Influence of Wind Flows on Surface O3 Variation over a Coastal Province in Southeast China
Abstract
:1. Introduction
2. Data and Methods
2.1. Surface Air Pollutant Measurements and Meteorological Observations
2.2. GEOS-Chem Model
3. Results
3.1. Overview of O3 Distribution in Fujian
3.2. Influence of Wind Flows on Surface O3
3.3. Source Atribution of O3 Variations Associated with Different Wind Flows
4. Conclusions
- (1)
- Under different emission conditions and topography distributions, the mean of O3 concentrations over 2015–2021 is 62.7 μg/m3 in coastal regions of Fujian, where anthropogenic emissions are higher, while it is 45.6 μg/m3 in inland mountainous regions with higher forest coverage. Seasonally, O3 concentrations show peaks in the spring and autumn and valleys in the summer and winter, as seen in both coastal and inland regions (Figure 1). Throughout the year, the O3 level is also higher in coastal regions than in inland regions; the difference in O3 concentrations between coastal and inland regions also shows distinct seasonality, with a maximum in October, reaching 24.9 μg/m3, and a minimum of 7.6 μg/m3 in July.
- (2)
- Surface O3 over coastal regions shows a strong dependence on wind flow changes (Figure 5 and Figure 6; Table 1 and Table 2). When southeasterly winds prevail over coastal regions, the mean of surface O3 concentrations in the daytime reaches 83.5 μg/m3, which is 5.0 μg/m3 higher than its baseline value, while northwesterly winds tend to reduce surface O3 by 6.4 μg/m3. The positive anomaly in O3 associated with southeasterly winds is higher in the autumn and summer than in the spring and winter. During the nighttime, the onshore northeasterly winds are associated with enhanced O3 levels since the airmass contains less NO2, alleviating the titration effects, as well as the enhanced transport of O3. Over inland regions, however, surface O3 variations are less sensitive to wind flow changes.
- (3)
- The GEOS-Chem model was applied to diagnose the dominant processes for surface O3 variations associated with different wind flows (Figure 8; Table 3 and Table 4). High-resolution simulations reasonably capture the observed variations in O3 in terms of day–night contrast, coast–inland region contrast, and, especially, contrasts under different wind flows. The simulation results show that the prevailing southeasterly and southwesterly winds lead to a positive anomaly in O3 chemical reactions, suggesting enhanced photochemical production rates. