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Abstract: As a significant source of anthropogenic greenhouse gas emissions, the municipal solid
waste sector’s greenhouse gas emission mode remains unknown, hampering effective decision-
making on possible greenhouse gas emission reductions. Rapid urbanization and economic growth
have resulted in massive volumes of municipal solid trash. As a result, identifying emission reduction
routes for municipal solid waste treatment is critical. In this research, we investigate the potential of
municipal solid waste treatment methods in lowering greenhouse gas (GHG) emissions in Shenzhen,
a typical Chinese major city. The results showed that the combined treatment of 58% incineration,
2% landfill, and 40% anaerobic digestion (AD) had the lowest greenhouse gas emissions of about
5.91 million tons under all scenarios. The implementation of waste sorting and anaerobic digestion
treatment of organic municipal solid waste after separate collection can reduce greenhouse gas
emissions by simply increasing the incineration ratio.

Keywords: anaerobic digestion; combination forecasting model; GHG emissions reduction potential;
incineration; municipal solid waste

1. Introduction

Given that global climate change has emerged as a paramount environmental challenge
in contemporary times [1] and that greenhouse gas (GHG) emissions from municipal solid
waste (MSW) constitute a significant anthropogenic source, there is a growing imperative
for comprehending the influence of MSW treatment on GHG emissions. China has ascended
to become the world’s foremost producer of MSW, contributing to approximately 13% of
the global MSW volume [2]. In 2019, China’s cumulative MSW reached 242.06 million
tons, a stark increase compared to the 7.5 million tons in 1949. Furthermore, China has
held the unenviable title of the world’s largest carbon emitter since 2007, with 85% of its
domestic energy-related carbon emissions concentrated in urban areas [3]. To advance the
endeavor of constructing low-carbon cities, it is imperative to meticulously devise urban
domestic waste treatment strategies that offer efficacious pathways for carbon emission
mitigation. Shenzhen stands as one of China’s prominent megacities, characterized by rapid
economic growth. With population expansion and urbanization acceleration, greenhouse
gas emissions stemming from domestic waste landfill treatment in such urban centers
are on a continued ascent. Waste incineration constitutes a pivotal component of low-
carbon waste treatment. In contrast to landfilling, elevating the share of incineration in
domestic waste treatment represents a favorable course of action. The proportion of waste
incineration in the environmentally safe treatment of urban waste nationwide exceeds 50%
and is poised for further enhancement in the future. Presently, waste incineration stands
as the predominant and environmentally sound method for domestic waste treatment.
Incineration offers the benefits of high treatment efficiency, a modest spatial footprint, and
a comparatively minimal environmental footprint, aligning well with the imperative to
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reduce and render harmless urban domestic waste. The harnessing of thermal energy
generated through waste incineration facilitates waste recycling, an approach that has
gained increasing adoption and promotion in recent years. Hence, there exists an exigent
need to investigate the greenhouse gas mitigation potential within domestic waste treatment
in Shenzhen, which has implications for reducing greenhouse gas emissions in the waste
treatment sector. Such efforts can wield a significant influence on emission reduction
through the application of low-carbon strategies.

The primary purpose of trash treatment is to reduce residential waste and treat it
as a resource. Incineration, landfill, and mechanical biological treatment are now the
most extensively utilized municipal solid waste treatment processes. The heat created
by incineration may be used to generate power, reducing greenhouse gas emissions [4].
Landfills emit significant volumes of greenhouse gases and limiting the quantity of gases
released from landfills at the source, as well as collecting and using waste gases, can help to
minimize landfill emissions. Organic MSW is created by anaerobic fermentation and may
be utilized to generate electricity [5]. Through enhanced treatment, all three procedures can
minimize carbon gas emissions. Despite the fact that several studies have been conducted
to investigate strategies to minimize carbon emissions from municipal solid waste disposal,
it is unclear which treatment method is best suited for the sustainable management of
Chinese cities. As a result, this paper suggests three possible scenarios for combining
incineration, landfill, and biological treatments and addresses the calculation of greenhouse
gas emissions under these scenarios, providing a novel method for predicting greenhouse
gas emissions.

This study’s key contribution consists of three aspects:

(1) A combination weight prediction model was developed to accurately anticipate the
quantity of municipal solid garbage created from 2023 to 2030;

(2) Various scenario combinations were given to assess the carbon-reduction potential of
incineration, landfill, and biological treatment;

(3) A carbon emission reduction optimization strategy suited for the development of
low-carbon municipal solid waste management in Shenzhen and similar cities is
presented based on the emission reduction potential.

2. Literature Review
2.1. Research on MSW Treatment

Global interest has been drawn to studies on the greenhouse gas emission reduction
potential and emission reduction routes for municipal solid waste treatment. Incineration,
landfill, and bioconversion are the three primary methods extensively employed in sustain-
able municipal solid waste management and simultaneous energy production. Incineration
has the ability to cut trash by 75% and waste volume by 90%, while the heat created by
garbage incineration may be utilized to generate energy, lowering greenhouse gas emis-
sions. However, incineration emits harmful compounds such as dioxins and heavy metals
during operation, resulting in secondary damage to the environment, and incineration has
specific criteria for the calorific value of municipal solid waste [6]. Landfill is one of the
most common waste treatment options in poor nations [7]. However, it is hazardous to the
environment, human health, land degradation, and groundwater contamination. Anaerobic
digestion (AD) is the process by which microbial breakdown of organic biodegradable
material produces biogas under anaerobic circumstances [8]. The output of biogas in AD is
determined by many factors and matrix compositions, and the biogas generated typically
comprises 50–75% methane, 25–50% carbon dioxide, and 1–15% other gases [9]. In terms of
municipal solid waste management, this strategy outperforms landfills [10] and produces
less greenhouse gases [11]. At the same time, AD technology produces biogas that may be
utilized to generate electricity.

