Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Configurations
2.2. Methodology for the Establishment of Natural and Anthropogenic Emission Inventories
3. Results and Discussion
3.1. Emission Inventory
3.1.1. Sector Contribution of Metal Emissions
3.1.2. Spatial Distribution of Metal Emissions
3.2. Trace Metals in the Atmosphere
3.3. Atmospheric Deposition of Trace Metals
3.3.1. Dry and Wet Deposition
3.3.2. Bulk Deposition
3.4. Limitations of This Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
ACM | Asymmetric Convective Model |
AE | Auxiliary Engine |
AIS | Automatic Identification Database |
CMAQ | Community Multiscale Air Quality |
CO | Carbon Monoxide |
EDGAR | Emissions Database for Global Atmospheric Research |
EEA | European Environment Agency |
EPA | Environmental Protection Agency |
FNL | Final Analysis meteorological data |
HFO | Heavy Fuel Oil |
HSD | High-Speed Diesel |
MDO | Marine Diesel Oil |
ME | Main Engine |
MEIC | Multi-Resolution Emission Inventory |
MGO | Marine Gas Oil |
MSD | Medium-Speed Diesel |
NECP | National Centers for Environmental Predictions |
NH3 | Ammonia |
NMVOCs | Non-Methane Volatile Organic Compounds |
NOx | Nitrogen Oxides |
PBL | Planetary Boundary Layer |
PM | Particulate Matter |
PMF | Positive Matrix Factorization |
RRTMG | Rapid Radiative Transfer Model for General Circulation Models |
SO2 | Sulfur Dioxide |
SPARTAN | Surface Particulate Matter Sampling Network |
SSD | Slow-Speed Diesel |
WRF | Weather Research and Forecasting model |
XRF | X-ray Fluorescence |
Appendix A
Engine Type | Fuel Type | Sulfur Content | Pb | As | Cd | Cr | Period | Reference |
---|---|---|---|---|---|---|---|---|
ME SSD | HFO | 2.70 | 9.00 × 10−6 | 9.60 × 10−6 | 6.00 × 10−7 | 3.00 × 10−6 | 2012 | Celo et al., 2015 [78] |
ME SSD | HFO | 2.85 | 3.00 × 10−6 | 3.00 × 10−6 | 5.00 × 10−5 | 1.00 × 10−5 | 2007 | Agrawal et al., 2008 [76] |
ME SSD | HFO | 2.05 | 5.59 × 10−5 | 4.02 × 10−6 | 5.59 × 10−5 | 1.86 × 10−5 | 2007 | Agrawal et al., 2008 [77] |
ME MSD | HFO | 1.48 | 6.00 × 10−6 | 1.10 × 10−6 | 5.00 × 10−6 | 2012 | Celo et al., 2015 [78] | |
ME MSD | HFO | 2.21 | 7.10 × 10−6 | 5.60 × 10−6 | 2.00 × 10−7 | 1.90 × 10−5 | ||
ME MSD | HFO | 2.33 | 1.35 × 10−7 | 9.93 × 10−6 | 2017 | Corbin et al., 2018 [79] | ||
ME MSD | HFO | 0.58 | 1.67 × 10−5 | 2010 | Moldanová et al., 2013 [80] | |||
ME MSD | HFO | 0.96 | 1.52 × 10−5 | |||||
ME MSD | HFO | 2.70 | 8.18 × 10−5 | 1.34 × 10−5 | 5.95 × 10−6 | 7.44 × 10−6 | 2013 | Sippula et al., 2014 [81] |
ME MSD | HFO | 0.68 | 2.57 × 10−6 | 1.54 × 10−5 | 1.20 × 10−5 | 2016 | Zhang et al., 2018 [85] | |
ME MSD | HFO | 1.60 | 8.50 × 10−5 | 1.90 × 10−5 | 5.40 × 10−6 | 2.30 × 10−5 | 2015 | Streibel et al., 2017 [82] |
ME MSD | HFO | 0.48 | 5.40 × 10−4 | 2015 | Zetterdahl et al., 2016 [83] | |||
ME MSD | MDO | 0.10 | 3.62 × 10−6 | 2010 | Moldanová et al., 2013 [80] | |||
ME MSD | MDO | 0.13 | 5.93 × 10−7 | 7.13 × 10−6 | 7.42 × 10−6 | 2015 | Zhang et al., 2016 [84] | |
ME HSD | MDO | 0.08 | 4.05 × 10−4 | 2.22 × 10−4 | 3.96 × 10−5 | |||
AE MSD | MGO | 0.03 | 3.47 × 10−5 | 2010 | Moldanová et al., 2013 [80] | |||
AE MSD | MGO | 0.06 | 1.00 × 10−6 | 1.00 × 10−6 | 4.00 × 10−5 | 6.00 × 10−6 | 2007 | Agrawal et al., 2008 [76] |
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Weerasundara, L.; Vithanage, M. The challenge of vehicular emission and atmospheric deposition: From air to water. Int. J. Energy Environ. Econ. 2015, 23, 603. [Google Scholar]
- Amodio, M.; Catino, S.; Dambruoso, P.R.; de Gennaro, G.; Di Gilio, A.; Giungato, P.; Laiola, E.; Marzocca, A.; Mazzone, A.; Sardaro, A.; et al. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature. Adv. Meteorol. 2014, 2014, 161730. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M.; Qureshi, S. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis. Ecol. Indic. 2014, 42, 20–31. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Springer Basel: Basel, Germany, 2012; Volume 3, pp. 133–164. [Google Scholar]
