Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Miaodao Islands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13000 KiB  
Article
Geochemistry and Provenance of Loess on the Miaodao Islands, China
by Yunfeng Zhang, Kuifeng Wang, Jianchao Song, Paul Liu, Chuanbo Xia, Muhammad Risha, Xiaohua Qiu, Yan Xu, Minghui Lv, Kuifeng Gao and Lin Wang
Atmosphere 2024, 15(3), 261; https://doi.org/10.3390/atmos15030261 - 22 Feb 2024
Viewed by 1470
Abstract
Loess deposits are widely distributed across the globe and provide detailed records of climatic changes since the Quaternary period. Their geochemical element characteristics are important indicators of paleoenvironmental evolution and provenance. Therefore, four typical loess sections from four different islands of the Miaodao [...] Read more.
Loess deposits are widely distributed across the globe and provide detailed records of climatic changes since the Quaternary period. Their geochemical element characteristics are important indicators of paleoenvironmental evolution and provenance. Therefore, four typical loess sections from four different islands of the Miaodao Islands were selected for systematically geochemical analysis of major and trace elements. The geochemical data of major and trace elements are very similar, indicating that the loess of all islands on the Miaodao have a common provenance. The geochemical test results show that t SiO2, Al2O3, Fe2O3 and CaO are the major chemical components of loess, with an average total content of 85–90%. The average Eu/Eu*, ΣLREE/ΣHREE, LaN/YbN, GdN/YbN values of the Miaodao Islands loess range from 0.65 to 0.69, 7.84 to 8.31, 8.02 to 9.99, 1.40 to 1.76. These data are similar to and different from those of the Chinese Loess Plateau, indicating the diversity of Miaodao Islands Loess provenance. The CIA (Chemical Index of Alteration) (50–65) and Na/K results suggest that the loess here had experienced incipient chemical weathering. The A-CN-K (Al2O3-CaO* + Na2O-K2O) diagram indicates that the weathering trend of the loess sections is consistent with that of continental weathering. The local loess data points are close and parallel to the A-CN line, suggesting that the loess dust material on the Miaodao Islands originated from the extensive upper continental crust, and was highly mixed in the process of wind transport and deposition. The relationships of Log[(CaO + Na2O)/K2O] versus Log(SiO2/Al2O3), Na2O/Al2O3 versus K2O/Al2O3, LaN/YbN versus Eu/Eu*, Sc-Th-La and Zr-Sc-Th plots of major and trace elements reveal that the loess sources for the Miaodao Islands are similar to those of the Loess Plateau, which were derived from alluvial fan deposits flanking the Qilian Shan in China, the Gobi Altay and Hangayn Mountains in Mongolia. However, the loess of the Miaodao Islands is coarser in average grain size and contains abundant marine fossils, with gravel layers, indicating it is allochthous and near-source, which suggests it mainly originated from the adjacent exposed sea floor sediments of the Bohai Sea during glacial periods. Finally, we conclude that the loess of the Miaodao Islands is the result of a gradual accumulation process, in which the relative amount of distant-source material decreased and the near-source material increased in response to changes in sea level and paleoclimate. Our findings support that the loess of the Miaodao Islands was formed by mixing material from distant and proximal sources. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 10656 KiB  
Article
Land Subsidence Assessment of an Archipelago Based on the InSAR Time Series Analysis Method
by Deming Ma, Rui Zhao, Yongsheng Li and Zhengguang Li
Water 2023, 15(3), 465; https://doi.org/10.3390/w15030465 - 24 Jan 2023
Cited by 5 | Viewed by 3717
Abstract
The lack of resources on islands leads to their extremely rapid development, and this can result in frequent geological disasters involving island subsidence. These disasters not only destroy the ecological environment and landscape of islands but also pose massive threats to the safety [...] Read more.
The lack of resources on islands leads to their extremely rapid development, and this can result in frequent geological disasters involving island subsidence. These disasters not only destroy the ecological environment and landscape of islands but also pose massive threats to the safety of residents’ lives and property and can even affect the country’s maritime rights and interests. To meet the demands of island stability and safety monitoring, in this study, we propose a large-area, full-coverage deformation monitoring method using InSAR technology to assess island subsidence based on a comprehensive analysis of conventional monitoring techniques. The working principle and unique advantages of InSAR data are introduced, and the SBAS InSAR key interpretation processing flow are described in detail. The GPU-assisted InSAR processing method is used to improve the processing efficiency. The monitoring results showed that the southern island group of the Miaodao Archipelago was relatively stable overall, with an annual average deformation rate of 3 mm. Only a few areas experienced large-magnitude surface deformation, and the maximum annual deformation magnitude was 45 mm. The time series deformation results of the characteristic points of the five inhabited islands in the southern island group showed that the subsidence trends of the two selected points on Beichangshan Island (P1 and P2) were slowly declining. The P3 point on Nanchangshan Island experienced a large deformation, while the P4 point experienced a relatively small deformation. The selected points (P5, P6 and P7) on Miaodao Island, Xiaoheishan Island and Daheishan Island were stable during the monitoring period. InSAR data can be used to accurately identify the millimetre-scale microdeformations experienced by island groups, thus demonstrating the high-precision deformation monitoring capability of these data. In addition, the accuracy of these data can meet the needs of island and archipelago subsidence monitoring, and the proposed method is an effective means to monitor the spatial deformation of island targets. This study is conducive to further enriching and improving island stability and safety monitoring technology systems in China and to providing data and technical support for identifying and mastering potential island risks, protecting and utilizing islands and preventing and reducing disasters. Full article
(This article belongs to the Special Issue Sediment Dynamics in Coastal and Marine Environment)
Show Figures

Figure 1

Back to TopTop