Incineration has a lower environmental effect than other disposal options, such as
open dumping and landfilling. Because of the numerous benefits of incineration, several
nations have adopted this technology for sustainable municipal solid waste management
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and energy recovery [12]. Incineration is currently the most important treatment technology
in Shenzhen’s municipal solid waste treatment, accounting for approximately 68%, landfill
accounting for approximately 11%, and biological kitchen waste treatment accounting for
the remainder (https://www.sz.gov.cn/zfgb/2022/gb1249/content/post_9932684.html,
accessed on 1 July 2021). However, some studies that have analyzed the composition of
waste in various countries have discovered that the organic components of municipal
solid waste have a high water content and low calorific value, making them unsuitable for
combustion, and have concluded that anaerobic digestion is the best waste management
technology for developing countries [13]. As a result, based on the existing state of munic-
ipal solid waste treatment in Shenzhen, this study suggests three potential combination
scenarios to determine which combination of treatment techniques provides the most
environmental advantages.

2.2. Research on Greenhouse Gas Emission Accounting

Previous studies have used a variety of methods to study the determinants of urban
GHG emissions change in China, including the LMDI method, STIRPAT model, input–
output model, and regression and correlation statistical analysis [14–17]. Systems analysis
is a useful tool for integrating promising waste management strategies [18]. The LEAP (Low
Emission Analysis Platform), established using sector analysis methods, is closely combined
with scenario analysis methods and can be used to predict medium- and long-term energy
supply, energy supply conversion, energy terminal demand, and pollutant gas emissions
under different development conditions. Mancini employed an industrial symbiosis-based
approach to optimize the heat provided by the waste-to-energy (WTE) plant to increase
the production of AD biogas and make it suitable for use in public transportation, thereby
reducing GHG emissions [19]. LCA is a tool to optimize process operating conditions for
decision-making [20]. Dastjerdi used the LCA approach to assess the potential of WTE
technology for residual waste management in New South Wales, where incineration and
AD technology can develop considerable energy from residual waste and mitigate GHG
emissions [21]. System dynamics (SD) is a method to calculate the complex effects of
environmental and economic factors. Xiao et al. adopted the SD method to integrate
social and economic factors, population factors, and policy measures and simulate their
dynamic impact on MSW with a strong dynamic [22]. Most studies use a single model for
GHG emissions simulation, but this is insufficient given the inherent limitations of each
single model. Therefore, a Combined Weight Forecasting Model (CWFM) is proposed to
predict the amount of MSW to 2030, and three scenarios are prepared by using different
combinations of incineration, AD, and landfill. The estimation of GHG emissions under
these scenarios is discussed, which provides a new way for GHG emission prediction.

2.3. MSW Prediction Models

The main models used by scholars to predict MSW generation include traditional
statistical models and machine learning models [23]. Among them, traditional statistics
are widely used in predicting the relationship between socioeconomic factors and the
amount of municipal solid waste generated [24]. Jiang et al. proposed a probabilistic model-
driven statistical learning method, which combines wavelet denoising, Gaussian mixture
model, and hidden Markov model, and verified that the model can effectively solve the
prediction problem of urban waste production [25]. Taking Xiamen as an example, some
scholars used SARIMA and gray system theory to predict the amount of MSW generated
on multiple time scales. The results showed that the model has good robustness, can
better fit and predict the seasonal and annual dynamics of MSW production on monthly,
medium-term, and long-term time scales, and achieves the expected accuracy [26]. Scholars
often use support vector machines (SVM), decision trees (DT), and genetic algorithms
(GA) to predict the amount of municipal solid waste in the medium to long term, but their
ability to predict the amount of municipal solid waste may deviate. In order to improve the
accuracy of prediction, scholars have introduced a hierarchical model of artificial neural
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networks (ANN) in time series analysis. Its complex structure enables a nonlinear mapping
ability and strong self-learning ability in the neural network [27]. Fan et al. developed
and optimized an artificial neural network model for urban solid waste prediction and
concluded that the regional difference in urban solid waste prediction is greater in the
east–west direction than in the north–south direction. Although the accuracy of neural
network prediction is very high, considering that the input data must be continuous and
effective, there is still a practical problem: it is difficult to make long-term predictions. To
overcome these shortcomings, with the expansion of data dimensions and breakthroughs in
training methods, deep learning, as a powerful method for automatically learning feature
representations from data, has shown good performance in solving nonlinear, time-varying,
multi-source, and multi-objective problems. Therefore, deep learning has great potential for
application in the field of MSWM [28]. Recursive neural networks (RNN) are typical deep
learning algorithms that are mainly used to describe the dynamic behavior of time series
data, but they have problems with gradient disappearance and explosion and lack long-
term memory capabilities. To overcome these shortcomings, researchers have developed
many deep learning methods to upgrade to traditional artificial neural networks [29],
including the long short-term memory (LSTM) widely used in time series analysis. Due to
the limitations of traditional neural network applications and insufficient understanding
of time changes, it has become a bottleneck in the prediction and management of urban
domestic waste.

