, R.S.; Pau, J.C.; Zhang, J. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environ. Sci. Technol. 1999, 33, 4188–4193. [Google Scholar] [CrossRef]
- Huang, X.F.; He, L.Y.; Hu, M.; Zhang, Y.H. Annual variation of particulate organic compounds in PM2.5 in the urban atmosphere of Beijing. Atmos. Environ. 2006, 40, 2449–2458. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Bano, T.; Singh, S.; Behura, S.; Srivastava, M.K.; Chate, D.M.; Padmanabhamurty, B. Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J. Atmos. Chem. 2009, 62, 193–209. [Google Scholar] [CrossRef]
- Tao, J.; Cheng, T.; Zhang, R.; Cao, J.; Zhu, L.; Wang, Q.; Luo, L.; Zhang, L.M. Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China. Adv. Atmos. Sci. 2013, 30, 1070–1084. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, J.J.; Chow, J.C.; Shen, Z.X.; Ho, K.F.; Ho, S.S.H.; Liu, S.X.; Han, Y.M.; Waston, J.G.; Wang, G.H.; et al. Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi’an, China. J. Air Waste Manag. Assoc. 2014, 64, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cheng, S.; Li, J.; Lang, J.; Wen, W.; Yang, X.; Tian, L. Source apportionment and seasonal variation of PM2.5 carbonaceous aerosol in the Beijing-Tianjin-Hebei Region of China. Environ. Monit. Assess. 2015, 187, 143. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Chen, N.; Guo, H.; Zeng, L.; Zhang, W.; Shen, F.; Quan, J.H.; Wang, N. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, Central China. Atmos. Chem. Phys. 2016, 16, 10671–10687. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, B.; Wang, S.; Yang, F.; Xing, J.; Morawska, L.; Ding, A.J.; Kulmala, M.; Kerminen, V.M.; Kujansuu, J.; et al. Particulate matter pollution over China and the effects of control policies. Sci. Total Environ. 2017, 584, 426–447. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.C.; Zou, S.C.; Cao, J.J.; Lee, S.C.; Ho, K.F. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China. J. Environ. Sci. 2007, 19, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.Y.; Zhang, R.J.; Lin, W.L.; Jia, X.F.; Yu, X.M.; Yu, X.L.; Wang, G.H. Seasonal variation of ammonia and ammonium aerosol at a background station in the Yangtze River Delta Region, China. Aerosol Air Qual. Res. 2014, 14, 756–766. [Google Scholar] [CrossRef]
- Han, L.; Cheng, S.; Zhuang, G.; Ning, H.; Wang, H.; Wei, W.; Zhao, X. The changes and long-range transport of PM2.5 in Beijing in the past decade. Atmos. Environ. 2015, 110, 186–195. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, J.; He, J.; Wang, X.; Pang, B.; Liu, Z.; Wang, L.L.; Wang, Y.S. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos. Environ. 2016, 125, 293–306. [Google Scholar] [CrossRef]
- Tan, J.; Duan, J.; Ma, Y.; He, K.; Cheng, Y.; Deng, S.X.; Huang, Y.L.; Si-Tu, S.P. Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008-2014. Sci. Total Environ. 2016, 565, 519–528. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, C.; Xue, C.; Mu, Y.; Liu, J.; Zhang, Y.; Tian, D.; Ye, C.; Zhang, H.; Guan, J. The contribution of residential coal combustion to atmospheric PM2.5 in northern China during winter. Atmos. Chem. Phys. 2017, 17, 11503–11520. [Google Scholar] [CrossRef]
