Geochemistry and Provenance of Loess on the Miaodao Islands, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Comparison of Loess Profiles in Miaodao Islands
2.3. Loess Section and Sampling
2.4. Analysis Method
3. Results and Discussion
3.1. Major Elements
3.2. Trace Elements
3.3. Rare Earth Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pécsi, M. Loess is not just the accumulation of dust. Quat. Int. 1990, 7–8, 1–21. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, Y.; Song, Y.G.; Wei, H.; Wang, Y.; Shukurov, N. Effective Moisture Evolution since the Last Glacial Maximum Revealed by a Loess Record from the Westerlies-Dominated Ili Basin, NW China. Atmosphere 2022, 13, 1931. [Google Scholar] [CrossRef]
- Li, Y.R.; Shi, W.H.; Aydin, A.; Beroya-Eitner, M.A.; Gao, G. Loess genesis and worldwide distribution. Earth-Sci. Rev. 2020, 201, 102947. [Google Scholar] [CrossRef]
- Li, Y.; Gholami, H.; Song, Y.; Fathabadi, A.; Malakooti, H.; Collins, A.L. Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models. Catena 2020, 194, 104808. [Google Scholar] [CrossRef]
- Liu, T.S. Loess and Environment; Science Press: Beijing, China, 1985; pp. 1–475. [Google Scholar]
- Muhs, D.R.; Bettis, E.A.; Chan, M.A. Quaternary loess-Paleosol sequences as examples of climate-driven sedimentary extremes. Spec. Pap. (Geol. Soc. Am.) 2003, 370, 53–74. [Google Scholar] [CrossRef]
- Song, Y.G.; Chen, X.L.; Qian, L.B.; Li, C.; Li, Y.; Li, X.; Chang, H.; An, Z. Distribution and composition of loess sediments in the Ili Basin, Central Asia. Quat. Int. 2014, 334–335, 61–73. [Google Scholar] [CrossRef]
- Sun, J.; Guo, F.; Wu, H.; Yang, H.; Qiang, X.; Chu, H.; He, L.; Mei, X.; Jiang, J.; Wang, S. The sedimentary succession of the last 2.25 Myr in the Bohai Strait: Implications for the Quaternary paleoenvironmental evolution of the Bohai Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 585, 110704. [Google Scholar] [CrossRef]
- Wang, Y.D.; Yang, S.L.; Ding, Z.L. Provenance and paleoclimatic implications of loess deposits in Shandong Province, eastern China. Quat. Res. 2021, 103, 88–98. [Google Scholar] [CrossRef]
- Yi, S.W.; Zeng, L.; Xu, Z.W.; Wang, Y.; Wang, X.; Wu, J.; Lu, H. Sea-level changes in the Bohai Sea, northern China, constrained by coastal loess accumulation over the past 200 ka. Quat. Sci. Rev. 2022, 277, 107368. [Google Scholar] [CrossRef]
- Wu, P.; Xie, Y.Y.; Li, Y.; Kang, C.; Chi, Y.; Sun, L.; Wei, Z. Decoupling between circulation pattern and dust path since the last glacial in the Songnen Plain, NE China: Insights from quantitative provenance reconstruction of the Harbin dust sediments. Aeolian Res. 2022, 57, 100818. [Google Scholar] [CrossRef]
- Yang, S.; Ding, F.; Ding, Z. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochim. Cosmochim. Acta 2006, 70, 1695–1709. [Google Scholar] [CrossRef]
- Buggle, B.; Glaser, B.; Zöller, L.; Hambach, U.; Marković, S.; Glaser, I.; Gerasimenko, N. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quat. Sci. Rev. 2008, 27, 1058–1075. [Google Scholar] [CrossRef]
- Újvári, G.; Varga, A.; Balogh-Brunstad, Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quat. Res. 2008, 69, 421–437. [Google Scholar] [CrossRef]
- Ujvari, G.; Varga, A.; Raucsik, B.; Kovács, J. The Paks loess-paleosol sequence; a record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian Basin. Quat. Int. 2014, 319, 22–37. [Google Scholar] [CrossRef]
- Jiang, Q.; Gao, X.; Tan, C.; Lu, H.; Peng, S.; Qiao, Y.; Hao, Q. Delayed sedimentary response of the Huanghe alluvial plain to climate change inferred from source variations of the Xiashu loess since ∼1 Ma. Catena 2023, 231, 107380. [Google Scholar] [CrossRef]
- Liu, B.; Jin, H.; Sun, Z.; Zhao, S. Geochemical weathering of aeolian sand and its palaeoclimatic implications in the Mu Us Desert, northern China, since the Late Holocene. J. Arid Land 2016, 8, 647–659. [Google Scholar] [CrossRef]
- Tursun, D.; Zhang, F.; Wu, F.; Liu, X.; Wu, S.; Sun, T.; Zheng, J.; Yue, J. Geochemical characterization of major elements in Gurbantunggut Desert sediments, northwestern China and their regional variations. Aeolian Res. 2022, 57, 100802. [Google Scholar] [CrossRef]
- Hao, Q.; Guo, Z.; Qiao, Y.; Xu, B.; Oldfield, F. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quat. Sci. Rev. 2010, 29, 3317–3326. [Google Scholar] [CrossRef]
- Pasquetti, F.; Zanchetta, G.; Bini, M.; Paffi, J.; Coltorti, M.; Lezzerini, M.; Arienzo, I.; Cremaschi, M. Potential dust sources for loess deposits in Central Italy: A geochemical case study from the Loess-Paleosol-Sequence of Ponte Crispiero (Marche). Catena 2023, 226, 107064. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry (Second Edition), Holland, H.D.; Turekian, K.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–51. ISBN 978-0-08-098300-4. [Google Scholar]
- Sun, J.M. Source Regions and Formation of the Loess Sediments on the High Mountain Regions of Northwestern China. Quaternary Res 2002, 58, 341–351. [Google Scholar] [CrossRef]
- Muhs, D.R.; Budahn, J.R. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Can. J. Earth Sci. 2006, 43, 323–337. [Google Scholar] [CrossRef]
- Qingyu, G.; Baotian, P.; Hongshan, G.; Na, L.; Hui, Z.; Junping, W. Geochemical evidence of the Chinese loess provenance during the Late Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 270, 53–58. [Google Scholar] [CrossRef]
- Ding, J.N.; Wu, Y.Q.; Tan, L.H.; Fu, T.; Du, S.; Wen, Y.; Li, D. Trace and rare earth element evidence for the provenances of aeolian sands in the Mu Us Desert, NW China. Aeolian Res. 2021, 50, 100683. [Google Scholar] [CrossRef]
- Han, L.; Hao, Q.Z.; Qiao, Y.S.; Wang, L.; Peng, S.; Li, N.; Gao, X.; Fu, Y.; Xu, B.; Gu, Z. Geochemical evidence for provenance diversity of loess in southern China and its implications for glacial aridification of the northern subtropical region. Quat. Sci. Rev. 2019, 212, 149–163. [Google Scholar] [CrossRef]
- Li, G.X.; Li, P.; Liu, Y.; Qiao, L.; Ma, Y.; Xu, J.; Yang, Z. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum. Earth-Sci. Rev. 2014, 139, 390–405. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Fitzsimmons, K.E.; Chen, X.; Prud’homme, C.; Zong, X. Origin of loess deposits in the North Tian Shan piedmont, Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 559, 109972. [Google Scholar] [CrossRef]
- Miao, X.D.; Chongyi, E.; Xu, S.J.; Wang, Q.; Hanson, P.R.; Chen, H.; Shi, Y. Age and source of coastal loess in Shandong Peninsula, Bohai Sea, China: Implications for dust aggradation in respond to sea-level change. Aeolian Res. 2022, 54, 100767. [Google Scholar] [CrossRef]
