Coupled Calculation of Soil Moisture Content and PML Model Based on Data Assimilation in the Hetao Irrigation District
Abstract
:1. Introduction
2. Methods
2.1. PML Model
2.2. SM Change Model
2.3. Data Assimilation Model
2.4. Evaluation of the Assimilation Results
3. Study Area and Data
3.1. Study Area
3.2. Gound Monitoring Data
3.3. Remote Sensing Data
4. Results
4.1. Performance of the SM Model Driven by Remote Sensing Observations
4.2. ET Simulations Coupling with Different
4.3. Temporal Variability of ET Estimation
5. Discussion
5.1. The Influence of SM Assimilation on Es
5.2. Comparison with Other Studies in Hetao Irrigation District
5.3. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, W.; Wang, W.; Shao, Q.; Song, L.; Cao, M. Estimation of Evapotranspiration and Its Components across China Based on a Modified Priestley–Taylor Algorithm Using Monthly Multi-Layer Soil Moisture Data. Remote Sens. 2021, 13, 3118. [Google Scholar] [CrossRef]
- Ling, M.; Yang, Y.; Xu, C.; Yu, L.; Xia, Q.; Guo, X. Temporal and spatial variation characteristics of actual evapotranspiration in the Yiluo river basin based on the Priestley-Taylor jet propulsion laboratory model. Appl. Sci. 2022, 12, 9784. [Google Scholar] [CrossRef]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Colliander, A.; Halverson, G.; Tu, K.; Famiglietti, J.S. SMAP soil moisture improves global evapotranspiration. Remote Sens. Environ. 2018, 219, 1–14. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z. Sensible and Latent Heat Flux Variability and Response to Dry–Wet Soil Moisture Zones across China. Bound. Layer Meteorol. 2014, 154, 157–170. [Google Scholar] [CrossRef]
- Meza, F.J.; Montes, C.; Bravo-Martinez, F.; Serrano-Ortiz, P.; Kowalski, A.S. Soil water content effects on net ecosystmen CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile. Sci. Rep. 2018, 8, 8570. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L. Estimation of evapotranspiration of “soil-vegetation” system with a scheme combing a dual-source model and satellite data assimilation. J. Hydrol. 2021, 603, 127145. [Google Scholar] [CrossRef]
- Narayan, A.; Marzouk, Y.; Xiu, D. Sequential data assimilation with multiple models. J. Comput. Phys. 2012, 231, 6401–6418. [Google Scholar] [CrossRef]
- Chen, S. A generalized Gaussian distribution based uncertainty smapling approach and its application in actual evapotranspiration assimilation. J. Hydrol. 2017, 552, 745–764. [Google Scholar] [CrossRef]
- Meng, C.; Li, Z.; Zhan, X.; Shi, J.; Liu, C. Land surface temperature data assimilation and its impact on evapotranspiration estimates from the Common Land Model. Water Resour. Res. 2009, 45, W02421. [Google Scholar] [CrossRef]
- Xiong, M.; Liu, P.; Cheng, L.; Deng, C.; Gui, Z.; Zhang, X.; Liu, Y. Identifying the time-varying hydrological model parameters to improve simulation efficiency by the ensemble Kalman filter: A joint assimilation of streamflow and actual evapotranspiration. J. Hydrol. 2019, 568, 758–768. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, C.; Ye, W. An experimental study on evapotranspiration data assimilation based on the hydrological model. Water Resour. Manag. 2016, 30, 5263–5279. [Google Scholar] [CrossRef]
- Zhang, Y.; Leuning, R.; Hutley, L.B.; Beringer, J.; McHugh, I.; Walker, J.P. Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution. Water Resour. Res. 2010, 46, 5. [Google Scholar] [CrossRef]
- Duan, H.; Lu, S. The influence of canopy interception on evapotranspiration and energy distribution of PML model. China Rural. Water Hydropower 2021, 9, 80–84. [Google Scholar]
- Zhang, Y.; Chiew, F.H.S.; Pena-Arancibia, J.; Sun, F.; Li, H.; Leuning, R. Global variation of transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res. Atmos. 2017, 122, 6868–6881. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, K.; Zhan, H.; Chao, L. Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2023, 27, 363–383. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 454–469. [Google Scholar] [CrossRef]
- Eicker, A.; Schumacher, M.; Kusche, J.; Döll, P.; Schmied, H.M. Calibration/Data Assimilation Approach for Integrating GRACE Data into the WaterGAP Global Hydrology Model (WGHM) Using an Ensemble Kalman Filter: First Results. Surv. Geophys. 2014, 35, 1285–1309. [Google Scholar] [CrossRef]
- Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G. Data—Driven Model Uncertainty Estimation in Hydrologic Data Assimilation. Water Resour. Res. 2018, 54, 1252–1280. [Google Scholar] [CrossRef]
- Trudel, M.; Leconte, R.; Paniconi, C. Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations. J. Hydrol. 2014, 514, 192–201. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.; Gu, J.; Huang, C.; Li, X. SWAT-Based Hydrological Data Assimilation System (SWAT—HDAS): Description and Case Application to River Basin—Scale Hydrological Predictions. J. Adv. Model. Earth Syst. 2017, 9, 2863–2882. [Google Scholar] [CrossRef]
- Ma, J.; Qin, S.; Wang, H.; Zhang, H.; Bi, H.; Bu, R.; You, H.; Wang, S. Data Assimilation Algorithm Development and Experimentation, 1st ed.; Science Publishing Press: Beijing, China, 2013. [Google Scholar]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, 5. [Google Scholar] [CrossRef]
- Xu, H.; Duan, H.; Zhao, H.; Hao, Z.; Fan, Y. Inversion of evapotranspiration in irrigation area using Penman-Monteith-Leuning model and Sentinel-2 data. Remote Sens. Inf. 2023, 38, 79–86. [Google Scholar]
- Song, C.; Jia, L.; Menenti, M. Retrieving High-Resolution Surface Soil Moisture by Downscaling AMSR-E Brightness Temperature Using MODIS LST and NDVI Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 935–942. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Zhang, X.; Li, X.; Ao, T. Estimation of regional transpiration and evaporation using Penman-Monteith equation. Eng. J. Wuhan Univ. 2011, 44, 457–461. [Google Scholar]
- Wang, H.; Ma, M. Estimation of transpiration and evaporation of different ecosystems in an inland river basin using remote sensing data and the Penman-Monteith equation. Acta Ecol. Sin. 2014, 34, 5617–5626. [Google Scholar]
- Li, F.; Cao, R.; Zhao, Y.; Mu, D.; Fu, C.; Ping, F. Remote sensing Penman–Monteith model to estimate catchment evapotranspiration considering the vegetation diversity. Theor. Appl. Climatol. 2015, 127, 111–121. [Google Scholar] [CrossRef]
- Liaqat, U.W.; Choi, M. Surface energy fluxes in the Northeast Asia ecosystem: SEBS and METRIC models using Landsat satellite images. Agric. For. Meteorol. 2015, 214–215, 60–79. [Google Scholar] [CrossRef]
- Zhan, C.; Yin, J.; Wang, F.; Dong, Q. Regional estimation and validation of remotely sensed evapotranspiration in China. Catena 2015, 133, 35–42. [Google Scholar] [CrossRef]
- Kiptala, J.K.; Mohamed, Y.; Mul, M.L.; Van der Zaag, P. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resour. Res. 2013, 49, 8495–8510. [Google Scholar] [CrossRef]
- Papadavid, G.; Hadjimitsis, D.G.; Toulios, L.; Michaelides, S. A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions. Water Resour. Manag. 2013, 27, 3493–3506. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the response to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Duan, H.; Zhao, H.; Li, Q.; Xu, H.; Han, C. Estimation of evapotranspiration based on a modified Penman-Monteith-Leuning model using surface and root zone soil moisture. Water 2023, 15, 1418. [Google Scholar] [CrossRef]
- Gebremichael, M.; Wang, J.M.; Sammis, T.W. Dependence of remote sensing evapotranspiration algorithm on spatial resolution. Atmos. Res. 2010, 96, 489–495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Li, Q.; Xu, H.; Cao, L. Coupled Calculation of Soil Moisture Content and PML Model Based on Data Assimilation in the Hetao Irrigation District. Atmosphere 2024, 15, 340. https://doi.org/10.3390/atmos15030340
Duan H, Li Q, Xu H, Cao L. Coupled Calculation of Soil Moisture Content and PML Model Based on Data Assimilation in the Hetao Irrigation District. Atmosphere. 2024; 15(3):340. https://doi.org/10.3390/atmos15030340
Chicago/Turabian StyleDuan, Hao, Qiuju Li, Haowei Xu, and Liqi Cao. 2024. "Coupled Calculation of Soil Moisture Content and PML Model Based on Data Assimilation in the Hetao Irrigation District" Atmosphere 15, no. 3: 340. https://doi.org/10.3390/atmos15030340
APA StyleDuan, H., Li, Q., Xu, H., & Cao, L. (2024). Coupled Calculation of Soil Moisture Content and PML Model Based on Data Assimilation in the Hetao Irrigation District. Atmosphere, 15(3), 340. https://doi.org/10.3390/atmos15030340