- Li, J.; Liao, H.; Hu, J.; Li, N. Severe particulate pollution days in China during 2013-2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions. Environ. Pollut. 2019, 248, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Tian, M.; Wang, H.; Chen, Y.; Zhang, L.; Shi, G.; Liu, Y.; Yu, J.; Zhai, C.; Wang, J.; Yang, F. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China. Sci. Total Environ. 2017, 580, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.Y.; Liu, C.Q. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China. Atmos. Environ. 2002, 36, 5121–5130. [Google Scholar] [CrossRef]
- Li, L.; Tan, Q.; Zhang, Y.; Feng, M.; Qu, Y.; An, J.; Liu, X. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China. Environ. Pollut. 2017, 230, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tian, M.; Chen, Y.; Shi, G.; Liu, Y.; Yang, F.; Zhang, L.; Deng, L.; Yu, J.; Peng, C.; et al. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China. Atmos. Chem. Phys. 2018, 18, 865–881. [Google Scholar] [CrossRef]
- Kong, L.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Liu, X.; Cheng, N.; Deng, Y.; Zhai, R.; Wang, Z. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Xiao, H.Y.; Zhang, Z.Y.; Zheng, N.J.; Li, Q.K.; Li, X.D. Chemical characteristics of major inorganic ions in PM2.5 based on year-long observations in Guiyang, Southwest China-implications for formation pathways and the influences of regional transport. Atmosphere 2020, 11, 847. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Zhu, X.; He, J.; Jiang, Q.; Wu, K.; Wang, H.; Zhang, X.; Wang, S. Formation and evolution mechanisms of severe haze pollution in the Sichuan basin, southwest China. Aerosol Air Qual. Res. 2020, 20, 2557–2567. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, G.; Zhan, Y.; Zhou, L.; Yang, F. Characteristics of PM2.5 spatial distribution and influencing meteorological conditions in Sichuan Basin, southwestern China. Atmos. Environ. 2021, 253, 118364. [Google Scholar] [CrossRef]
- Ali, M.A.; Huang, Z.; Bilal, M.; Assiri, M.E.; Mhawish, A.; Nichol, J.E.; Leeuw, G.; Almazroui, M.; Wang, Y.; Alsubhi, Y. Long-term PM2.5 pollution over China: Identification of PM2.5 pollution hotspots and source contributions. Sci. Total Environ. 2023, 893, 164871. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Yao, X.H. Review: Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Liu, X.Y.; Xiao, H.Y.; Liu, C.Q.; Xiao, H.W.; Wang, Y.L. Assessment of atmospheric sulfur with the epilithic moss Haplocladium microphyllum: Evidences from tissue sulfur and δ34S analysis. Environ. Pollut. 2009, 157, 2066–2071. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhao, Q.; Ma, Y.; Duan, F.; Yang, F.; Shi, Z.; Chen, G. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols. Atmos. Chem. Phys. 2012, 12, 1377–1395. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Y.; Yang, F.; Zhang, L.; Peng, C.; Chen, Y.; Shi, G.; Wang, H.; Luo, B.; Jiang, C.; et al. Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China. Environ. Pollut. 2019, 250, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, S.; Wang, D.; Wang, Q.; Yang, X.; Tong, R. Air quality changes in China 2013-2020: Effectiveness of clean coal technology policies. J. Clean. Prod. 2022, 366, 132961. [Google Scholar] [CrossRef]
- Shen, Z.X.; Cao, J.J.; Arimoto, R.; Han, Z.W.; Zhang, R.J.; Han, Y.M.; Liu, S.X.; Okuda, T.; Nakao, S.; Tanka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, J.J.; Tie, X.X.; Shen, Z.X.; Liu, S.X.; Ding, H.; Han, Y.M.; Wang, G.H.; Ho, K.F.; Qiang, J.; et al. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmos. Res. 2011, 102, 110–119. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Stohl, A. Computation, accuracy and applications of trajectories-A review and bibliography. Atmos. Environ. 1998, 32, 947–966. [Google Scholar] [CrossRef]