- Yan, X.; Gao, D.; Zhang, F.; Zeng, C.; Xiang, W.; Zhang, M. Relationships between Heavy Metal Concentrations in Roadside Topsoil and Distance to Road Edge Based on Field Observations in the Qinghai-Tibet Plateau, China. Int. J. Environ. Res. Public Health 2013, 10, 762–775. [Google Scholar] [CrossRef]
- Fu, S.; Wei, C.Y. Multivariate and spatial analysis of heavy metal sources and variations in a large old antimony mine, China. J. Soils Sediments 2013, 13, 106–116. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Noli, F.; Tsamos, P. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 2016, 563–564, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Feng, X.; Yang, Y.; Qiu, G.; Li, G.; Li, F.; Liu, T.; Fu, Z.; Jin, Z. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ. Int. 2006, 32, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, K.; Wu, W.; Tian, H.; Yi, P.; Zhi, G.; Fan, J.; Liu, S. Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmos. Environ. 2017, 152, 6–15. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, X.; Zeng, C.; Zhang, M.; Shrestha, S.; Devkota, L.P.; Yao, T. Influence of Traffic Activity on Heavy Metal Concentrations of Roadside Farmland Soil in Mountainous Areas. Int. J. Environ. Res. Public Health 2012, 9, 1715–1731. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Fatoba, P.O. Pollution Loads and the Ecological Risk Assessment of Soil Heavy Metals around a Mega Cement Factory in Southwest Nigeria. Pol. J. Environ. Stud. 2013, 22, 487–493. [Google Scholar]
- Luo, C.; Liu, C.; Wang, Y.; Liu, X.; Li, F.; Zhang, G.; Li, X. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef]
- Nriagu, J.O. Global Metal Pollution: Poisoning the Biosphere? Environ. Sci. Policy Sustain. Dev. 1990, 32, 7–33. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S.; Wu, S.; Wang, C.; He, D. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China. Environ. Pollut. 2019, 255, 113301. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Bandara, P.C.; Novo, L.A.B.; Kumar, A.; Ambade, B.; Naveendrakumar, G.; Ranagalage, M.; Magana-Arachchi, D.N. Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere 2022, 303, 135051. [Google Scholar] [CrossRef]
- MEP; MLR. The Report on the National General Survey of Soil Contamination; Ministry of Environmental Protection & Ministry of Land and Resources: Beijing, China, 2014. [Google Scholar]
- Hou, D.; Li, F. Complexities Surrounding China’s Soil Action Plan. Land Degrad. Dev. 2017, 28, 2315–2320. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef]
- Dong, J.; Wu, F.; Zhang, G. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 2006, 64, 1659–1666. [Google Scholar] [CrossRef]
- Römkens, P.F.A.M.; Guo, H.Y.; Chu, C.L.; Liu, T.S.; Chiang, C.F.; Koopmans, G.F. Prediction of Cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environ. Pollut. 2009, 157, 2435–2444. [Google Scholar] [CrossRef]
- Sriprachote, A.; Kanyawongha, P.; Ochiai, K.; Matoh, T. Current situation of cadmium-polluted paddy soil, rice and soybean in the Mae Sot District, Tak Province, Thailand. Soil Sci. Plant Nutr. 2012, 58, 349–359. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, G.; Xu, Y.; Wang, L.; Liang, X.; Lin, D. Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma 2013, 193–194, 149–155. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Patlolla, A.K.; Centeno, J.A. Invited Reviews: Carcinogenic and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review. Toxicol. Pathol. 2003, 31, 575–588. [Google Scholar] [CrossRef]
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Atsdr, U. Toxicological Profile for Chromium; US Department of Health and Human Services, Public Health Service: Washington, DC, USA, 2012. [Google Scholar]
- IARC. Chromium, nickel and welding. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1990; Volume 49. [Google Scholar]
