Forecasting the Mitigation Potential of Greenhouse Gas Emissions in Shenzhen through Municipal Solid Waste Treatment: A Combined Weight Forecasting Model
Abstract
:1. Introduction
- (1)
- A combination weight prediction model was developed to accurately anticipate the quantity of municipal solid garbage created from 2023 to 2030;
- (2)
- Various scenario combinations were given to assess the carbon-reduction potential of incineration, landfill, and biological treatment;
- (3)
- A carbon emission reduction optimization strategy suited for the development of low-carbon municipal solid waste management in Shenzhen and similar cities is presented based on the emission reduction potential.
2. Literature Review
2.1. Research on MSW Treatment
2.2. Research on Greenhouse Gas Emission Accounting
2.3. MSW Prediction Models
3. Methods and Data
3.1. Data Collection and Preprocessing
3.2. Prediction Model
3.2.1. Single Models
3.2.2. The Framework of the CWFM Model
3.3. GHG Emissions from MSW Treatment
3.3.1. Incineration
3.3.2. Biochemical Treatment
3.3.3. Landfill
3.4. Scenario Setting
4. Results and Discussion
4.1. Model Accuracy
4.2. Predicted MSW Generation
4.3. GHG Emission Estimations
4.4. Analysis of GHG Emissions Reduction Potential
5. Conclusions
- (1)
- Based on related research by scholars on the generation of urban domestic waste, it is determined that six indicators—urban GDP, total retail sales of consumer goods, monthly disposable income per capita, monthly consumption expenditure per capita, actual number of passengers carried at year-end, and resident population at year-end—have some correlation with the generation of urban domestic waste and can be used as input variables in a model to accurately predict the amount of waste generated in urban areas;
- (2)
- A combined LSTM-GRU-BiLSTM model was suggested in this work to forecast the quantity of urban household garbage produced in Shenzhen. According to the experimental findings, this combined model’s MAE, MAPE, and RMSE were, respectively, 0.22, 4.12%, and 0.21. This model can more precisely forecast the quantity of MSW created than machine learning and a single prediction model;
- (3)
- Shenzhen is expected to generate 12.72 million tons of municipal domestic garbage by 2030, according to the combined LSTM-GRU-BiLSTM model, and 5.91 million tons of greenhouse gas emissions could arise from treating Shenzhen MSW in different proportions that include 58% incineration, 2% landfilling, and 40% biochemical treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lou, Z.; Cai, B.-F.; Zhu, N.; Zhao, Y.; Geng, Y.; Yu, B.; Chen, W. Greenhouse Gas Emission Inventories from Waste Sector in China during 1949–2013 and Its Mitigation Potential. J. Clean. Prod. 2017, 157, 118–124. [Google Scholar] [CrossRef]
- Hong, J.; Chen, Y.; Wang, M.; Ye, L.; Qi, C.; Yuan, H.; Zheng, T.; Li, X. Intensification of Municipal Solid Waste Disposal in China. Renew. Sustain. Energy Rev. 2017, 69, 168–176. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, Q.; Wang, L.; Chen, Y.; Lin, G.; Huang, J.; Yang, H.; Chen, H. China’s Changing City-Level Greenhouse Gas Emissions From Municipal Solid Waste Treatment and Driving Factors. Resour. Conserv. Recycl. 2022, 180, 106168. [Google Scholar] [CrossRef]