- Srivastava, D.; Xu, J.; Vu, T.V.; Liu, D.; Li, L.; Fu, P.; Hou, S.; Palmerola, N.M.; Shi, Z.; Harrison, R.M. Insight into PM2.5 sources by applying positive matrix factorization (PMF) at an urban and rural site of Beijing. Atmos. Chem. Phys. Discuss. 2021, 21, 14703–14724. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Tang, L.L.; Wang, Z.; Yu, H.X.; Sun, Y.L.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A.S.H.; Zhang, H.L.; et al. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region. China. Atmos. Chem. Phys. 2015, 15, 1331–1349. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Sheesley, R.J.; Schauer, J.J.; Lewandowski, M.; Jaoui, M.; Offenberg, J.H.; Kleindienst, T.E.; Edney, E.O. Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmos. Environ. 2009, 43, 5567–5574. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- Jia, Z.; Ordóñez, C.; Doherty, R.M.; Wild, O.; Turnock, S.T.; O’Connor, F.M. Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change. Atmos. Chem. Phys. 2023, 23, 2829–2842. [Google Scholar] [CrossRef]
- Feng, W.; Wang, M.; Zhang, Y.; Dai, X.; Liu, X.; Xu, Y. Intraseasonal variation and future projection of atmospheric diffusion conditions conducive to extreme haze formation over eastern China. Atmos. Ocean Sci. Lett. 2020, 13, 346–355. [Google Scholar] [CrossRef]
- Glavas, S.D.; Nikolakis, P.; Ambatzoglou, D.; Mihalopoulos, N. Factors affecting the seasonal variation of mass and ionic composition of PM2.5 at a central Mediterranean coastal site. Atmos. Environ. 2008, 42, 5365–5373. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J. Chemical speciation of PM2.5 particles at urban background and rural sites in the UK atmosphere. J. Environ. Monit. 2010, 12, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, S.D.; Luo, B.; Zhai, C. Characteristics and sources of water-soluble ions in PM2.5 in the Sichuan Basin, China. Atmosphere 2019, 10, 78. [Google Scholar] [CrossRef]
- Du, X.X.; Shi, G.M.; Zhao, T.L.; Yang, F.M.; Zheng, X.B.; Zhang, Y.J.; Tan, Q.W. Contribution of secondary particles to wintertime PM2.5 during 2015–2018 in a major urban area of the Sichuan Basin, Southwest China. Earth Space Sci. 2020, 7, e2020EA001194. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.; Engling, G.; Zhang, R.; Yang, Y.; Cao, J.; Zhu, C.; Wang, Q.; Luo, L. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013, 122, 270–283. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.C. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef]
- Yao, X.H.; Chan, C.K.; Fang, M.; Cadle, S.; Chan, T.; Mulawa, P.; He, K.; Ye, B. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 2002, 36, 4223–4234. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Y.; Zhu, C.; Tian, J.; Liu, S. Chemical characteristics of fine particles (PM1) from Xi’an, China. Aerosol Sci. Technol. 2010, 44, 461–472. [Google Scholar] [CrossRef]
- Liu, P.; Ye, C.; Xue, C.; Zhang, C.; Mu, Y.; Sun, X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry. Atmos. Chem. Phys. 2020, 20, 4153–4165. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, H.; Yu, F.; Chao, N.; Li, Y.; Jiang, Q.; Huang, Y.; Duan, L.; Ji, Z.; Zhou, R.; et al. The characteristics and impact factors of sulfate and nitrate in urban PM2.5 over typical cities of Hangzhou Bay area, China. Atmosphere 2023, 14, 1799. [Google Scholar] [CrossRef]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Qi, G.W.; Watson, J.G. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology 2009, 7, 161–168. [Google Scholar] [CrossRef]