- Altaf, R.; Altaf, S.; Hussain, M.; Shah, R.U.; Ullah, R.; Ullah, M.I.; Rauf, A.; Ansari, M.J.; Alharbi, S.A.; Alfarraj, S.; et al. Heavy metal accumulation by roadside vegetation and implications for pollution control. PLoS ONE 2021, 16, e0249147. [Google Scholar] [CrossRef] [PubMed]
- Zgłobicki, W.; Telecka, M.; Skupiński, S.; Pasierbińska, A.; Kozieł, M. Assessment of heavy metal contamination levels of street dust in the city of Lublin, E Poland. Environ. Earth Sci. 2018, 77, 774. [Google Scholar] [CrossRef]
- Kara, M.; Dumanoglu, Y.; Altiok, H.; Elbir, T.; Odabasi, M.; Bayram, A. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey. Atmos. Res. 2014, 149, 204–216. [Google Scholar] [CrossRef]
- Mijić, Z.; Stojić, A.; Perišić, M.; Rajšić, S.; Tasić, M.; Radenković, M.; Joksić, J. Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade. Atmos. Environ. 2010, 44, 3630–3637. [Google Scholar] [CrossRef]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Yun, Z.; Shi, J.; Jiang, G. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 2013, 58, 134–140. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Xu, J. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ. Pollut. 2006, 141, 257–264. [Google Scholar] [CrossRef]
- Rogan, N.; Serafimovski, T.; Dolenec, M.; Tasev, G.; Dolenec, T. Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kočani Field (Macedonia). Environ. Geochem. Health 2009, 31, 439–451. [Google Scholar] [CrossRef]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef]
- Weerasundara, L.; Magana-Arachchi, D.N.; Ziyath, A.M.; Goonetilleke, A.; Vithanage, M. Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka. J. Environ. Manag. 2018, 220, 198–206. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef]
- Tian, S.L.; Pan, Y.P.; Wang, Y.S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes. Atmos. Chem. Phys. 2016, 16, 1–19. [Google Scholar] [CrossRef]
- Xiao, X.; Qin, K.; Sun, X.; Hui, W.; Yuan, L.; Wu, L. Will wheat be damaged by heavy metals on exposure to coal fly ash? Atmos. Pollut. Res. 2018, 9, 814–821. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record-breaking dust loading during two mega dust storm events over northern China in March 2021: Aerosol optical and radiative properties and meteorological drivers. Atmos. Chem. Phys. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Kupka, D.; Kania, M.; Pietrzykowski, M.; Łukasik, A.; Gruba, P. Multiple Factors Influence the Accumulation of Heavy Metals (Cu, Pb, Ni, Zn) in Forest Soils in the Vicinity of Roadways. Water Air Soil Pollut. 2021, 232, 194. [Google Scholar] [CrossRef]
- Farahani, V.J.; Soleimanian, E.; Pirhadi, M.; Sioutas, C. Long-term trends in concentrations and sources of PM2.5–bound metals and elements in central Los Angeles. Atmos. Environ. 2021, 253, 118361. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Ni, Z.; Liu, S.; Jiang, Z.; Huang, X. Atmospheric deposition of trace elements to Daya Bay, South China Sea: Fluxes and sources. Mar. Pollut. Bull. 2018, 127, 672–683. [Google Scholar] [CrossRef]
- McNeill, J.; Snider, G.; Weagle, C.L.; Walsh, B.; Bissonnette, P.; Stone, E.; Abboud, I.; Akoshile, C.; Anh, N.X.; Balasubramanian, R.; et al. Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Sci. Rep. 2020, 10, 21817. [Google Scholar] [CrossRef]
- Li, W.; Xu, B.; Song, Q.; Liu, X.; Xu, J.; Brookes, P.C. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Sci. Total Environ. 2014, 472, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Pye, H.O.T.; He, J.; Chen, Y.; Murphy, B.N.; Ng, N.L. Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States. Atmos. Chem. Phys. 2018, 18, 12613–12637. [Google Scholar] [CrossRef]
- Amedro, D.; Berasategui, M.; Bunkan, A.J.C.; Pozzer, A.; Lelieveld, J.; Crowley, J.N. Kinetics of the OH + NO2 reaction: Effect of water vapour and new parameterization for global modelling. Atmos. Chem. Phys. 2020, 20, 3091–3105. [Google Scholar] [CrossRef]