A single model often contains only one aspect of information and cannot extract
sufficient data information. In order to improve the prediction accuracy of nonlinear com-
plex systems, the composite weight combination prediction model with multidimensional
information will further reduce the model error [30]. The purpose of adopting a combined
forecasting model is to maximize the collection of information and fully mine useful infor-
mation in the data to improve the forecasting accuracy of the model. Different prediction
models reveal the evolution rules of prediction objects from different perspectives and
levels to a certain extent [31] and can fully and effectively utilize the advantages of various
prediction models to establish a composite weight combination prediction model with
nonlinear prediction performance in a multidimensional influencing factor environment.
For the prediction of domestic waste clearing and transportation volume disturbed by many
complex influencing factors, using a composite weight combination prediction model that
can achieve inflection point prediction and nonlinear approximation prediction function
can more accurately predict the timing [32]. Therefore, this study proposes a combined
weight prediction model based on LSTM, GRU, and BiLSTM. Based on the obtained in-
put data set, a proportional domestic waste treatment scenario is designed to predict the
amount of domestic waste generated in Shenzhen and explore the greenhouse gas emission
reduction potential of different waste treatment methods, leading to optimization strate-
gies for optimizing carbon emission reduction in domestic waste, in order to facilitate the
efficient and quantitative reduction in domestic waste and provide a strong scientific basis
for urban environmental health management departments and domestic waste treatment
enterprises when formulating relevant planning strategies.

This study has three advantages. First, the integrated prediction model of the com-
bined model was not used to forecast municipal solid waste. The combined model was
used to forecast how much municipal solid garbage would be created. Second, to ensure
the models’ prediction capability, three neural network models with good prediction accu-
racy and computational efficiency were chosen for weight combination. Third, a unique
combination scenario of municipal solid waste treatment technologies should be presented
to assess the greenhouse gas emission potential of residential trash under various future
scenarios, providing useful insights for domestic waste management.
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3. Methods and Data
3.1. Data Collection and Preprocessing

This study collected and integrated 287 sets of data on Shenzhen’s socioeconomic
status and urban domestic waste, including GDP, total retail sales of social consumer
goods, per capita disposable income, per capita consumption expenditure, actual passenger
capacity, permanent resident population, and urban domestic waste clearance. The data
were sourced from the China Statistical Yearbook and the Shenzhen Statistical Yearbook. Due to
random errors occurring during the collection of these statistical data, different data scales
can lead to significant numerical differences. This study conducted data preprocessing to
help erase invalid data samples and eliminate the impact of dimensions, improving the
accuracy of prediction.

3.2. Prediction Model
3.2.1. Single Models

Long Short-Term Memory (LSTM) is a sort of recurrent neural network (RNN) that
can remember values from past steps and apply them in the future. The major goal is
to overcome the problem of gradient vanishing and gradient explosion throughout the
extended sequence training procedure. LSTMs outperform conventional RNNs in extended
sequences. LSTM adds input gates, forgetting gates, and output gates to the traditional
RNN structure, which can decide whether to retain information based on the importance
of the allocated data, which solves the long-term dependence problem of traditional RNN
prediction, but it is difficult to train due to the large number of parameters. The one-way
LSTM model normally uses past information to derive follow-up information; however,
in time series forecasting, prediction accuracy may be enhanced by taking into account
the prediction time’s information rules. The theory of a Bi-Directional Long Short-Term
Memory (Bi-LSTM) neural network was created in response to the inadequacies of LSTM
in the external theory of temporal serialization. The Bi-LSTM neural network combines
the output results of the forward and reverse input sequences using two LSTM neural
networks, the forward calculation implicit vector and the backward calculation hidden
vector [33].

GRU, proposed by Cho et al., is comparable to LSTM but has a lower gate count.
The GRU combines the LSTM’s input gate and forgetting gate into a single gate known
as the update gate. Furthermore, there is no distinct cell state since it simply depends on
a hidden state to repeat memory transfers between cells [34]. To overcome the leakage
gradient problem in the GRU, both the reset gate and the update gate are utilized, which
are two vectors that influence the flow of information in the network/layer to the desired
output with a simpler structure [35]. While single models are quite flexible and have strong
predictive accuracy, they have certain limits. For starters, they rely on massive volumes
of data that reflect various operational circumstances. A minor misrepresentation of the
input data might cause a large difference in the output value. Second, there is a lack of
suitable generic techniques for hyperparameter tuning and data initialization, resulting
in overfitting, underfitting, and local optimization issues [36]. Because some control
techniques rely on the accuracy of predictions, these constraints may have an impact on
the real-time implementation of these models in field applications. To circumvent these
restrictions, the notion of combinatorial models is developed.

3.2.2. The Framework of the CWFM Model

Considering the nonlinear characteristics of long-term time series data, adopting a
composite weight combination prediction model that can achieve inflection point prediction
with a nonlinear approximation prediction function can achieve more accurate prediction
throughout the process. The combination prediction model maximizes the advantages
of a single prediction model, overcomes shortcomings, and improves the accuracy of
prediction and the stability of prediction results [37]. This study constructed a combined
weight prediction model based on the fusion of LSTM, GRU, and BI-LSTM. A single model
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suitable for different characteristics of garbage clearing volume and input data was used
for prediction, and then these single models were appropriately combined with weights
to build a combined model. Finally, the established combined model was applied to
predict the long-term garbage removal volume accurately. It can accurately extract sample
information from individual prediction models and can also reduce the interference of
individual prediction models by various random factors, thereby improving the prediction
accuracy of the overall model. The relevant theoretical basis and calculation formula are
as follows:

For the same prediction problem, m prediction models are selected to predict, repre-
senting the predicted value of the ith model (j = 1, 2, . . .), Xt represents the predicted value
of the combined model at time t, Wi is the weight coefficient of the ith prediction model
that satisfies ∑m

i=1 wi=1. The predicted values obtained from CWFM are shown below:

X̂t = ∑m
i=1 Wi x̂i= W1 x̂1 + W2 x̂2 + . . . + Wn x̂n (1)

The prediction error of a single model is expressed as follows:

eit = xit − x̂it (2)

where eit represents the prediction error of model i at time t, xit represents the real value of
model i at time t, and x̂it represents the predicted value of model i at time t.