- Xu, L.L.; Chen, X.Q.; Chen, J.S.; Zhang, F.W.; He, C.; Zhao, J.P.; Yin, L.Q. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 2012, 104–105, 264–272. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Sheng, G.; Fu, J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ. Monit. Assess. 2006, 119, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhuang, G.; Zhang, X.; Huang, K.; Xu, C.; Tang, A.; Chen, J.; An, Z. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ. 2006, 40, 2935–2952. [Google Scholar] [CrossRef]
- Ohta, S.; Okita, T. A chemical characterization of atmospheric aerosol in Sapporo. Atmos. Environ. 1990, 24, 815–822. [Google Scholar] [CrossRef]
- Duan, F.K.; Liu, X.D.; Yu, T.; Cachier, H. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ. 2004, 38, 1275–1282. [Google Scholar] [CrossRef]
- Peng, J.; Hu, M.; Shang, D.; Wu, Z.; Du, Z.; Tan, T.; Wang, Y.; Zhang, F.; Zhang, R. Explosive secondary aerosol formation during severe haze in the North China Plain. Environ. Sci. Technol. 2021, 55, 2189–2207. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Chow, J.C.; Watson, J.G.; Wu, F.; Han, Y.M.; Jin, Z.D.; Shen, Z.X.; An, Z.S. Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau. Atmos. Environ. 2008, 42, 2261–2275. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Liu, C.Q. Chemical characteristics of water-soluble components in TSP over Guiyang, SW China, 2003. Atmos. Environ. 2004, 38, 6297–6306. [Google Scholar] [CrossRef]
- Zhang, R.J.; Cao, J.J.; Lee, S.C.; Shen, Z.X.; Ho, K.F. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing. J. Environ. Sci. 2007, 19, 564–571. [Google Scholar] [CrossRef]
- Cao, J.J.; Chow, J.C.; Tao, J.; Lee, S.C.; Watson, J.G.; Ho, K.F.; Wang, G.H.; Zhu, C.S.; Han, Y.M. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmos. Environ. 2011, 45, 1359–1363. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Querol, X.; Alastuey, A.; O’Dowd, C.; Harrison, R.M.; Wenger, J.; Gómez-Moreno, F.J. On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmos. Chem. Phys. 2013, 13, 741–759. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Xue, Z.; Qu, Y.; Chai, F.; Hao, J. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Sci. Total Environ. 2011, 409, 3078–3081. [Google Scholar] [CrossRef] [PubMed]
- Duc, H.N.; Bang, H.Q.; Quang, N.X. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environ. Monit. Assess. 2016, 188, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xiao, H.; Guan, H.; Zheng, N.; Zhang, Z.; Tian, J.; Qu, L.; Zhao, J.; Xiao, H. Chemical composition and seasonal variations of PM2.5 in an urban environment in Kunming, SW China: Importance of prevailing westerlies in cold season. Atmos. Environ. 2020, 237, 117704. [Google Scholar] [CrossRef]
- Sofia, D.; Lotrecchiano, N.; Trucillo, P.; Giuliano, A.; Terrone, L. Novel air pollution measurement system based on ethereum blockchain. J. Sens. Actuator Netw. 2020, 9, 49. [Google Scholar] [CrossRef]
(a) | ||||||||
---|---|---|---|---|---|---|---|---|
Chengdu (CD) | Chongqing (CQ) | |||||||
Sampling Period | Polluted | Transition | Clean | Sampling Period | Polluted | Transition | Clean | |
PM2.5/μg m−3 | 71.8 ± 25.8 | 99.4 ± 16.3 | 66.4 ± 10.2 | 41.9 ± 6.4 | 53.3 ± 21.7 | 88.1 ± 4.0 | 64.2 ± 7.9 | 35.6 ± 9.1 |