- Istrate, I.R.; Galvez-Martos, J.L.; Vázquez, D.; Guillén-Gosálbez, G.; Dufour, J. Prospective Analysis of the Optimal Capacity, Economics and Carbon Footprint of Energy Recovery From Municipal Solid Waste Incineration. Resour. Conserv. Recycl. 2023, 193, 106943. [Google Scholar] [CrossRef]
- Chaianong, A.; Pharino, C. How to Design an Area-Based Prioritization of Biogas Production from Organic Municipal Solid Waste? Evidence from Thailand. Waste Manag. 2022, 138, 243–252. [Google Scholar] [CrossRef]
- Istrate, I.-R.; Galvez-Martos, J.-L.; Dufour, J. The Impact of Incineration Phase-Out on Municipal Solid Waste Landfilling and Life Cycle Environmental Performance: Case Study of Madrid, Spain. Sci. Total. Environ. 2021, 755, 142537. [Google Scholar] [CrossRef]
- Adnan, A.; Mahmud, S.; Uddin, M.R.; Modi, A.; Ehsan, M.M.; Salehin, S. Energy, Exergy, Exergoeconomic, and Environmental (4E) Analyses of Thermal Power Plants for Municipal Solid Waste to Energy Application in Bangladesh. Waste Manag. 2021, 134, 136–148. [Google Scholar] [CrossRef]
- Manesh, M.K.; Rezazadeh, A.; Kabiri, S. A Feasibility Study on the Potential, Economic, and Environmental Advantages of Biogas Production from Poultry Manure in Iran. Renew. Energy 2020, 159, 87–106. [Google Scholar] [CrossRef]
- Van Fan, Y.; Klemeš, J.J.; Lee, C.T.; Perry, S. Anaerobic Digestion of Municipal Solid Waste: Energy and Carbon Emission Footprint. J. Environ. Manag. 2018, 223, 888–897. [Google Scholar] [CrossRef]
- Surendra, K.; Takara, D.; Hashimoto, A.G.; Khanal, S.K. Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges. Renew. Sustain. Energy Rev. 2014, 31, 846–859. [Google Scholar] [CrossRef]
- Dastjerdi, B.; Strezov, V.; Kumar, R.; Behnia, M. An Evaluation of the Potential of Waste to Energy Technologies for Residual Solid Waste in New South Wales, Australia. Renew. Sustain. Energy Rev. 2019, 115, 109398. [Google Scholar] [CrossRef]
- Kamboj, S. Biogas From Kitchen Food Waste: Estimation, Applications and Economic Analysis. Int. J. Res. Eng. Appl. Manag. (IJREAM) 2018, 4, 409–416. [Google Scholar]
- Khan, I. Waste to Biogas through Anaerobic Digestion: Hydrogen Production Potential in the Developing World—A Case of Bangladesh. Int. J. Hydrogen Energy 2020, 45, 15951–15962. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Y.; Lou, Y.; Zeng, D.; Shuai, C.; Song, X. What Drives the Carbon Emission in the Chinese Cities?—A Case of Pilot Low Carbon City of Beijing. J. Clean. Prod. 2018, 174, 343–354. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, M.; Li, R. Decoupling Sectoral Economic Output from Carbon Emissions on City Level: A Comparative Study of Beijing and Shanghai, China. J. Clean. Prod. 2019, 209, 126–133. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Xie, G.H. Estimate of Restaurant Food Waste and Its Biogas Production Potential in China. J. Clean. Prod. 2019, 211, 309–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuai, C.; Bian, J.; Chen, X.; Wu, Y.; Shen, L. Socioeconomic Factors of PM2.5 Concentrations in 152 Chinese Cities: Decomposition Analysis Using LMDI. J. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Seadon, J.K. Sustainable Waste Management Systems. J. Clean. Prod. 2010, 18, 1639–1651. [Google Scholar] [CrossRef]