The CWFM error is expressed as follows:

Et = Xt − X̂t (3)

where Et is the prediction error of CWFM at time t, Xt is the predicted value of CWFM at
time t, and X̂t is the real value of CWFM at time t.

In CWFM, when the calculation methods of the weight of a single model are different,
the prediction results and accuracy of the CWFM constructed will be different, so it is very
important to select a reasonable weight calculation method. At present, there are many
calculation methods for weight, such as the gray correlation coefficient method [38], rough
set theory [39], Bayes method [40], Shapley value method [41], and so on. Considering the
actual situation and the complexity of the calculation, the inverse variance method was
chosen in this paper. The method selected in this paper was the inverse variance method.
The prediction error of a single model was used to calculate the sum of squares of errors
of a single model, and the larger sum of squares of errors in a single model was given a
smaller weight. On the contrary, the smaller sum of squares of errors in a single model was
given a larger weight. If the sum of squares of errors in its combined forecasting model
is minimized, this weight selection can minimize the inaccuracy in the estimation of the
combined effects. The calculation formula is as follows:

Wi = D−1
i /∑m

i=1 D−1
i , ∑n

i=1 wi = 1 (4)

where Di represents the sum of error squares of single model i, and is defined as follows:

Di = ∑m
i=1 (xit − x̂it)

2,(i = 1, 2, . . .) (5)

where xit, x̂it represent the same as in Formula (2).
The research steps are shown in Figure 1.
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Figure 1. Logical structure diagram of this research.

3.3. GHG Emissions from MSW Treatment

This study calculated GHG emissions through accounting methods for greenhouse
gases in the industry from MSW incineration, anaerobic digestion, and landfill in Shenzhen.
This study did not consider GHG emissions from MSW transport, which may be affected
by the topographic environment, as these emissions only account for a small proportion of
total GHG emissions from MSW [42]. Carbon dioxide produced by biowaste decomposition
was ignored [43]. If it was assumed that temporary waste storage was not considered to
emit GHG. Methane (CH4) and nitrous oxide (N2O) were 25 kg CO2, respectively, -eq/kg
CH4 and 265 kg CO2 -eq/kg N2O [44]. The direct and indirect GHG emissions of MSW
considered in this study are listed in Table 1.

Table 1. GHG emissions generated by different MSW treatment methods.

Category Landfill Incineration Biochemical
Treatment

Direct GHG
emissions

CO2 *
CH4 (GWP = 25) * *

N2O (GWP = 265) *

Indirect GHG
emissions

Electricity * *
Diesel *
Water *

Capacity (t/y) _ 500,000 50,000
* represent the types of contamination included in the MSW treatment process.
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3.3.1. Incineration

GHG emissions from incineration include direct and indirect emissions. Indirect emis-
sions come from water and oil use, while direct GHG emissions include CO2 (incineration
of CO2) and N2O (incineration of N2O). As shown in Equations (6)–(9), GHG emissions
can be reduced by implementing electric recovery.

Incineration = GHGdirect + GHGindirect = (Incinerationco2 + IncinerationN2O × 265) + GHGindirect (6)

Incinerationco2 = ∑
i
(W × dmi × CFi × FCFi × OFi ×

44
12

) (7)

IncinerationN2O = ∑
i
(W × EFWTE−N2O)× 10−6 (8)

GHGindirect = (Wwater × EFwater) + (Woil × EFoil)− (Wel × EFel) (9)

The dmi and CFi are described in Table 1, respectively. In 2019, FCFi was 37.99%,
representing the molecular weight ratio of CO2 to C. I indicates the type of waste incin-
eration or biomass treatment. For indirect GHG emissions, water (Iwater), oil (Ioil), and
electricity generation (Iel) were multiplied by their emission factors, as described in Table 1.
With regard to GHG emissions, parameters for biochemical treatment are derived from
IPCC guidelines 2006. The parameters used to calculate GHG emissions from landfills
and incinerators were collected from the Provincial GHG Inventory Compilation Guide (Trial)
(Development and Reform Commission of Shenzhen Municipality, Shenzhen, China, 2011).

3.3.2. Biochemical Treatment

Direct GHG emissions and the presence of biomass treatment capacity. GHG emitted
by biochemical treatment is as follows:

BIO = INCINERATION + AD = (GHGdirect + GHGindirect) + (GHGAD − eAD) (10)

GHGAD = (GHGAD−CH4 × 28) + (W × DOC × DOC f × F × 44
12

)× 89% (11)

GHGAD−CH4 = ∑
i
(W × EFAD−CH4)× 10−6 (12)

This represents 89% of the proportion of biomass residue that is burned after biomass
treatment without recovery. The electric energy generated by biomass processing mainly
comes from CH4 gas, and the calculation formula is as follows:

eAD = W × EFAD−CH4 × ADel (13)

3.3.3. Landfill

As shown in Table 2, the main GHG emitted by landfills is CH4 (landfill gas [LFG]CH4).
GHG emissions from landfills were calculated based on the nature of MSW (IPCC, 2006)

LFG(CH4)t = (W × MCF × DOC × DOC f × F × 16
12

− R)× (1 − OX) (14)

where is the molecular weight ratio of CH4 to C. The total GHG emissions from landfills
were calculated as follows:

∑ LFG = LFGCH4 × 25 (15)

CH4 has a GWP of 25.
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Table 2. Proportion of domestic garbage treatment methods.