SO42−/μg m−3 | 9.4 ± 3.3 | 12.5 ± 2.4 | 8.9 ± 2.1 | 6.0 ± 1.6 | 11.6 ± 4.7 | 15.8 ± 4.5 | 13.9 ± 3.6 | 8.9 ± 3.7 |
NO3−/μg m−3 | 17.4 ± 8.3 | 25.9 ± 5.5 | 15.5 ± 5.2 | 8.5 ± 1.3 | 14.8 ± 5.3 | 21.7 ± 2.9 | 16.3 ± 3.3 | 11.7 ± 4.6 |
NH4+/μg m−3 | 7.1 ± 3.0 | 9.9 ± 2.0 | 6.7 ± 1.8 | 3.6 ± 0.7 | 6.8 ± 2.7 | 9.3 ± 1.2 | 8.3 ± 1.7 | 5.0 ± 2.2 |
Cl−/μg m−3 | 2.1 ± 0.8 | 2.7 ± 0.6 | 2.2 ± 0.7 | 1.1 ± 0.3 | 1.7 ± 1.1 | 2.9 ± 0.9 | 1.8 ± 1.0 | 1.3 ± 0.9 |
K+/μg m−3 | 0.8 ± 0.3 | 1.0 ± 0.2 | 0.8 ± 0.2 | 0.6 ± 0.1 | 0.9 ± 0.5 | 1.5 ± 0.3 | 1.0 ± 0.4 | 0.6 ± 0.4 |
Ca2+/μg m−3 | 1.8 ± 0.7 | 1.8 ± 0.7 | 1.7 ± 0.8 | 1.9 ± 0.4 | 1.5 ± 0.8 | 1.9 ± 0.6 | 1.9 ± 0.8 | 1.1 ± 0.6 |
Mg2+/μg m−3 | 0.10 ± 0.07 | 0.10 ± 0.03 | 0.09 ± 0.02 | 0.14 ± 0.13 | 0.06 ± 0.02 | 0.08 ± 0.01 | 0.06 ± 0.01 | 0.06 ± 0.01 |
TC/μg m−3 | 15.2 ± 5.3 | 17.6 ± 5.0 | 15.5 ± 5.6 | 11.5 ± 3.4 | 15.2 ± 6.7 | 25.2 ± 4.8 | 18.1 ± 3.6 | 10.4 ± 3.5 |
NOR | 0.22 | 0.27 | 0.21 | 0.14 | 0.26 | 0.32 | 0.26 | 0.23 |
SOR | 0.49 | 0.48 | 0.43 | 0.34 | 0.57 | 0.65 | 0.65 | 0.59 |
NOR/SOR | 0.45 | 0.56 | 0.49 | 0.41 | 0.46 | 0.49 | 0.40 | 0.39 |
NO3−/SO42− | 1.9 | 2.1 | 1.7 | 1.4 | 1.3 | 1.4 | 1.2 | 1.3 |
NO2/μg m−3 | 60.8 | 69.6 | 57.4 | 53.7 | 42.3 | 46.3 | 47.0 | 38.2 |
SO2/μg m−3 | 12.3 | 13.3 | 11.9 | 11.5 | 6.8 | 8.3 | 7.3 | 6.0 |
(b) | ||||||||
Guiyang (GY) | Kunming (KM) | |||||||
Sampling Period | Polluted | Transition | Clean | Sampling Period | Polluted | Transition | Clean | |
PM2.5/μg m−3 | 39.4 ± 18.2 | 108.6 | 59.7 ± 7.9 | 32.6 ± 8.5 | 33.8 ± 11.2 | — | 63.0 ± 5.1 | 31.8 ± 8.3 |
SO42−/μg m−3 | 11.3 ± 4.2 | 13.7 | 12.0 ± 3.7 | 11.1 ± 4.3 | 5.8 ± 3.3 | — | 13.2 ± 4.0 | 5.3 ± 2.6 |
NO3−/μg m−3 | 6.9 ± 5.1 | 6.2 | 11.0 ± 6.8 | 6.1 ± 4.5 | 2.8 ± 1.8 | — | 6.6 ± 0.2 | 2.5 ± 1.5 |
NH4+/μg m−3 | 5.4 ± 2.2 | 5.6 | 6.1 ± 2.4 | 5.3 ± 2.2 | 2.3 ± 1.4 | — | 5.2 ± 1.0 | 2.1 ± 1.2 |
Cl−/μg m−3 | 0.5 ± 0.2 | 0.7 | 0.6 ± 0.2 | 0.4 ± 0.2 | 0.8 ± 0.4 | — | 1.5 ± 0.5 | 0.7 ± 0.4 |
K+/μg m−3 | 0.5 ± 0.3 | 0.6 | 0.5 ± 0.3 | 0.4 ± 0.3 | 0.3 ± 0.1 | — | 0.5 ± 0.1 | 0.3 ± 0.1 |
Ca2+/μg m−3 | 2.5 ± 1.0 | 3.5 | 2.9 ± 1.4 | 2.4 ± 0.9 | 2.2 ± 0.9 | — | 2.6 ± 1.5 | 2.2 ± 0.8 |
Mg2+/μg m−3 | 0.08 ± 0.04 | 0.1 | 0.08 ± 0.02 | 0.08 ± 0.04 | 0.10 ± 0.03 | — | 0.09 ± 0.01 | 0.10 ± 0.03 |
TC/μg m−3 | 13.0 ± 6.2 | 16.6 | 14.7 ± 8.6 | 12.4 ± 5.8 | 12.0 ± 3.1 | — | 15.2 ± 2.3 | 11.8 ± 3.0 |
NOR | 0.19 | 0.16 | 0.20 | 0.18 | 0.07 | — | 0.15 | 0.06 |
SOR | 0.40 | 0.38 | 0.31 | 0.43 | 0.22 | — | 0.43 | 0.20 |
NOR/SOR | 0.48 | 0.42 | 0.65 | 0.42 | 0.32 | — | 0.35 | 0.30 |
NO3−/SO42− | 0.6 | 0.5 | 0.9 | 0.6 | 0.5 | — | 0.5 | 0.5 |
NO2/μg m−3 | 30.1 | 33.3 | 44.0 | 27.2 | 37.2 | — | 38.1 | 37.2 |
SO2/μg m−3 | 17.2 | 22.5 | 27.2 | 15.0 | 20.8 | — | 17.8 | 21.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Chen, Z.; Tian, J.; Xiao, H. Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis. Atmosphere 2024, 15, 855. https://doi.org/10.3390/atmos15070855
Guan H, Chen Z, Tian J, Xiao H. Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis. Atmosphere. 2024; 15(7):855. https://doi.org/10.3390/atmos15070855
Chicago/Turabian StyleGuan, Hui, Ziyun Chen, Jing Tian, and Huayun Xiao. 2024. "Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis" Atmosphere 15, no. 7: 855. https://doi.org/10.3390/atmos15070855
APA StyleGuan, H., Chen, Z., Tian, J., & Xiao, H. (2024). Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis. Atmosphere, 15(7), 855. https://doi.org/10.3390/atmos15070855