Identification of Actual Irrigated Areas in Tropical Regions Based on Remote Sensing Evapotranspiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Monitoring Data
2.3. Remote Sensing Data
2.4. Methods
2.4.1. Penman–Monteith–Leuning Model
2.4.2. ET Downscales
2.4.3. Irrigation Area Identification Based on ET
3. Results and Discussion
3.1. Evaluation of ET Inversion Accuracy
3.2. Downscaling Calculation of ET and Spatial Distribution of Annual Cumulative Effective ET
3.2.1. Downscaling Calculation of ET
3.2.2. Spatial Distribution Characteristics of Cumulative Effective ET in 2023
3.3. Irrigation Area Identification Based on Cumulative Effective ET
3.4. Uncertainties and Limitations of This Study
4. Conclusions
- (1)
- Evaluation of ET Inversion Accuracy: The evaluation of ET inversion accuracy revealed promising results. The R2 between the simulation results of ET in this paper and the measured data of Xishuangbanna station was 0.59, which was in good agreement. The ET obtained in this paper was also in good agreement with the MODIS ET product, particularly evident in the fitting accuracy across different types of farmland. The R2 obtained, exceeding 0.7 for all land types and surpassing 0.8 for paddy fields and orchards, underscores the reliability of the PML model in capturing ET variations.
- (2)
- Downscaling of ET: To address the limitations posed by coarse spatial resolution, a downscaling approach was implemented, enhancing the accuracy of ET estimation at the parcel scale. By considering factors influencing ET variations at the parcel level, such as meteorological conditions and surface characteristics, this study successfully distributed ET at a finer spatial resolution of 10 m.
- (3)
- Spatial Distribution Characteristics of Cumulative Effective ET: The spatial distribution of cumulative effective ET in 2023 elucidated distinct patterns influenced by regional climatic factors and agricultural practices. The observed higher values in the northern region compared to the southern region corresponded with precipitation patterns, indicating a correlation between effective ET and regional climate conditions.
- (4)
- Irrigation Area Identification: Leveraging remote sensing data, this study identified irrigated areas based on cumulative effective ET, achieving a close approximation to actual recorded data with a small margin of error. The interpretation of remote sensing data proved effective in delineating irrigated areas, highlighting its utility in agricultural water resource management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leakey, A.D.B.; Ferguson, J.N.; Pignon, C.P.; Wu, A.; Jin, Z.; Hammer, G.L.; Lobell, D.B. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C3 and C4 Crops. Annu. Rev. Plant Biol. 2019, 70, 781–808. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and Potentials of Future Irrigation Water Availability on Agricultural Production under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef]
- China Water Resources Bulletin Ministry of Water Resources of the People’s Republic of China. 2020. Available online: http://www.mwr.gov.cn/sj/tjgb/szygb/202107/t20210709_1528208.html (accessed on 3 February 2024).