Scenarios Incineration Rate (%) Landfill Rate (%) Biochemical Treatment
Rate (%)

Scenario 1 68.1 10.8 21.1
Scenario 2 90 2 8
Scenario 3 58 2 40

3.4. Scenario Setting

In 2019, China incinerated 121.742 million tons of domestic waste, accounting for
50.7 percent of the total, exceeding sanitary landfills for the first time. With waste incin-
eration as the main body, resource conversion as the priority, and sanitary landfills as the
bottom of the solid waste terminal treatment pattern taking shape, sanitary landfills as the
bottom of the domestic waste disposal guarantee disposal facilities will exist forever. Based
on the characteristics of GHG emissions in the process of MSW treatment in Shenzhen,
Table 2 designs three MSW management schemes in Shenzhen from 2020 to 2030.

The urban domestic waste disposal structure designed in Scenario 1 is more in line
with the current situation of Shenzhen’s disposal ratio. In 2020, the city collected and
disposed of 6.67 million tons of domestic waste, incinerated 6.23 million tons and disposed
of 440,000 tons in landfills. By using MSW heat power generation, Shenzhen has had an
advantage in recent years, as the main mode of municipal waste disposal has been changed
from landfill to incineration. Its main advantage is reducing the total amount of municipal
waste. In addition, biochemical treatment (anaerobic digestion) technology to deal with
food waste is also being gradually implemented. Scenario 1, therefore, assumes that the
waste incineration rate is maintained at 68.1%, the landfill rate is controlled to 10.8%, and
the anaerobic digestion rate is 21.8%.

Scenario 2 aims to compare the treatment structure of MSW in Scenario 1, subject to
future policy support. According to the 14th Five-Year Plan for Domestic Waste Disposal in
Guangdong Province, by 2030, cities in the Pearl River Delta region will strive to achieve
nearly “zero landfill” for primary domestic waste, and the waste incineration rate will
reach more than 90%. To date, the anaerobic digestion technology has not been widely used
in Shenzhen. Therefore, the waste incineration rate in Scenario 2 is set at 90% to analyze
the potential of a high incineration rate to reduce GHG emissions, while the landfill rate
is controlled at 2% and the anaerobic digestion rate at 8%. Waste incineration minimizes
the volume and weight of waste, solving problems such as large waste footprints, and the
incineration process also generates energy that can be used for electricity generation and
other purposes.

Scenario 3 implements garbage classification, collects and bio-treats biodegradable
organic household and kitchen waste separately, and incinerates the rest. As anaerobic
digestion technology matures and becomes more widely used in Shenzhen in the future,
the treatment of MSW is expected to achieve nearly “zero landfill”. It is expected that by
2030, organic municipal solid waste will account for 40% of MSW in Shenzhen, so Scenario
3 assumes that the anaerobic digestion rate will be 40%, the landfill rate will be controlled
at 2%, and the incineration rate will be maintained at 58%. Anaerobic digestion of food
waste not only recovers energy but also reduces the amount of sludge generated, greatly
alleviating the environmental impact of MSW.

4. Results and Discussion
4.1. Model Accuracy

By comparing the prediction results of the LSTM, GRU, and BI-LSTM models, it was
found that the three models were all suitable for the prediction of actual domestic garbage,
but there were some differences in the results, which was due to the influence of external
interference. The single prediction model failed to give full play to its advantages, resulting
in the difference between the theoretical predicted value and the actual predicted value,
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which reduced the final prediction accuracy. The CWFM can determine the weight of each
model according to the actual predicted value, which ensures the effective combination of
the advantages of the three prediction methods, thus reducing the risk of a single prediction
model. In this paper, the inverse variance and simple weighting methods were used to
calculate the weight coefficients of the three prediction models, and the combined weight
model was constructed to predict the MSW.

The LSTM, GRU, and BiLSTM neural networks contain four parameters that affect
the prediction accuracy of the model, including the learning rate, the time step of each
layer, the number of Hidden layers of each layer, and the number of training epochs. When
the number of Hidden layers gradually increases, the number of Hidden layer neurons
has little effect on the results, and the prediction error curve is relatively stable. In the
training process of the model, the setting of a single parameter is different, but other
parameters are the same so as to find the best prediction model. Each parameter setting
in the proposed model is shown in Tables 3–5. The process steps of adjusting parameters
are as follows: (1) Adjust the three-model architecture suitable for time series prediction
and test the applicability of the model architecture to the data set. (2) The optimal number
of Hidden layers is determined according to the size of the data set. (3) According to the
data characteristics of the data set, the optimal activation function is selected from the four
types of sigmoid, tanh, relu, and linear functions. (4) The learning rate value, time step, and
batch size are determined by grid search. At the beginning of the experiment, the default
super parameter setting is used to observe the change in loss, preliminarily determine the
range of each super parameter, and then adjust the parameters. For each super parameter,
we only adjust one parameter each time and then observe the loss change until the optimal
parameter is determined. The final calculation results are shown in Table 6.

Table 3. Parameter setting for the LSTM neural network.

Model Time Step Learn Rate Batch_Size Hidden_Layer Epoch Mape (%)

LSTM

2 0.01 2 32 5000 14.2
2 0.001 2 64 5000 13.6
2 0.0001 2 64 5000 13
2 0.0001 2 64 10,000 10.2
2 0.0001 3 128 10,000 12.6

Table 4. Parameter setting for the GRU neural network.

Model Time Step Learn Rate Batch_Size Hidden_Layer Epoch Mape (%)

GRU

2 0.01 2 32 5000 15.2
2 0.001 2 64 5000 14.6
2 0.0001 2 64 5000 12.3
2 0.0001 2 64 10,000 15.2
2 0.0001 3 128 10,000 16.2

Table 5. Parameter setting for the BiLSTM neural network.

Model Time Step Learn Rate Batch_Size Hidden_Layer Epoch Mape (%)

BiLSTM

2 0.01 2 32 5000 14.2
2 0.001 2 64 5000 13.6
2 0.0001 2 64 5000 8.1
2 0.0001 2 64 10,000 10.24
2 0.0001 3 128 10,000 12.6



Atmosphere 2024, 15, 507 11 of 18

Table 6. The results of the CWFM based on the inverse variance method.

Year
MSW
True

Value

LSTM GRU Bi-LSTM CWFM CWFM
MAPE

(%)
Forecasting

Value Weight Forecasting
Value Weight Forecasting

Value Weight Forecasting
Value

2013 522 405.68 0.14 403.21 0.13 572.23 0.73 544.09

4.12

2014 541 598.86 0.04 553.31 0.93 607.27 0.03 556.73
2015 575 541.39 0.72 689.41 0.06 638.82 0.22 571.7
2016 572 675.54 0.14 708.55 0.07 615.17 0.79 630.53
2017 619 670.55 0.39 682.39 0.26 673.82 0.35 674.76
2018 702 627.64 0.04 671.87 0.23 720.72 0.73 705.72
2019 760 644.48 0.05 733.66 0.68 810.24 0.27 749.86

Average weight 0.22 0.34 0.44

Three assessment metrics were chosen for this study: Mean Absolute Percentage
Error (MAPE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) in order
to evaluate the validity and accuracy of the proposed MSW prediction model. These
criteria were employed to assess the model’s capacity to fit the data and its predicted
performance. The difference between the simulated and modeled data was calculated using
MAPE, RMSE, and MAE. The values are equal to 0 when the expected and actual values
coincide exactly, and they range from 0 to +∞. The value increases with increasing mistakes.
We employed the most recent deep learning techniques along with established machine
learning strategies like Support Vector Regression (SVR), Grey Correlation Analysis, and
Support Vector Regression (GRA-SVR) models to assess and analyze the predictive power
of the combined LSTM, GRU, and Bi-LSTM models. The control groups were the Gated
Recurrent Unit of Choice (GRU), Gated Recurrent Unit Grey Correlation Analysis (GRA-
GRU) combination models, and the Long Short-Term Memory Network (LSTM). Table 7
displays these findings.

Table 7. Comparison of model accuracy.

Model MAE MAPE (%) RMSE

CWFM 0.22 4.12 0.21
GRA-LSTM 0.24 8.95 0.22
GRA-GRU 0.32 14.33 0.31

BiLSTM 0.24 9.58 0.22
LSTM 0.24 13.98 0.24
GRU 0.34 20.75 0.32

The combined LSTM-GRU-BiLSTM model had the lowest prediction error and the
highest forecast accuracy among the eight prediction models, with the SVR model having
the largest prediction error. In comparison to LSTM-GRU-BiLSTM, GRA-LSTM, GRA-GRU,
and GRA-SVR, respectively, the prediction errors of BiLSTM, LSTM, GRU, and SVR were
larger. Following the SVR and GRU algorithms, where the MAE, MAPE, and RMSE of
the SVR and GRU algorithms were, respectively, 0.35, 24.62%, 0.36, and 0.34, 20.75%, 0.32,
the GRA-SVR model had the second-highest prediction errors. Even with less variability,
GRA-GRU performed better than the GRU model. Both the LSTM-GRU-BiLSTM and
the GRA-LSTM models obtained better results than the BiLSTM model. For LSTM-GRU-
BiLSTM, the corresponding values for MAE, MAPE, and RMSE were 0.22, 4.12, and 0.21.
When compared to other models, the combined LSTM-GRU-BiLSTM model had the lowest
prediction error.

4.2. Predicted MSW Generation

Combined with the historical data of the six indicators and the related planning of
macroeconomic, social consumption, and population indicators, the characteristic change
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trend of each indicator was reasonably analyzed, the benchmark scenario was set, and
the value of each indicator was calculated according to the benchmark scenario, so as to
effectively predict the amount of MSW production. Based on economic development, this
study established a baseline scenario to predict the MSW production in Shenzhen from
2020 to 2030. The baseline growth scenario, based on the average year-on-year growth
rate of each indicator from 1978 to 2019, is more in line with the current development
situation, and the trend of each indicator feature from 2020 to 2030 is more accurate. The
data sequence growth rate in the baseline scenario is shown in Table 8.

Table 8. Growth rate of each indicator in the benchmark scenario.