- Mancini, G.; Luciano, A.; Bolzonella, D.; Fatone, F.; Viotti, P.; Fino, D. A Water-Waste-Energy Nexus Approach to Bridge the Sustainability Gap in Landfill-Based Waste Management Regions. Renew. Sustain. Energy Rev. 2021, 137, 110441. [Google Scholar] [CrossRef]
- Toniolo, S.; Mazzi, A.; Garato, V.G.; Aguiari, F.; Scipioni, A. Assessing the “Design Paradox” with Life Cycle Assessment: A Case Study of a Municipal Solid Waste Incineration Plant. Resour. Conserv. Recycl. 2014, 91, 109–116. [Google Scholar] [CrossRef]
- Xiao, S.; Dong, H.; Geng, Y.; Tian, X.; Liu, C.; Li, H. Policy Impacts on Municipal Solid Waste Management in Shanghai: A System Dynamics Model Analysis. J. Clean. Prod. 2020, 262, 121366. [Google Scholar] [CrossRef]
- Niu, D.; Wu, F.; Dai, S.; He, S.; Wu, B. Detection of Long-Term Effect in Forecasting Municipal Solid Waste Using a Long Short-Term Memory Neural Network. J. Clean. Prod. 2021, 290, 125187. [Google Scholar] [CrossRef]
- Taguem, E.M.; Mennicken, L.; Romain, A.-C. Quantile Regression with a Metal Oxide Sensors Array for Methane Prediction over a Municipal Solid Waste Treatment Plant. Sens. Actuators B Chem. 2021, 334, 129590. [Google Scholar] [CrossRef]
- Jiang, L.; Liao, H. Network Consensus Analysis of Probabilistic Linguistic Preference Relations for Group Decision Making and Its Application in Urban Household Waste Classification. J. Clean. Prod. 2021, 278, 122766. [Google Scholar] [CrossRef]
- Xu, Z.; Lv, Z.; Chu, B.; Li, J. Fast Autoregressive Tensor Decomposition for Online Real-time Traffic Flow Prediction. Knowl.-Based Syst. 2023, 282, 111125. [Google Scholar] [CrossRef]
- Hanandeh, S.M. Introducing Mathematical Modeling to Estimate Pavement Quality Index of Flexible Pavements Based on Genetic Algorithm and Artificial Neural Networks. Case Stud. Constr. Mater. 2022, 16, e00991. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Y.; Kuo, J.-H. Deep Learning Hybrid Predictions for the Amount of Municipal Solid Waste: A Case Study in Shanghai. Chemosphere 2022, 307, 136119. [Google Scholar] [CrossRef]
- Kujawa, S.; Mazurkiewicz, J.; Czekała, W. Using Convolutional Neural Networks to Classify the Maturity of Compost Based on Sewage Sludge and Rapeseed Straw. J. Clean. Prod. 2020, 258, 120814. [Google Scholar] [CrossRef]
- Yuan, J.; Zhou, Z.; Huang, K.; Han, Z.; Wang, C.; Lu, S. Analysis and Evaluation of the Operation Data for Achieving an on-Demand Heating Consumption Prediction Model of District Heating Substation. Energy 2021, 214, 118872. [Google Scholar] [CrossRef]
- Wang, P.; Si, F.; Cao, Y.; Shao, Z.; Ren, S. Prediction of Superheated Steam Temperature for Thermal Power Plants Using a Novel Integrated Method Based on the Hybrid Model and Attention Mechanism. Appl. Therm. Eng. 2021, 203, 117899. [Google Scholar] [CrossRef]
- Rahman, A.; Smith, A.D. Predicting Heating Demand and Sizing a Stratified Thermal Storage Tank Using Deep Learning Algorithms. Appl. Energy 2018, 228, 108–121. [Google Scholar] [CrossRef]