- Sarwar, G.; Gantt, B.; Foley, K.; Fahey, K.; Spero, T.L.; Kang, D.; Mathur, R.; Foroutan, H.; Xing, J.; Sherwen, T.; et al. Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere. Atmos. Environ. 2019, 213, 395–404. [Google Scholar] [CrossRef]
- Lana, A.; Bell, T.G.; Simó, R.; Vallina, S.M.; Ballabrera-Poy, J.; Kettle, A.J.; Dachs, J.; Bopp, L.; Saltzman, E.S.; Stefels, J.; et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob. Biogeochem. Cycles 2011, 25, GB1004. [Google Scholar] [CrossRef]
- US EPA. CMAQ Model Version 5.3 Input Data—1/1/2016–12/31/2016 12km CONUS, 1st ed.; UNC Dataverse: Chapel Hill, NC, USA, 2019. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Xiu, A.; Pleim, J.E. Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model. J. Appl. Meteorol. 2001, 40, 192–209. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Xu, H.; Tao, S.; Wang, R.; Yu, Q.; Chen, Y.; Zou, Z.; Ma, W. Trace Elements From Ocean-Going Vessels in East Asia: Vanadium and Nickel Emissions and Their Impacts on Air Quality. J. Geophys. Res. Atmos. 2021, 126, e2020JD033984. [Google Scholar] [CrossRef]
- Centre, J.R. Global Emission Inventories in the Emission Database for Global Atmospheric Research (EDGAR)—Manual (I); Joint Research Centre: Ispra, Italy, 2012. [Google Scholar]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef]
- Bray, C.D.; Strum, M.; Simon, H.; Riddick, L.; Kosusko, M.; Menetrez, M.; Hays, M.D.; Rao, V. An assessment of important SPECIATE profiles in the EPA emissions modeling platform and current data gaps. Atmos. Environ. 2019, 207, 93–104. [Google Scholar] [CrossRef]
- Simon, H.; Beck, L.; Bhave, P.V.; Divita, F.; Hsu, Y.; Luecken, D.; Mobley, J.D.; Pouliot, G.A.; Reff, A.; Sarwar, G.; et al. The development and uses of EPA’s SPECIATE database. Atmos. Pollut. Res. 2010, 1, 196–206. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Y.; Yu, G.; Han, Z.; Zhao, J.; Zhang, T.; Zheng, M. Source-resolved atmospheric metal emissions, concentrations, and their deposition fluxes into the East Asian Seas. EGUsphere [preprint] 2024, 2024, 1–27. [Google Scholar] [CrossRef]
- Reff, A.; Bhave, P.V.; Simon, H.; Pace, T.G.; Pouliot, G.A.; Mobley, J.D.; Houyoux, M. Emissions Inventory of PM2.5 Trace Elements across the United States. Environ. Sci. Technol. 2009, 43, 5790–5796. [Google Scholar] [CrossRef] [PubMed]
- Gargava, P.; Chow, J.C.; Watson, J.G.; Lowenthal, D.H. Speciated PM10 Emission Inventory for Delhi, India. Aerosol Air Qual. Res. 2014, 14, 1515–1526. [Google Scholar] [CrossRef]
- Ying, Q.; Feng, M.; Song, D.; Wu, L.; Hu, J.; Zhang, H.; Kleeman, M.J.; Li, X. Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Sci. Total Environ. 2018, 624, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Kajino, M.; Hagino, H.; Fujitani, Y.; Morikawa, T.; Fukui, T.; Onishi, K.; Okuda, T.; Kajikawa, T.; Igarashi, Y. Modeling Transition Metals in East Asia and Japan and Its Emission Sources. GeoHealth 2020, 4, e2020GH000259. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, X.; Li, Y.; Lang, J.; Zhou, Y.; Guo, X.; Zhao, Y. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014. Sci. Total Environ. 2017, 609, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Zhang, Y.; Ma, W.; Ma, H.; Feng, J.; Yu, Q.; Yang, X.; Ng, S.K.W.; Fu, Q.; Chen, L. Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze River Delta and East China Sea and Their Potential Environmental Influence. Environ. Sci. Technol. 2016, 50, 1322–1329. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Mao, J.; Yu, G.; Xu, K.; Zhao, J.; Qian, H.; Wu, L.; Yang, X.; Chen, Y.; et al. Diverse changes in shipping emissions around the Western Pacific ports under the coeffect of the epidemic and fuel oil policy. Sci. Total Environ. 2023, 879, 162892. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Patton, A.P.; Ma, W.; Kan, H.; Wu, L.; Fung, F.; Wang, S.; Ding, D.; Walker, K. Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. Environ. Pollut. 2020, 263, 114643. [Google Scholar] [CrossRef]