Scene
Category

Total Retail
Sales of

Consumer
Goods

Buses are
Available at the
End of the Year

Year-End
Resident

Population

Gross
Regional
Product

Average per Capita
Monthly Household
Disposable Income

The Average
Person’s
Monthly

Consumption
Expenditure

Baseline
scenario 0.0016 0.0243 0.0180 0.0203 0.0200 0.0480

Because the predicted data are in good agreement with the historical data, this model
can be used to forecast the future MSW. In this study, three different individual models were
used to predict the experimental objects, and then these individual models were integrated
with the appropriate weight allocation criteria. It was found that the CWFM model had the
highest prediction accuracy, and the CWFM combined model was used to predict the MSW
production in Shenzhen from 2020 to 2030 in 11 years. The index characteristics of the above
reference scenario were input into the optimal prediction model to reasonably predict the
MSW production in Shenzhen. The forecast results of MSW production under different
circumstances are shown in Figure 2. The forecast results showed that the amount of MSW
in Shenzhen will rise gently in the future, from 8.03 million tons in 2020 to 13.01 million
tons in 2030.
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In order to solve the urban living garbage issue to speed up growth and promote eco-
nomic and social development in a new stage of development, it is necessary to accelerate
the living garbage classification of classified collection, transport, and the construction of
facilities for treating the garbage. Further, to close the treatment capacity gap and improve
the urban environmental infrastructure together with the ecological environment, it is
necessary to modernize the treatment capacity, promote the formation of domestic waste
classification and treatment systems compatible with economic and social development,
and comprehensively promote the construction of incineration treatment facilities. In areas
where the daily garbage collection volume exceeds 300 tons, it is necessary to speed up
the development of garbage treatment mainly through incineration, build appropriately
advanced incineration treatment facilities commensurate with the daily garbage collection
volume, and basically achieve “zero landfill” of native domestic garbage by 2023.

4.3. GHG Emission Estimations

The amount of each treatment method under the three scenarios was obtained with
the intention of calculating GHGs later, based on the 2020–2030 MSW generation reported
above and the present scenario ratios of the three basic waste treatment methods. The
most incinerated, most biochemically treated (anaerobic digested), and least quantity of
sanitary landfill was seen in Scenario 1. The amount of incineration, anaerobic digestion
(biochemical treatment), and sanitary landfill was lowest in Scenario 2, and the amount
of incineration was largest in Scenario 2. For specific numbers, refer to Figure 3. Scenario
3 involved the most incineration, the second-highest quantity of biochemical treatment
(anaerobic digestion), and the least amount of sanitary landfill.
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This work computed the relevant yearly GHG emissions from biochemical treatment,
incineration, and landfill in Shenzhen between 2020 and 2030, as shown in Figure 4, based
on three scenario evaluations. According to the findings, Scenario 1’s municipal domestic
waste treatment will result in the highest greenhouse gas emissions in 2030 (3.16 million tons
from landfill), followed by 3.03 million tons from incineration, and 1.43 million tons from
biochemical treatment. GHG emissions from MSW treatment in 2030 will be 2.81 million
tons from landfill, followed by 2.66 million tons for waste incineration, and 0.44 million
tons for landfill under Scenario 3. In Scenario 2, the GHG emissions from MSW treatment
in 2030 will be 7.36 million tons from waste incineration, 0.56 million tons from biochemical
treatment, and 0.44 million tons from landfill.

One of China’s most important challenges is lowering GHG emissions in the face of
incredibly complex environmental and societal forces. Potential scenarios for reducing
GHG emissions can be computed using the data above and the scenario assumptions
shown in Figure 4. The total cumulative GHG emissions in 2030 under the three alternative
scenarios will be 7.62 million tons, 8.36 million tons, and 5.91 million tons, respectively,
assuming abatement measures are not taken into consideration starting in 2020. It can
be concluded that Scenario 2 is the scenario with the weaker GHG abatement potential
of MSW, which indicates that the current situation of MSW treatment in Shenzhen is not
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optimized and needs to be further improved. Scenario 1 is a scenario with a weak GHG
reduction potential for MSW. Scenario 1 is a scenario with an average potential for GHG
emission reduction from MSW. Compared to Scenario 2, a reduction in waste incineration
and an appropriate increase in biochemical treatment would be conducive to GHG emission
reduction. Scenario 3 is the scenario with the strongest GHG reduction potential for MSW,
suggesting that controlling landfills and enhancing bioremediation technologies and their
wider application will make a greater contribution to GHG reduction. The cumulative
GHG emission of Scenario 3 is 5.91 million tons, which is 22.49% less than that of Scenario
2, which implies that the biochemical treatment enhancement and the control of waste
incineration and landfilling have a significant impact on GHG emission in Shenzhen. In
summary, different MSW treatment structures lead to slightly different GHG emissions,
and Shenzhen should promote a low-carbon mix of different MSW treatment structures,
and it is crucial for the Shenzhen government and policymakers to combine mitigation
strategies for different emission reduction aspects.
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4.4. Analysis of GHG Emissions Reduction Potential

As previous findings have shown, domestic waste can be managed more efficiently
to generate energy through the use of different technologies, but these technologies also
release greenhouse gases into the environment. Figure 5 shows the total GHG emissions
under the three scenarios for MSW in Shenzhen between 2020 and 2030, with Scenario 2
having a high proportion of incinerated waste and showing the highest GHG emissions.

In Scenario 1, assuming that 68.1% of the city’s MSW is incinerated, 10.8% is landfilled,
and 21.1% is biochemically treated, a total of 7.62 million tons of GHGs will be emitted, with
incineration and landfilling generating the higher amount of GHGs, at 3.03 million tons and
3.16 million tons, respectively. Although landfills account for only 10.8% of the municipal
waste treatment structure, the amount of GHGs emitted by landfilling will still be very
high. In fact, the GHG emissions from landfills are higher than those from incineration
even though the percentage of the waste stream to landfill is significantly lower, which
shows that incineration is more effective in reducing GHG emissions from domestic waste
treatment. Further, the incineration of combustible wastes has a higher potential for power
generation, which reduces the demand for electricity from the power grid. Therefore, in the
future, Shenzhen should continue to optimize the structure of MSW disposal and adjust
the landfill rate to achieve efficient carbon reduction.