- Saimaiti, A.; Fu, C.F.; Song, Y.G.; Shukurov, N. Spatial Distribution, Material Composition and Provenance of Loess in Xinjiang, China: Progress and Challenges. Atmosphere 2022, 13, 1790. [Google Scholar] [CrossRef]
- Stevens, T.; Adamiec, G.; Bird, A.F.; Lu, H. An abrupt shift in dust source on the Chinese Loess Plateau revealed through high sampling resolution OSL dating. Quat. Sci. Rev. 2013, 82, 121–132. [Google Scholar] [CrossRef]
- Jin, X.L.; Zheng, K.Y. Geological initial observation of Miaodao Islands. Oceanol. Limnol. Sin. 1964, 6, 364–370. [Google Scholar]
- Zhao, Q.H. A restudy of microfossils of the loess in Miaodao Islands, Bohai Sea. Sci. China (Ser. D) 1996, 26, 445–451. [Google Scholar]
- Chen, H.T.; Kong, F.B.; Xu, S.J.; Lou, Z.; Zhang, J. Geochemical characteristics of major elements and their paleoenvironmental significance of the Xianjingyuan loess in Shandong Province. Mar. Geol. Quat. Geol. 2020, 40, 189–197. [Google Scholar]
- Cheng, Z.B.; Fu, M.Z.; Ju, X.H. Geological significance of paleontological fossils in coastal loess in the Bohai Strait and Liaodong Peninsula. Mar. Geol. Quat. Geol. 1996, 16, 85–94. [Google Scholar]
- Xu, S.J. Grain size characteristics and its indications of loess in Miaodao Islands, Shandong Province. Mar. Sci. 2008, 32, 60–63. [Google Scholar] [CrossRef]
- Cao, J.X.; Liu, G.N.; Shi, N.; Chang, Y.; Song, C.; Yuan, H.; Guo, X. Holocene loess of Miaodao Islands in Shandong. Quat. Sci. 1993, 13, 25–33. [Google Scholar]
- Cao, J.X.; Li, P.Y.; Shi, N. Loesses on Miaodao Islands, Shandong Province. Sci. China (Ser. B) 1987, 4, 111–1122. [Google Scholar]
- Wang, X.F. Magnetism and Environment Information Analysis of Loess Stratum in Miaodao Islands. Master’s Thesis, East China Normal University, Shanghai, China, 2007. [Google Scholar]
- Xu, S.J.; Kong, F.B.; Jia, G.J.; Miao, X.; Ding, X. An integrated OSL chronology, sedimentology and geochemical approach to loess deposits from Tuoji Island, Shandong Province: Implications for the late quaternary paleoenvironment in East China. Aeolian Res. 2018, 31, 105–116. [Google Scholar] [CrossRef]
- Ni, Z.C. Optically Stimulated Luminescence Dating and the Provenance Analysis of Loess in Miaodao Islands, Shandong Province. Master’s Thesis, Shandong Normal University, Jinan, China, 2015. [Google Scholar]
- Xu, S.J.; Ding, X.C.; Yu, L.P.; Ni, Z. Palaeoclimatic implications of aeolian sediments on the Miaodao Islands, Bohai Sea, East China, based on OSL dating and proxies. Aeolian Res. 2015, 19, 259–266. [Google Scholar] [CrossRef]
- Lin, X.; Liu, J.; Wu, Z.H.; Liu, W.M.; Li, C.A.; Li, Z.W.; Wang, S.; Liu, H.; Chen, J. Provenance of the Loess in Shandong Province (Eastern China) during the Last Ice Age: Constraints from the U-Pb Age of Detrital Zircons. Earth Sci. 2021, 46, 3230–3244, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ding, X.C.; Cao, W.; Xu, S.J.; Kong, F.; Miao, X. The sedimentary characteristics of Dakoubei loess profile in Tuoji island and their palaeoenvironment significance. J. Arid. Land Resour. Environ. 2016, 30, 192–197. [Google Scholar]