- Agrawal, H.; Welch, W.A.; Miller, J.W.; Cocker, D.R. Emission Measurements from a Crude Oil Tanker at Sea. Environ. Sci. Technol. 2008, 42, 7098–7103. [Google Scholar] [CrossRef]
- Agrawal, H.; Malloy, Q.G.J.; Welch, W.A.; Wayne Miller, J.; Cocker, D.R. In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos. Environ. 2008, 42, 5504–5510. [Google Scholar] [CrossRef]
- Celo, V.; Dabek-Zlotorzynska, E.; McCurdy, M. Chemical Characterization of Exhaust Emissions from Selected Canadian Marine Vessels: The Case of Trace Metals and Lanthanoids. Environ. Sci. Technol. 2015, 49, 5220–5226. [Google Scholar] [CrossRef] [PubMed]
- Corbin, J.C.; Mensah, A.A.; Pieber, S.M.; Orasche, J.; Michalke, B.; Zanatta, M.; Czech, H.; Massabò, D.; Buatier de Mongeot, F.; Mennucci, C.; et al. Trace Metals in Soot and PM2.5 from Heavy-Fuel-Oil Combustion in a Marine Engine. Environ. Sci. Technol. 2018, 52, 6714–6722. [Google Scholar] [CrossRef] [PubMed]
- Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; et al. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas. Atmos. Meas. Technol. 2013, 6, 3577–3596. [Google Scholar] [CrossRef]
- Sippula, O.; Stengel, B.; Sklorz, M.; Streibel, T.; Rabe, R.; Orasche, J.; Lintelmann, J.; Michalke, B.; Abbaszade, G.; Radischat, C.; et al. Particle Emissions from a Marine Engine: Chemical Composition and Aromatic Emission Profiles under Various Operating Conditions. Environ. Sci. Technol. 2014, 48, 11721–11729. [Google Scholar] [CrossRef] [PubMed]
- Streibel, T.; Schnelle-Kreis, J.; Czech, H.; Harndorf, H.; Jakobi, G.; Jokiniemi, J.; Karg, E.; Lintelmann, J.; Matuschek, G.; Michalke, B.; et al. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environ. Sci. Pollut. Res. 2017, 24, 10976–10991. [Google Scholar] [CrossRef] [PubMed]
- Zetterdahl, M.; Moldanová, J.; Pei, X.; Pathak, R.K.; Demirdjian, B. Impact of the 0.1% fuel sulfur content limit in SECA on particle and gaseous emissions from marine vessels. Atmos. Environ. 2016, 145, 338–345. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Tian, C.; Lou, D.; Li, J.; Zhang, G.; Matthias, V. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China. Atmos. Chem. Phys. 2016, 16, 6319–6334. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Chen, Q.; Feng, Y.; Shang, Y.; Yang, X.; Gao, H.; Tian, C.; Li, J.; Zhang, G.; et al. Real-World Emission Factors of Gaseous and Particulate Pollutants from Marine Fishing Boats and Their Total Emissions in China. Environ. Sci. Technol. 2018, 52, 4910–4919. [Google Scholar] [CrossRef]
- Abbasi, S.; Rezaei, M.; Keshavarzi, B.; Mina, M.; Ritsema, C.; Geissen, V. Investigation of the 2018 Shiraz dust event: Potential sources of metals, rare earth elements, and radionuclides; health assessment. Chemosphere 2021, 279, 130533. [Google Scholar] [CrossRef]
- Baker, A.R.; Li, M.; Chance, R. Trace Metal Fractional Solubility in Size-Segregated Aerosols From the Tropical Eastern Atlantic Ocean. Glob. Biogeochem. Cycles 2020, 34, e2019GB006510. [Google Scholar] [CrossRef]
- Desboeufs, K.V.; Sofikitis, A.; Losno, R.; Colin, J.L.; Ausset, P. Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere 2005, 58, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, H.; Ayyamperumal, R.; Liu, Y. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere 2022, 308, 136396. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, Q.; Guan, Q.; Ma, Y.; Ni, F.; Yang, E.; Zhang, J. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. J. Hazard. Mater. 2022, 422, 126878. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, M.; Batdorj, D.; Ukachi, M.; Onishi, K.; Nagano, K.; Mori, I.; Matsui, I.; Sano, T. Preparation and chemical characterisation of an Asian mineral dust certified reference material. Anal. Methods 2013, 5, 4088–4095. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Zhai, J.; Yu, G.; Zhang, J.; Shi, S.; Yuan, Y.; Jiang, S.; Xing, C.; Cai, B.; Zeng, Y.; Wang, Y.; et al. Impact of Ship Emissions on Air Quality in the Greater Bay Area in China under the Latest Global Marine Fuel Regulation. Environ. Sci. Technol. 