In Scenario 2, 2% and 8% of the waste is treated by landfill and biochemical treatment,
with GHG emissions of only 0.44 million tons and 0.56 million tons. However, 90% of the
MSW will be managed by incineration, with a higher emission rate of 7.36 million tons,
which is higher than the GHG emissions under Scenario 1. Although Scenario 1 mentions
that landfill produces more GHGs than incineration, GHG emissions are also gradually
increasing due to the decrease in the biochemical treatment rate. Therefore, too high a rate
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of waste incineration does not reduce GHG emissions, in contrast to biochemical treatment,
which is worth promoting. Overall, Shenzhen still needs to consider the waste treatment
rate further to reach the optimal level.
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In Scenario 3, assuming a waste incineration rate of 58% and a biochemical treatment
rate of 40%, corresponding to GHG emissions of 2.66 million tons and 2.81 million tons,
respectively, the results showed that allocating the appropriate proportion of domestic
waste to each technology is very favorable to potential GHG emission reductions. It is
noteworthy that Scenario 3 showed the highest reduction in GHG emissions, followed
by Scenario 1, which can be attributed to the application of incineration and biochemical
treatment technologies. These findings suggest that incineration of MSW can reduce GHG
emissions by about 3.5 million tons of CO2-eq. Zhou et al., 2018 showed that the combined
treatment of MSW through AD and incineration can reduce GHG emissions, and the GHG
generation is relatively low.

It should be noted that the conversion and utilization of MSW is an end-of-pipe dis-
posal, regardless of the method. While exploring and optimizing this part of the technology,
attention should also be paid to full life-cycle management, source reduction, and process
resourcing. At present, some developed countries, with the help of market-mediated,
government-regulated science and technology shares and other ways, have gradually
formed a solid waste collection, recycling, processing, and sales system industry. In China,
the related industry is in a key stage of technology attack and commercial application de-
velopment, and it is necessary to establish a sound standardization system on the research
method, technology process, product circulation, etc., to accelerate the construction of a
complete industrial chain, in order to promote the synergistic goal of pollution reduction
and carbon reduction at an early date in the solid waste treatment industry.

5. Conclusions

The amount of municipal domestic garbage generated in China is rising due to the
economy’s rapid development and the population’s growth in cities, and the system
for treating this waste is constantly being optimized. Environmental health and energy
departments can plan future development and encourage urban development in an environ-
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mentally friendly and efficient manner by utilizing accurate waste generation predictions,
logical analysis of the structure of municipal domestic waste treatment, and greenhouse
gas emission estimation. In order to predict the quantity of municipal domestic waste pro-
duced in Shenzhen, this study established a combined weight prediction model. Six impact
indicators were gathered and used as prediction model input variables. Then, using the
greenhouse gas emission calculation formulas for municipal domestic waste incineration,
landfill, and biochemical treatment, the study reasonably estimated the greenhouse gas
emissions from municipal domestic waste in Shenzhen. We derived the following results
from the experiment:

(1) Based on related research by scholars on the generation of urban domestic waste, it is
determined that six indicators—urban GDP, total retail sales of consumer goods, monthly
disposable income per capita, monthly consumption expenditure per capita, actual
number of passengers carried at year-end, and resident population at year-end—have
some correlation with the generation of urban domestic waste and can be used as input
variables in a model to accurately predict the amount of waste generated in urban areas;

(2) A combined LSTM-GRU-BiLSTM model was suggested in this work to forecast the
quantity of urban household garbage produced in Shenzhen. According to the experi-
mental findings, this combined model’s MAE, MAPE, and RMSE were, respectively,
0.22, 4.12%, and 0.21. This model can more precisely forecast the quantity of MSW
created than machine learning and a single prediction model;

(3) Shenzhen is expected to generate 12.72 million tons of municipal domestic garbage by
2030, according to the combined LSTM-GRU-BiLSTM model, and 5.91 million tons of
greenhouse gas emissions could arise from treating Shenzhen MSW in different propor-
tions that include 58% incineration, 2% landfilling, and 40% biochemical treatment.

This study found that the treatment structure of MSW has a direct impact on GHG
emissions and that biochemical treatment (anaerobic digestion) technology is able to reduce
GHG emissions and mitigate the greenhouse effect compared to traditional landfill and
incineration. It is crucial to strengthen the overall management of municipal waste to
reduce greenhouse gas emissions from municipal waste. Therefore, a reasonable reduction
in the landfill rate to achieve near-zero landfill, as well as controlling the incineration rate,
improving the level of anaerobic digestion technology, and fully implementing biochemical
treatment of rubbish are the main means of reducing greenhouse gas emissions from
municipal waste in Shenzhen in the future. In addition, local governments should play a
leading role in initiating various efforts. As the biochemical treatment technology is not
yet mature and incineration is still the main waste treatment method, local government
should consider the actual local situation and formulate more appropriate regulations for
the management of municipal domestic waste. There are also necessary financial subsidies
to support the construction of relevant infrastructure, such as waste collection sites and
waste recycling facilities. In addition, capacity-building activities should be organized to
raise public awareness and knowledge on waste separation.

There are still certain restrictions on this study, which estimated Shenzhen’s potential
for greenhouse gas emissions and the output of MSW. Although this study chose six
pertinent indicators to represent the impact of urban domestic trash in Shenzhen, the
indicators chosen are not sufficiently complete due to data availability and other factors
that could affect the prediction accuracy. Furthermore, this analysis forecasts Shenzhen’s
urban household trash and does not adequately account for the effects of circumstances
like waste resourcing. In order to fully examine the influence of each form of indicator on
MSW, we will, therefore, incorporate more types of indicators and more thorough data in
future studies, which will enhance the model’s accuracy. Additionally, future research will
center on the composition of MSW.
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