- Liu, M.; Yang, L.; Min, Q. Water-Saving Irrigation Subsidy Could Increase Regional Water Consumption. J. Clean. Prod. 2019, 213, 283–288. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, H.; Roberts, D.; Van De Voorde, T.; Batelaan, O.; Fan, T.; Xu, W. Mapping Center Pivot Irrigation Systems in Global Arid Regions Using Instance Segmentation and Analyzing Their Spatial Relationship with Freshwater Resources. Remote Sens. Environ. 2023, 297, 113760. [Google Scholar] [CrossRef]
- Ozdogan, M.; Gutman, G. A New Methodology to Map Irrigated Areas Using Multi-Temporal MODIS and Ancillary Data: An Application Example in the Continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, J.; Ge, Q. Mapping 20 Years of Irrigated Croplands in China Using MODIS and Statistics and Existing Irrigation Products. Sci. Data 2022, 9, 407. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2021, 3, 19–28. [Google Scholar] [CrossRef]
- Massari, C.; Modanesi, S.; Dari, J.; Gruber, A.; De Lannoy, G.J.M.; Girotto, M.; Quintana-Seguí, P.; Le Page, M.; Jarlan, L.; Zribi, M.; et al. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sens. 2021, 13, 4112. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L. Influence of Resolution in Irrigated Area Mapping and Area Estimation. Photogramm. Eng. Remote Sens. 2009, 75, 1383–1395. [Google Scholar] [CrossRef]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely Sensed High Resolution Irrigated Area Mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef]
- Yao, Z.; Cui, Y.; Geng, X.; Chen, X.; Li, S. Mapping Irrigated Area at Field Scale Based on the OPtical TRApezoid Model (OPTRAM) Using Landsat Images and Google Earth Engine. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4409011. [Google Scholar] [CrossRef]
- Dari, J.; Quintana-Seguí, P.; Escorihuela, M.J.; Stefan, V.; Brocca, L.; Morbidelli, R. Detecting and Mapping Irrigated Areas in a Mediterranean Environment by Using Remote Sensing Soil Moisture and a Land Surface Model. J. Hydrol. 2021, 596, 126129. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N.; Segui, P. Irrigation Mapping Using Sentinel-1 Time Series at Field Scale. Remote Sens. 2018, 10, 1495. [Google Scholar] [CrossRef]
- Zohaib, M.; Choi, M. Satellite-Based Global-Scale Irrigation Water Use and Its Contemporary Trends. Sci. Total Environ. 2020, 714, 136719. [Google Scholar] [CrossRef]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating Irrigation Water Use over the Contiguous United States by Combining Satellite and Reanalysis Soil Moisture Data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Analyses of Supply-Demand Balance of Agricultural Products in China and Its Policy Implication. J. Nat. Resour. 2021, 36, 1573. [Google Scholar] [CrossRef]
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A Process Driving Mass Transport and Energy Exchange in the Soil-plant-atmosphere-climate System. Rev. Geophys. 2012, 50, 2011RG000366. [Google Scholar] [CrossRef]
- Merlin, O.; Chirouze, J.; Olioso, A.; Jarlan, L.; Chehbouni, G.; Boulet, G. An Image-Based Four-Source Surface Energy Balance Model to Estimate Crop Evapotranspiration from Solar Reflectance/Thermal Emission Data (SEB-4S). Agric. For. Meteorol. 2014, 184, 188–203. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J. Estimating Evaporation: A Technique Adaptable to Remote Sensing. Science 1975, 189, 991–992. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating Evapotranspiration from Solar Radiation. J. Irrig. and Drain. Div. 1963, 89, 15–41. [Google Scholar] [CrossRef]
- Geli, H.M.E.; González-Piqueras, J.; Neale, C.M.U.; Balbontín, C.; Campos, I.; Calera, A. Effects of Surface Heterogeneity Due to Drip Irrigation on Scintillometer Estimates of Sensible, Latent Heat Fluxes and Evapotranspiration over Vineyards. Water 2019, 12, 81. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ma, N.; Zhang, X.; Tian, J.; Zhang, L.; McVicar, T.R.; Wang, E.; Xu, J. Increased Grain Crop Production Intensifies the Water Crisis in Northern China. Earth’s Future 2023, 11, e2023EF003608. [Google Scholar] [CrossRef]