- Liu, J.P.; Zhao, S.L. Origin of the buried loess in the Bohai Sea bottom and the exposed loess along the coastal zone. Oceanol. Limnol. Sin. 1995, 26, 363–368. [Google Scholar]
- Tian, S.C.; Sun, J.M.; Lü, L.X.; Cao, M.; Zhang, Z.; Lü, T. Optically stimulated luminescence dating of late Quaternary loess deposits in the coastal region of North China: Provenance and paleoclimatic implications. Quat. Sci. Rev. 2019, 218, 160–177. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Yin, Y.H.; Yu, H.S. In Genesis and Landscape Comprehensive Evaluation of Unique Marine Geological Relics in Changdao Islands. In Proceedings of the 20th Annual Conference of Tourism Geoscience and Geoparks of China Geological Society, Beijing, China, June 2005; pp. 94–100. [Google Scholar]
- Cao, Y.L.; Wang, K.F.; Chen, H.T.; Xu, Y.; Zhang, C.; Wu, B.; Wang, Z.; Song, Y.; Xu, S.; Zhang, T.; et al. Spatial transport characteristics of dust indicated by end-members of grain size of loess in Miaodao Islands. J. Sea Res. 2023, 192, 102328. [Google Scholar] [CrossRef]
- Muhs, D.R. Origins and Properties of Quaternary Loess Deposits. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-409548-9. [Google Scholar]
- Bronger, A.; Heinkele, T. Mineralogical and clay mineralogical aspects of loess research. Quat. Int. 1990, 7–8, 37–51. [Google Scholar] [CrossRef]
- Muhs, D.R. The geochemistry of loess: Asian and North American deposits compared. J Asian Earth Sci. 2018, 155, 81–115. [Google Scholar] [CrossRef]
- Zhao, K.H. The Origin of the Loess in the Chain Islands of Miao—A Mineralogic View. Mar. Sci. 1983, 8, 29–32. [Google Scholar]
- Seyedrahimi-Niaraq, M.; Mahdiyanfar, H. Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry 2021, 81, 125830. [Google Scholar] [CrossRef]
- Seyedrahimi-Niaraq, M.; Mahdiyanfar, H. Improvement of geochemical prospectivity mapping using power spectrum; area fractal modeling of multi-element mineralization factor (SAF-MF). Geochem. Explor. Environ. Anal. 2022, 22, geochem2022-015. [Google Scholar] [CrossRef]
- Chen, J.; Ji, J.F.; Qiu, G.; Zhu, H.B.; Lu, H.Y. Geochemical study on chemical weathering degree of loess in Luochuan, Shanxi Province. Sci. China (Ser. D) 1997, 27, 531–536. [Google Scholar]
- Xu, S.J.; Ni, Z.C.; Ding, X.C. Geochemical Characteristics of Major Elements of the Pingyin Loess in Shandong Province. Bull. Mineral. Petrol. Geochem. 2016, 35, 353–359. [Google Scholar]
- Chen, Y.Y.; Li, X.S.; Han, Z.Y.; Yang, S.; Wang, Y.; Yang, D. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang, Jiangsu Province. J. Geogr. Sci. 2008, 18, 341–352. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M.; McCulloch, M.T. Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta 1983, 47, 1897–1905. [Google Scholar] [CrossRef]
- Gallet, S.; Jahn, B.; Torii, M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem. Geol. 1996, 133, 67–88. [Google Scholar] [CrossRef]
- Jahn, B.; Gallet, S.; Han, J. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka. Chem. Geol. 2001, 178, 71–94. [Google Scholar] [CrossRef]
- Fu, X.H. Geochemical Characteristics of Pingyin Loess and Its Provenance in Shandong Province. Master’s Thesis, Shandong Normal University, Jinan, China, 2014. [Google Scholar]
- Ding, Z.L.; Sun, J.M.; Yang, S.L.; Liu, T.S. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim. Cosmochim. Acta 2001, 65, 901–913. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Qiao, Y.S.; Hao, Q.Z.; Peng, S.S.; Wang, Y.; Li, J.; Liu, Z. Geochemical characteristics of the eolian deposits in southern China, and their implications for provenance and weathering intensity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 513–523. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Wang, P.; Du, Y.; Yu, W.; Algeo, T.J.; Zhou, Q.; Xu, Y.; Qi, L.; Yuan, L.; Pan, W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Sci. Rev. 2020, 201, 103032. [Google Scholar] [CrossRef]
- Zhuang, W.; Dong, Y.W.; Yu, Y.; Liu, B.; Li, Y.; Li, Y.; Wang, M. Chemical weathering of the loess in the south of Liaoning Province and its implications for environmental change. Mar. Geol. Quat. Geol. 2013, 33, 163–171. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Lal, D.; Liu, T.S.; Guo, Z.T.; Southon, J.; Caffee, M.W. Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic 10Be. Geochim. Cosmochim. Acta 1997, 61, 5221–5231. [Google Scholar] [CrossRef]
- Peng, S.Z.; Hao, Q.Z.; Wang, L.; Ding, M.; Zhang, W.; Wang, Y.; Guo, Z. Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, northern China. Quat. Res. 2016, 85, 290–298. [Google Scholar] [CrossRef]
- Robert Minard Garrels; Mackenzie, F.T. Evolution of Sedimentary Rocks; Norton: New York, NY, USA, 1971; p. 397. ISBN 0393099598. [Google Scholar]
- Xie, Y.Y.; Chi, Y.P. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess. J. Asian Earth Sci. 2016, 120, 43–61. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; Jiang, S.; Vandenberghe, J.; Wang, S.; Cosgrove, R. Provenance of loess deposits in the Eastern Qinling Mountains (central China) and their implications for the paleoenvironment. Quat. Sci. Rev. 2012, 43, 94–102. [Google Scholar] [CrossRef]
- Sun, J.M.; Li, S.H.; Muhs, D.R.; Li, B. Loess sedimentation in Tibet: Provenance, processes, and link with Quaternary glaciations. Quat. Sci. Rev. 2007, 26, 2265–2280. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Chen, X.L.; Li, J.; Mamadjanov, Y.; Aminov, J. Geochemical composition of Tajikistan loess and its provenance implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 446, 186–194. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publishing: Oxford, UK, 1985; pp. 1–312. [Google Scholar]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems G3 2001, 2, 2000G–2109G. [Google Scholar] [CrossRef]
- Amorosi, A.; Centineo, M.C.; Dinelli, E.; Lucchini, F.; Tateo, F. Geochemical and mineralogical variations as indicators of provenance changes in late Quaternary deposits of SE Po Plain. Sediment. Geol. 2002, 151, 273–292. [Google Scholar] [CrossRef]
- Mikes, T.; Dunkl, I.; Frisch, W.; von Eynatten, H. Geochemistry of Eocene flysch sandstones in the NW External Dinarides. Acta Geol. Hung. 2006, 49, 103–124. [Google Scholar] [CrossRef]
- Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37. [Google Scholar] [CrossRef]
- Floyd, P.A.; Winchester, J.A.; Park, R.G. Geochemistry and tectonic setting of Lewisian clastic metasediments of the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Res. 1989, 45, 203–214. [Google Scholar] [CrossRef]
- Sun, J.M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet Sci. Lett. 2002, 203, 845–859. [Google Scholar] [CrossRef]
- Hiscott, R.N. Ophiolitic source rocks for Taconic-age flysch: Trace-element evidence. GSA Bull. 1984, 95, 1261–1267. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem 3:1-64; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- McLennan, S.M.; Lipin, B.R.; McKay, G.A. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Mineral. 1989, 21, 169–200. [Google Scholar]
- Hu, F.; Yang, X. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China. Quat. Sci. Rev. 2016, 131, 179–192. [Google Scholar] [CrossRef]
Sampling Site | Coordinate Position | Sedimentological Characteristics of Loess Section |
---|---|---|
Dianzi Village West, North Changshan Island (DZ), Figure 4a | E: 120°41′10.54″ N: 37°59′09.30″ | The loess section is 5.0 m high, consisting of bedrock, and loess from bottom to top. Yellow loess, more voids, occasionally quartz breccia, lower soil compaction, upper vertical joint development, loose cementation, easily broken. |
Southwest of Wanggou Village, South Changshan Island (WG), Figure 4b | E: 120°44′20.12″ N: 37°55′58.68″ | The loess section is 5.2 m thick, with bedrock at the bottom and farmland at the top. Silty clay at the bottom of loess, reddish brown, central 2–3 m range, the development of a layer of ginger calcareous nodules and white calcareous hyphae, layered intermittent arrangement, upper vertical joint development, pale yellow. |
Beizhuang Village, Daheishan Island (BZ), Figure 4c | E: 120°37′08.48″ N: 37°57′52.21″ | The loess section is 9.2 m high, and a layer of grayish-brown paleosol is embedded at 5.5–5.95 m. The top vegetation is lush and covered with a large amount of artificial landfill and miscellaneous soil. The upper part of the loess has developed vertical joints, loose cementation and easily collapsed. The middle and lower part of the loess blocks has a high hardness, and a large number of collapsed loess is accumulated at the bottom. Locally exposed bedrock is Cenozoic black basalt. |
Houkou Village South, Tuoji Island (HK), Figure 4d | E: 120°44′48.71″ N: 38°10′36.26″ | The loess profile is 8 m high, and there are three layers of reddish-brown paleosol layer in the middle. The top vegetation is lush, the bottom bedrock is exposed, and the bedrock breccia is seen. The upper part of the loess reveals vertical joint development, loose cementation, easy to collapse, the lower part of the loess is solid, the upper part of the loess is light yellow, the lower part of the reddish brown. |
Location | Sample Quantity | Distribution | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | Data Sources |
---|---|---|---|---|---|---|---|---|---|---|
Dianzi | 46 | maximum value | 71.81 | 11.49 | 3.61 | 1.45 | 6.36 | 2.23 | 2.49 | This test |
minimum value | 65.65 | 9.79 | 2.88 | 1.18 | 3.19 | 2.01 | 2.24 | |||
mean value | 68.89 | 10.75 | 3.29 | 1.31 | 5.12 | 2.09 | 2.36 | |||
coefficient of variation | 2.10 | 2.60 | 5.40 | 5.20 | 15.80 | 2.30 | 2.80 | |||
Wanggou | 51 | maximum value | 71.36 | 16.35 | 5.68 | 1.57 | 7.45 | 2.15 | 2.76 | |
minimum value | 62.20 | 11.89 | 3.92 | 1.21 | 1.01 | 1.41 | 2.18 | |||
mean value | 67.64 | 13.85 | 4.76 | 1.42 | 2.59 | 1.89 | 2.49 | |||
coefficient of variation | 3.70 | 8.90 | 10.10 | 4.80 | 74.90 | 9.90 | 5.10 | |||
Beizhuang | 81 | maximum value | 73.02 | 16.42 | 7.35 | 2.80 | 4.61 | 2.54 | 3.02 | |
minimum value | 58.55 | 11.41 | 3.78 | 1.30 | 1.21 | 1.52 | 2.33 | |||
mean value | 68.02 | 13.13 | 4.74 | 1.73 | 2.40 | 2.11 | 2.69 | |||
coefficient of variation | 5.60 | 10.20 | 20.40 | 22.20 | 36.70 | 10.50 | 5.60 | |||
Houkou | 78 | maximum value | 71.15 | 15.60 | 5.98 | 1.91 | 7.54 | 2.42 | 2.96 | |
minimum value | 61.84 | 10.80 | 3.47 | 1.13 | 0.79 | 1.55 | 2.32 | |||
mean value | 67.04 | 13.14 | 4.62 | 1.53 | 3.10 | 2.14 | 2.66 | |||
coefficient of variation | 3.30 | 10.90 | 16.20 | 9.90 | 76.30 | 8.00 | 6.40 | |||
Pingyin | 70 | mean value | 69.28 | 11.94 | 4.00 | 1.44 | 7.76 | 2.27 | 2.68 | [56] |
XiaShu | 54 | mean value | 68.07 | 13.32 | 5.3 | 1.61 | 1.00 | 0.92 | 2.35 | [57] |
Luochuan | 12 | mean value | 66.40 | 14.20 | 4.81 | 2.29 | 1.02 | 1.66 | 3.01 | [55] |
Upper continental crust (UCC) | mean value | 66.00 | 15.20 | 5.00 | 2.20 | 4.20 | 3.90 | 3.40 | [21] |
Locality | SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | Rb | Sr | Ba | Pb | Th | Zr | Nb | La | Ce | Y | Sc | V | Cr | Ni | Cu | Zn | Ga |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DZ | 68.89 | 0.53 | 10.75 | 2.96 | 0.06 | 1.31 | 5.12 | 2.09 | 2.36 | 0.07 | 82.52 | 194.63 | 512.97 | 18.80 | 8.75 | 149.57 | 10.74 | 27.57 | 52.56 | 21.60 | 8.12 | 60.70 | 47.93 | 20.20 | 15.58 | 48.44 | 15.55 |
WG | 67.64 | 0.73 | 13.85 | 4.28 | 0.08 | 1.42 | 2.59 | 1.89 | 2.49 | 0.06 | 96.34 | 153.25 | 526.96 | 22.01 | 11.29 | 206.79 | 13.95 | 33.37 | 68.85 | 26.37 | 10.35 | 86.81 | 60.53 | 28.04 | 21.43 | 58.05 | 18.06 |
BZ | 68.02 | 0.70 | 13.13 | 4.27 | 0.07 | 1.73 | 2.40 | 2.11 | 2.69 | 0.12 | 97.36 | 170.92 | 515.61 | 20.77 | 10.38 | 186.80 | 12.96 | 33.14 | 63.88 | 27.26 | 9.98 | 84.40 | 59.52 | 26.00 | 20.65 | 80.57 | 17.10 |
HK | 67.04 | 0.72 | 13.14 | 4.16 | 0.07 | 1.53 | 3.10 | 2.14 | 2.66 | 0.07 | 113.11 | 177.74 | 551.68 | 22.59 | 11.44 | 220.38 | 14.18 | 36.29 | 69.95 | 29.18 | 10.12 | 82.03 | 58.72 | 27.08 | 21.66 | 68.09 | 18.52 |
LC | 65.69 | 0.7 | 13.13 | 4.38 | 0.1 | 2.36 | 8.86 | 1.66 | 2.51 | 0.16 | 89 | 215 | 457 | 18 | 10.9 | 181 | 11.7 | 30.3 | 62.6 | 25.5 | 11.9 | 99 | 69 | 34 | 30 | 78 | 17 |
XS | 68.07 | 0.81 | 13.32 | 5.3 | 0.09 | 1.61 | 1.00 | 0.92 | 2.35 | 0.18 | — | 108.78 | 492.46 | — | 17.18 | — | — | — | — | — | — | 117.32 | 80.69 | 41.15 | 46.86 | 95.32 | 19.14 |
PY | 69.28 | 11.94 | 4.00 | 1.44 | 7.76 | 2.27 | 2.68 | — | 35.69 | 88.61 | 295.56 | 3.02 | — | 138.82 | — | — | — | — | — | — | 64.09 | 9.03 | 1.57 | 16.42 | — | ||
CLP | 62.89 | 0.58 | 12.59 | 4.33 | 0.09 | 3.84 | 10.91 | 1.67 | 2.32 | — | 101 | 246 | 409 | 20 | 12.7 | 221 | 13.1 | 35.7 | 71.4 | 27.4 | 11.7 | — | — | — | — | — | 16 |
GAL | 70.71 | 0.71 | 11.74 | 3.75 | 0.07 | 2.15 | 6.67 | 1.68 | 2.22 | 0.14 | 79 | 208 | 427 | 15 | 9 | 322 | 14 | 29 | 61 | 26 | — | 79 | 67 | 27 | 19 | 57 | 12 |
Location | Sample Quantity | Element | La | Ce | Pr | Nd | Sm | Eu | Gd | Data Sources |
---|---|---|---|---|---|---|---|---|---|---|
Dianzi | 46 | mean value | 27.57 | 52.56 | 6.40 | 23.83 | 4.56 | 0.98 | 4.06 | This test |
element | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
mean value | 0.67 | 3.92 | 0.74 | 2.31 | 0.35 | 1.86 | 0.36 | |||
ΣREE | 130.19 | ΣLREE | 115.92 | ΣHREE | 14.27 | ΣLREE/ΣHREE | 8.12 | |||
Eu/Eu* | 0.69 | LaN/YbN | 9.99 | GdN/YbN | 1.76 | |||||
Wanggou | 51 | element | La | Ce | Pr | Nd | Sm | Eu | Gd | |
mean value | 33.37 | 68.85 | 7.81 | 29.19 | 5.55 | 1.13 | 4.94 | |||
Element | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
mean value | 0.81 | 4.81 | 0.90 | 2.85 | 0.43 | 2.36 | 0.46 | |||
ΣREE | 163.47 | ΣLREE | 145.92 | ΣHREE | 17.55 | ΣLREE/ΣHREE | 8.31 | |||
Eu/Eu* | 0.66 | LaN/YbN | 9.57 | GdN/YbN | 1.69 | |||||
Beizhuang | 81 | element | La | Ce | Pr | Nd | Sm | Eu | Gd | |
mean value | 33.15 | 63.88 | 7.73 | 29.20 | 5.55 | 1.16 | 4.98 | |||
element | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
mean value | 0.78 | 4.89 | 0.93 | 2.74 | 0.42 | 2.69 | 0.44 | |||
ΣREE | 158.55 | ΣLREE | 140.67 | ΣHREE | 17.88 | ΣLREE/ΣHREE | 7.87 | |||
Eu/Eu* | 0.68 | LaN/YbN | 8.32 | GdN/YbN | 1.49 | |||||
Houkou | 78 | Element | La | Ce | Pr | Nd | Sm | Eu | Gd | |
mean value | 36.29 | 69.95 | 8.41 | 31.42 | 5.88 | 1.19 | 5.32 | |||
Element | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
mean value | 0.88 | 5.20 | 1.02 | 3.11 | 0.46 | 3.06 | 0.49 | |||
ΣREE | 172.68 | ΣLREE | 153.15 | ΣHREE | 19.54 | ΣLREE/ΣHREE | 7.84 | |||
Eu/Eu* | 0.65 | LaN/YbN | 8.02 | GdN/YbN | 1.40 | |||||
Luochuan | 7 | element | La | Ce | Pr | Nd | Sm | Eu | Gd | [59] |
mean value | 32.3 | 64.6 | 8.16 | 28.1 | 5.70 | 1.12 | 5.11 | |||
element | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
mean value | 0.79 | 4.57 | 0.93 | 2.61 | 0.43 | 2.70 | 0.41 | |||
ΣREE | 157.54 | ΣLREE | 145.11 | ΣHREE | 12.43 | ΣLREE/ΣHREE | 11.67 | |||
Eu/Eu* | 0.63 | LaN/YbN | 7.93 | GdN/YbN | 1.53 | |||||
Upper crust | element | La | Ce | Pr | Nd | Sm | Eu | Gd | [76] | |
mean value | 30 | 64 | 7.1 | 26 | 4.5 | 0.88 | 3.8 | |||
element | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||
mean value | 0.64 | 3.5 | 0.80 | 2.3 | 0.33 | 2.2 | 0.32 | |||
ΣREE | 146.37 | ΣLREE | 136.28 | ΣHREE | 10.09 | ΣLREE/ΣHREE | 13.51 | |||
Eu/Eu* | 0.65 | LaN/YbN | 9.19 | GdN/YbN | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, K.; Song, J.; Liu, P.; Xia, C.; Risha, M.; Qiu, X.; Xu, Y.; Lv, M.; Gao, K.; et al. Geochemistry and Provenance of Loess on the Miaodao Islands, China. Atmosphere 2024, 15, 261. https://doi.org/10.3390/atmos15030261
Zhang Y, Wang K, Song J, Liu P, Xia C, Risha M, Qiu X, Xu Y, Lv M, Gao K, et al. Geochemistry and Provenance of Loess on the Miaodao Islands, China. Atmosphere. 2024; 15(3):261. https://doi.org/10.3390/atmos15030261
Chicago/Turabian StyleZhang, Yunfeng, Kuifeng Wang, Jianchao Song, Paul Liu, Chuanbo Xia, Muhammad Risha, Xiaohua Qiu, Yan Xu, Minghui Lv, Kuifeng Gao, and et al. 2024. "Geochemistry and Provenance of Loess on the Miaodao Islands, China" Atmosphere 15, no. 3: 261. https://doi.org/10.3390/atmos15030261
APA StyleZhang, Y., Wang, K., Song, J., Liu, P., Xia, C., Risha, M., Qiu, X., Xu, Y., Lv, M., Gao, K., & Wang, L. (2024). Geochemistry and Provenance of Loess on the Miaodao Islands, China. Atmosphere, 15(3), 261. https://doi.org/10.3390/atmos15030261