- Xiao, Q.; Liang, F.; Ning, M.; Zhang, Q.; Bi, J.; He, K.; Lei, Y.; Liu, Y. The Long-Term Trend of PM2.5-Related Mortality in China: The Effects of Source Data Selection. Chemosphere 2021, 263, 127894. [Google Scholar] [CrossRef]
- Wang, M.; Ying, F. Point and Interval Prediction for Significant Wave Height Based on LSTM-GRU and KDE. Ocean Eng. 2023, 289, 116247. [Google Scholar] [CrossRef]
- Zarzycki, K.; Lawryńczuk, M. Physics-Informed Hybrid GRU Neural Networks for MPC Prediction. IFAC-PapersOnLine 2023, 56, 8726–8731. [Google Scholar] [CrossRef]
- Chalal, M.L.; Benachir, M.; White, M.; Shrahily, R. Energy Planning and Forecasting Approaches for Supporting Physical Improvement Strategies in the Building Sector: A Review. Renew. Sustain. Energy Rev. 2016, 64, 761–776. [Google Scholar] [CrossRef]
- Suryanarayana, G.; Lago, J.; Geysen, D.; Aleksiejuk, P.; Johansson, C. Thermal Load Forecasting in District Heating Networks Using Deep Learning and Advanced Feature Selection Methods. Energy 2018, 157, 141–149. [Google Scholar] [CrossRef]
- Long, X.; Wu, S.; Wang, J.; Wu, P.; Wang, Z. Urban Water Environment Carrying Capacity Based on VPOSR-Coefficient of Variation-Grey Correlation Model: A Case of Beijing, China. Ecol. Indic. 2022, 138, 108863. [Google Scholar] [CrossRef]
- Fatima, A.; Javaid, I. Rough Set Theory Applied to Finite Dimensional Vector Spaces. Inf. Sci. 2024, 659, 120072. [Google Scholar] [CrossRef]
- Bavar, M.S.; Naderan, A.; Saffarzadeh, M. Evaluating the Spatial Effects of Environmental Influencing Factors On the Frequency of Urban Crashes Using the Spatial Bayes Method Based On Euclidean Distance and Contiguity. Transp. Eng. 2023, 12, 100181. [Google Scholar] [CrossRef]
- Touati, S.; Radjef, M.S.; Sais, L. A Bayesian Monte Carlo Method for Computing the Shapley Value: Application to Weighted Voting and Bin Packing Games. Comput. Oper. Res. 2021, 125, 105094. [Google Scholar] [CrossRef]
- Yang, D.; Xu, L.; Gao, X.; Guo, Q.; Huang, N. Inventories and Reduction Scenarios of Urban Waste-Related Greenhouse Gas Emissions for Management Potential. Sci. Total Environ. 2018, 626, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Nair, J. The Impact of Landfilling and Composting on Greenhouse Gas Emissions—A Review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edited by The Physical Science Basis, 1535; IPCC: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Chen, Y.-C.; Liu, H.-M. Evaluation of Greenhouse Gas Emissions and the Feed-in Tariff System of Waste-to-Energy Facilities Using a System Dynamics Model. Sci. Total Environ. 2021, 792, 148445. [Google Scholar] [CrossRef] [PubMed]
Category | Landfill | Incineration | Biochemical Treatment | |
---|---|---|---|---|
Direct GHG emissions | CO2 | * | ||
CH4 (GWP = 25) | * | * | ||
N2O (GWP = 265) | * | |||
Indirect GHG emissions | Electricity | * | * | |
Diesel | * | |||
Water | * | |||
Capacity (t/y) | _ | 500,000 | 50,000 |
Scenarios | Incineration Rate (%) | Landfill Rate (%) | Biochemical Treatment Rate (%) |
---|---|---|---|
Scenario 1 | 68.1 | 10.8 | 21.1 |
Scenario 2 | 90 | 2 | 8 |
Scenario 3 | 58 | 2 | 40 |
Model | Time Step | Learn Rate | Batch_Size | Hidden_Layer | Epoch | Mape (%) |
---|---|---|---|---|---|---|
LSTM | 2 | 0.01 | 2 | 32 | 5000 | 14.2 |
2 | 0.001 | 2 | 64 | 5000 | 13.6 | |
2 | 0.0001 | 2 | 64 | 5000 | 13 | |
2 | 0.0001 | 2 | 64 | 10,000 | 10.2 | |
2 | 0.0001 | 3 | 128 | 10,000 | 12.6 |
Model | Time Step | Learn Rate | Batch_Size | Hidden_Layer | Epoch | Mape (%) |
---|---|---|---|---|---|---|
GRU | 2 | 0.01 | 2 | 32 | 5000 | 15.2 |
2 | 0.001 | 2 | 64 | 5000 | 14.6 | |
2 | 0.0001 | 2 | 64 | 5000 | 12.3 | |
2 | 0.0001 | 2 | 64 | 10,000 | 15.2 | |
2 | 0.0001 | 3 | 128 | 10,000 | 16.2 |
Model | Time Step | Learn Rate | Batch_Size | Hidden_Layer | Epoch | Mape (%) |
---|---|---|---|---|---|---|
BiLSTM | 2 | 0.01 | 2 | 32 | 5000 | 14.2 |
2 | 0.001 | 2 | 64 | 5000 | 13.6 | |
2 | 0.0001 | 2 | 64 | 5000 | 8.1 | |
2 | 0.0001 | 2 | 64 | 10,000 | 10.24 | |
2 | 0.0001 | 3 | 128 | 10,000 | 12.6 |
Year | MSW True Value | LSTM | GRU | Bi-LSTM | CWFM | CWFM MAPE (%) | |||
---|---|---|---|---|---|---|---|---|---|
Forecasting Value | Weight | Forecasting Value | Weight | Forecasting Value | Weight | Forecasting Value | |||
2013 | 522 | 405.68 | 0.14 | 403.21 | 0.13 | 572.23 | 0.73 | 544.09 | 4.12 |
2014 | 541 | 598.86 | 0.04 | 553.31 | 0.93 | 607.27 | 0.03 | 556.73 | |
2015 | 575 | 541.39 | 0.72 | 689.41 | 0.06 | 638.82 | 0.22 | 571.7 | |
2016 | 572 | 675.54 | 0.14 | 708.55 | 0.07 | 615.17 | 0.79 | 630.53 | |
2017 | 619 | 670.55 | 0.39 | 682.39 | 0.26 | 673.82 | 0.35 | 674.76 | |
2018 | 702 | 627.64 | 0.04 | 671.87 | 0.23 | 720.72 | 0.73 | 705.72 | |
2019 | 760 | 644.48 | 0.05 | 733.66 | 0.68 | 810.24 | 0.27 | 749.86 | |
Average weight | 0.22 | 0.34 | 0.44 |
Model | MAE | MAPE (%) | RMSE |
---|---|---|---|
CWFM | 0.22 | 4.12 | 0.21 |
GRA-LSTM | 0.24 | 8.95 | 0.22 |
GRA-GRU | 0.32 | 14.33 | 0.31 |
BiLSTM | 0.24 | 9.58 | 0.22 |
LSTM | 0.24 | 13.98 | 0.24 |
GRU | 0.34 | 20.75 | 0.32 |
Scene Category | Total Retail Sales of Consumer Goods | Buses are Available at the End of the Year | Year-End Resident Population | Gross Regional Product | Average per Capita Monthly Household Disposable Income | The Average Person’s Monthly Consumption Expenditure |
---|---|---|---|---|---|---|
Baseline scenario | 0.0016 | 0.0243 | 0.0180 | 0.0203 | 0.0200 | 0.0480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, B.; Zhang, N. Forecasting the Mitigation Potential of Greenhouse Gas Emissions in Shenzhen through Municipal Solid Waste Treatment: A Combined Weight Forecasting Model. Atmosphere 2024, 15, 507. https://doi.org/10.3390/atmos15040507
Zhang X, Liu B, Zhang N. Forecasting the Mitigation Potential of Greenhouse Gas Emissions in Shenzhen through Municipal Solid Waste Treatment: A Combined Weight Forecasting Model. Atmosphere. 2024; 15(4):507. https://doi.org/10.3390/atmos15040507
Chicago/Turabian StyleZhang, Xia, Bingchun Liu, and Ningbo Zhang. 2024. "Forecasting the Mitigation Potential of Greenhouse Gas Emissions in Shenzhen through Municipal Solid Waste Treatment: A Combined Weight Forecasting Model" Atmosphere 15, no. 4: 507. https://doi.org/10.3390/atmos15040507
APA StyleZhang, X., Liu, B., & Zhang, N. (2024). Forecasting the Mitigation Potential of Greenhouse Gas Emissions in Shenzhen through Municipal Solid Waste Treatment: A Combined Weight Forecasting Model. Atmosphere, 15(4), 507. https://doi.org/10.3390/atmos15040507