- Chemin, Y.; Platonov, A.; Ul-Hassan, M.; Abdullaev, I. Using Remote Sensing Data for Water Depletion Assessment at Administrative and Irrigation-System Levels: Case Study of the Ferghana Province of Uzbekistan. Agric. Water Manag. 2004, 64, 183–196. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-Based Energy Balance and Evapotranspiration Model in Western US Water Rights Regulation and Planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Panagopoulos, A.; Galanis, G.; Alexiou, I.; Cherif, I.; Chemin, Y.; Stavrinos, E.; Bilas, G.; Zalidis, G.C. Combining Remotely Sensed Surface Energy Fluxes and GIS Analysis of Groundwater Parameters for Irrigation System Assessment. Irrig. Sci. 2014, 32, 127–140. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, B.; Yan, N.; Zhu, W.; Zeng, H.; Xu, J. Spatial Allocation Method from Coarse Evapotranspiration Data to Agricultural Fields by Quantifying Variations in Crop Cover and Soil Moisture. Remote Sens. 2021, 13, 343. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2022. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zheng, H.; Fei, X.; Sha, L.; Zhou, W.; Zhou, L.; Deng, X.; Luo, Y.; Deng, Y.; et al. A Dataset of Carbon and Water Fluxes Observed in Xishuangbanna Tropical Seasonal Rain Forest from 2011 to 2015. 2023, 23617225 bytes, 1 files. 2023, 8. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A Simple Surface Conductance Model to Estimate Regional Evaporation Using MODIS Leaf Area Index and the Penman-Monteith Equation. Water Resour. Res. 2008, 44, 2007WR006562. [Google Scholar] [CrossRef]
- Leuning, R. A Critical Appraisal of a Combined Stomatal-photosynthesis Model for C3 Plants. Plant Cell Environ. 1995, 18, 339–355. [Google Scholar] [CrossRef]
- Duan, H.; Lu, S. The Inffuence of Canopy Interception on Evapotranspiration and Energy Distribution of PML Model. China Rural. Water Hydropower 2021, 9, 80–84. [Google Scholar]
- Zheng, C.; Jia, L.; Hu, G.; Lu, J. Earth Observations-Based Evapotranspiration in Northeastern Thailand. Remote Sens. 2019, 11, 138. [Google Scholar] [CrossRef]
- Hao, Y.; Baik, J.; Choi, M. Developing a Soil Water Index-Based Priestley–Taylor Algorithm for Estimating Evapotranspiration over East Asia and Australia. Agric. For. Meteorol. 2019, 279, 107760. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global Estimates of the Land–Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-II Data, Validated at 16 FLUXNET Sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled Estimation of 500 m and 8-Day Resolution Global Evapotranspiration and Gross Primary Production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) Response to Rainfall and NDVI Using the MODIS Vegetation Index Product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Saleska, S.; Hutyra, L.; De Camargo, P.; Wofsy, S.; Frolking, S.; Boles, S.; Keller, M.; Moore, B. Satellite-Based Modeling of Gross Primary Production in a Seasonally Moist Tropical Evergreen Forest. Remote Sens. Environ. 2005, 94, 105–122. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, M.; Zhang, X.; Zeng, H.; Wu, B. Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended from PROBA-V 100- and 300-m S1 Products. Remote Sens. 2016, 8, 824. [Google Scholar] [CrossRef]
- Cao, X.; Zeng, W.; Wu, M.; Guo, X.; Wang, W. Hybrid Analytical Framework for Regional Agricultural Water Resource Utilization and Efficiency Evaluation. Agric. Water Manag. 2020, 231, 106027. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global Modeling of Irrigation Water Requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Duan, H.; Li, Q.; Han, C. Identification of Actual Irrigated Areas in Tropical Regions Based on Remote Sensing Evapotranspiration. Atmosphere 2024, 15, 492. https://doi.org/10.3390/atmos15040492
Xu H, Duan H, Li Q, Han C. Identification of Actual Irrigated Areas in Tropical Regions Based on Remote Sensing Evapotranspiration. Atmosphere. 2024; 15(4):492. https://doi.org/10.3390/atmos15040492
Chicago/Turabian StyleXu, Haowei, Hao Duan, Qiuju Li, and Chengxin Han. 2024. "Identification of Actual Irrigated Areas in Tropical Regions Based on Remote Sensing Evapotranspiration" Atmosphere 15, no. 4: 492. https://doi.org/10.3390/atmos15040492
APA StyleXu, H., Duan, H., Li, Q., & Han, C. (2024). Identification of Actual Irrigated Areas in Tropical Regions Based on Remote Sensing Evapotranspiration. Atmosphere, 15(4), 492. https://doi.org/10.3390/atmos15040492