2023, 57, 12341–12350. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Q.; Zhang, R.; Jiang, N.; Yin, S.; Ye, H. Size-fractionated particulate elements in an inland city of China: Deposition flux in human respiratory, health risks, source apportionment, and dry deposition. Environ. Pollut. 2019, 247, 515–523. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Harrison, R.M.; Shi, Z. A review of receptor modelling of industrially emitted particulate matter. Atmos. Environ. 2014, 97, 109–120. [Google Scholar] [CrossRef]
- Bai, X.; Tian, H.; Zhu, C.; Luo, L.; Hao, Y.; Liu, S.; Guo, Z.; Lv, Y.; Chen, D.; Chu, B.; et al. Present Knowledge and Future Perspectives of Atmospheric Emission Inventories of Toxic Trace Elements: A Critical Review. Environ. Sci. Technol. 2023, 57, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef]
- Tian, H.Z.; Zhu, C.Y.; Gao, J.J.; Cheng, K.; Hao, J.M.; Wang, K.; Hua, S.B.; Wang, Y.; Zhou, J.R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: Historical trend, spatial distribution, uncertainties, and control policies. Atmos. Chem. Phys. 2015, 15, 10127–10147. [Google Scholar] [CrossRef]
- Wang, K.; Tian, H.; Hua, S.; Zhu, C.; Gao, J.; Xue, Y.; Hao, J.; Wang, Y.; Zhou, J. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Sci. Total Environ. 2016, 559, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pope Iii, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Liu, S.; Tian, H.; Zhu, C.; Cheng, K.; Wang, Y.; Luo, L.; Bai, X.; Hao, Y.; Lin, S.; Zhao, S.; et al. Reduced but still noteworthy atmospheric pollution of trace elements in China. One Earth 2023, 6, 536–547. [Google Scholar] [CrossRef]
- Travnikov, O.; Batrakova, N.; Gusev, A.; Ilyin, I.; Kleimenov, M.; Rozovskaya, O.; Shatalov, V.; Strijkina, I.; Aas, W.; Breivik, K.; et al. Assessment of Transboundary Pollution by Toxic Substances: Heavy Metals and POPs; EMEP: Moscow, Russia, 2020. [Google Scholar]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Mohamed Ziyath, A.; Vithanage, M.; Goonetilleke, A. Atmospheric particles as a pollutant source in the urban water environment in Sri Lanka-current research trends and future directions. In Proceedings of the 4th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka, 13–15 December 2013; pp. 94–100. [Google Scholar]
- Huston, R.; Chan, Y.C.; Gardner, T.; Shaw, G.; Chapman, H. Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks. Water Res. 2009, 43, 1630–1640. [Google Scholar] [CrossRef]
- Odabasi, M.; Muezzinoglu, A.; Bozlaker, A. Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey. Atmos. Environ. 2002, 36, 5841–5851. [Google Scholar] [CrossRef]
- Tasdemir, Y.; Kural, C.; Cindoruk, S.S.; Vardar, N. Assessment of trace element concentrations and their estimated dry deposition fluxes in an urban atmosphere. Atmos. Res. 2006, 81, 17–35. [Google Scholar] [CrossRef]
- Ambade, B. Seasonal variation and sources of heavy metals in hilltop of Dongargarh, Central India. Urban Clim. 2014, 9, 155–165. [Google Scholar] [CrossRef]
- Samontha, A.; Waiyawat, W.; Shiowatana, J.; McLaren, R.G. Atmospheric deposition of metals associated with air particulate matter: Fractionation of particulate-bound metals using continuous-flow sequential extraction. Sci Asia 2007, 33, 421–428. [Google Scholar] [CrossRef]
- Aničić, M.; Tasić, M.; Frontasyeva, M.V.; Tomašević, M.; Rajšić, S.; Mijić, Z.; Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ. Pollut. 2009, 157, 673–679. [Google Scholar] [CrossRef]
- Azimi, S.; Rocher, V.; Garnaud, S.; Varrault, G.; Thevenot, D.R. Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere 2005, 61, 645–651. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Wong, G.T.F.; Gong, G.-C.; Shiah, F.-K.; Huang, Y.-T.; Kao, S.-J.; Tsai, F.; Candice Lung, S.-C.; Lin, F.-J.; Lin, I.I.; et al. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar. Chem. 2010, 120, 116–127. [Google Scholar] [CrossRef]
- Deshmukh, D.K.; Deb, M.K.; Mkoma, S.L. Size distribution and seasonal variation of size-segregated particulate matter in the ambient air of Raipur city, India. Air Qual. Atmos. Health 2013, 6, 259–276. [Google Scholar] [CrossRef]
- Fang, G.-C.; Wu, Y.-S.; Huang, S.-H.; Rau, J.-Y. Dry deposition (downward, upward) concentration study of particulates and heavy metals during daytime, nighttime period at the traffic sampling site of Sha-Lu, Taiwan. Chemosphere 2004, 56, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Marumoto, K.; Narukawa, M.; Asakura, K. Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmos. Environ. 2006, 40, 521–531. [Google Scholar] [CrossRef]
- Ye, L.; Huang, M.; Zhong, B.; Wang, X.; Tu, Q.; Sun, H.; Wang, C.; Wu, L.; Chang, M. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk assessment, and source apportionment. J. Environ. Sci. 2018, 70, 106–123. [Google Scholar] [CrossRef]
- Pan, Y.P.; Wang, Y.S. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef]
- Sakata, M.; Asakura, K. Atmospheric dry deposition of trace elements at a site on Asian-continent side of Japan. Atmos. Environ. 2011, 45, 1075–1083. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, J.; Peng, Y.; Lu, Y.; Yao, D.; Yang, J.; He, Y. Atmospheric deposition of hazardous elements and its accumulation in both soil and grain of winter wheat in a lead-zinc smelter contaminated area, Central China. Sci. Total Environ. 2020, 707, 135789. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Guo, Z.; Peng, C.; Xiao, X.; Shi, L.; Zeng, P.; Ran, H.; Xue, Q. Atmospheric bulk deposition of heavy metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils. J. Hazard. Mater. 2019, 371, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Yang, Q.; Zhang, K.; Zheng, Y.; Zhou, G. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J. Environ. Sci. 2018, 71, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-X.; Zhang, Z.-L.; Xiao, Z.-Q.; Liu, X.-L.; Zhang, Q.-H. Atmospheric deposition fluxes and health risk assessment of potentially toxic elements in Caohai Lake (Guizhou Province, China). J. Mt. Sci. 2022, 19, 1107–1118. [Google Scholar] [CrossRef]
- Wang, C.; Jin, H.; Zhong, C.; Wang, J.; Sun, M.; Xie, M. Estimating the contribution of atmosphere on heavy metals accumulation in the aboveground wheat tissues induced by anthropogenic forcing. Environ. Res. 2020, 189, 109955. [Google Scholar] [CrossRef]
Main Sector | Sub-Sector | Pb | As | Cd | Cr |
---|---|---|---|---|---|
Power Industry | Power Industry | 0.04237 | 0.00989 | 0.00278 | 0.02659 |
Fuel Exploitation | 0.02192 | 0.05000 | 0.00000 | 0.00890 | |
Oil Refineries and Transformation Industry | 0.01622 | 0.00600 | 0.00430 | 0.08534 | |
Transport | Aviation Cruise | 0.00000 | 0.00000 | 0.00000 | 0.02248 |
Road Transportation Resuspension | 0.00954 | 0.00161 | 0.00472 | 0.02499 | |
Road Transportation No Resuspension | 0.12387 | 0.00250 | 0.00463 | 0.02645 | |
Industrial Combustion | Combustion for Manufacturing | 0.05000 | 0.01883 | 0.00220 | 0.00650 |
Fossil-Fuel Fires | 0.00670 | 0.01786 | 0.04630 | 0.01828 | |
Iron and Steel Production | 0.33800 | 0.02440 | 0.03600 | 1.05399 | |
Non-ferrous Metals Production | 3.99266 | 1.18400 | 0.36501 | 0.04058 | |
Non-metallic Minerals Production | 0.06063 | 0.00287 | 0.00300 | 0.05314 | |
Agriculture | Agricultural Waste Burning | 0.03619 | 0.00381 | 0.00343 | 0.00236 |
Waste | Solid-Waste Landfills | 0.00380 | 0.00020 | 0.00000 | 0.00540 |
Solid-Waste Incineration | 1.05000 | 0.00300 | 0.00300 | 0.01750 | |
Buildings | Residential | 0.01019 | 0.00096 | 0.00050 | 0.00350 |
Other | Chemical Processes | 0.03600 | 0.01185 | 0.23400 | 0.10003 |
Food and Paper | 0.00543 | 0.00051 | 0.00458 | 0.00408 | |
Solvents and Products Use | 0.04750 | 0.00702 | 0.00773 | 0.03063 |
Main Sector | Sub-Sector | Pb | As | Cd | Cr |
---|---|---|---|---|---|
Power Industry | Power Industry | 0.03972 | 0.00087 | 0.01792 | 0.04166 |
Oil Refineries and Transformation Industry | 0.04010 | 0.00220 | 0.00600 | 0.12587 | |
Transport | Aviation Cruise | 0.00180 | 0.01040 | 0.00000 | 0.00000 |
Road Transportation Resuspension | 0.14576 | 0.01155 | 0.00008 | 0.02032 | |
Road Transportation No Resuspension | 0.07749 | 0.00526 | 0.01892 | 0.01689 | |
Industrial Combustion | Combustion for Manufacturing | 0.11350 | 0.01433 | 0.02455 | 0.00857 |
Fossil-Fuel Fires | 0.07028 | 0.01033 | 0.02170 | 0.04219 | |
Iron and Steel Production | 0.23000 | 0.01300 | 0.02958 | 0.32188 | |
Non-ferrous Metals Production | 1.42406 | 1.15050 | 0.23283 | 0.03258 | |
Non-metallic Minerals Production | 0.07067 | 0.00892 | 0.00597 | 0.03629 | |
Agriculture | Agricultural Waste Burning | 0.03644 | 0.00086 | 0.02294 | 0.00536 |
Waste | Solid-Waste Landfills | 0.00510 | 0.00000 | 0.00290 | 0.00650 |
Solid-Waste Incineration | 1.05000 | 0.00523 | 0.11688 | 0.04988 | |
Buildings | Residential | 0.01258 | 0.00027 | 0.00000 | 0.00350 |
Other | Chemical Processes | 0.01627 | 0.00138 | 0.02020 | 0.02088 |
Food and Paper | 0.00613 | 0.00163 | 0.00550 | 0.00338 | |
Solvents and Products Use | 0.01334 | 0.00063 | 0.00069 | 0.01150 |
Engine Type | Fuel Type | Sulfur Content | Pb | As | Cr | Cd |
---|---|---|---|---|---|---|
ME SSD | HFO | 2.7% | 9.00 × 10−6 | 5.29 × 10−6 | 4.74 × 10−5 | 9.47 × 10−6 |
ME MSD | HFO | 2.7% | 1.06 × 10−5 | 1.34 × 10−5 | 5.95 × 10−6 | 3.88 × 10−5 |
MDO | 0.5% | 8.33 × 10−6 | 2.53 × 10−3 | 1.39 × 10−3 | 2.48 × 10−4 | |
ME HSD | MDO | 0.5% | 8.33 × 10−6 | 8.33 × 10−6 | 3.33 × 10−4 | 3.14 × 10−4 |
AE MSD | MGO | 0.5% | 8.33 × 10−6 | 8.33 × 10−6 | 3.33 × 10−4 | 3.14 × 10−4 |
Pb | As | Cr | Cd | |
---|---|---|---|---|
Fine Mode | 10,605.38 | 2366.58 | 825.76 | 5468.24 |
Coarse Mode | 8648.01 | 1048.90 | 2506.03 | 3911.22 |
Sum | 19,253.39 | 3415.48 | 3331.79 | 9379.46 |
the Ratio of Fine–Coarse | 1.23 | 2.26 | 0.33 | 1.40 |
Province | Pb | As | Cr | Cd |
---|---|---|---|---|
Beijing | 49.25 | 5.52 | 27.87 | 7.58 |
Tianjin | 37.79 | 4.65 | 13.16 | 5.63 |
Hebei | 19.20 | 2.52 | 8.26 | 2.74 |
Shanxi | 16.62 | 3.30 | 9.88 | 2.29 |
Inner Mongolia | 3.11 | 0.85 | 1.43 | 0.42 |
Liaoning | 35.68 | 5.81 | 32.58 | 5.35 |
Jilin | 6.40 | 1.00 | 3.63 | 0.83 |
Heilongjiang | 3.37 | 0.50 | 1.58 | 0.42 |
Shanghai | 20.37 | 2.52 | 19.49 | 3.38 |
Jiangsu | 32.60 | 4.31 | 15.06 | 4.82 |
Zhejiang | 18.84 | 2.60 | 9.11 | 2.70 |
Anhui | 22.21 | 3.12 | 9.85 | 3.10 |
Fujian | 7.88 | 1.16 | 2.99 | 1.10 |
Jiangxi | 11.69 | 1.68 | 5.27 | 1.55 |
Shandong | 27.08 | 3.74 | 8.69 | 3.76 |
Henan | 23.36 | 3.46 | 7.39 | 3.18 |
Hubei | 25.36 | 3.65 | 18.10 | 3.74 |
Hunan | 12.88 | 1.82 | 5.84 | 1.67 |
Guangdong | 11.55 | 1.46 | 3.76 | 1.67 |
Guangxi | 12.87 | 3.54 | 2.97 | 1.57 |
Hainan | 6.10 | 0.86 | 2.29 | 0.80 |
Chongqing | 12.16 | 1.66 | 4.14 | 1.65 |
Sichuan | 6.74 | 0.96 | 2.15 | 0.93 |
Guizhou | 9.30 | 2.34 | 2.56 | 1.14 |
Yunnan | 3.60 | 0.54 | 1.66 | 0.48 |
Tibet | 0.32 | 0.07 | 0.31 | 0.02 |
Shaanxi | 14.61 | 4.50 | 3.18 | 1.82 |
Gansu | 8.33 | 3.01 | 1.67 | 0.99 |
Qinghai | 3.88 | 1.71 | 0.70 | 0.42 |
Ningxia | 7.06 | 1.63 | 2.68 | 1.01 |
Xinjiang | 1.58 | 0.34 | 1.28 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Dong, X.; Han, Z.; Zhao, J.; Zhang, Y. Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China. Atmosphere 2024, 15, 402. https://doi.org/10.3390/atmos15040402
Jiang S, Dong X, Han Z, Zhao J, Zhang Y. Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China. Atmosphere. 2024; 15(4):402. https://doi.org/10.3390/atmos15040402
Chicago/Turabian StyleJiang, Shenglan, Xuyang Dong, Zimin Han, Junri Zhao, and Yan Zhang. 2024. "Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China" Atmosphere 15, no. 4: 402. https://doi.org/10.3390/atmos15040402
APA StyleJiang, S., Dong, X., Han, Z., Zhao, J., & Zhang, Y. (2024). Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China. Atmosphere, 15(4), 402. https://doi.org/10.3390/atmos15040402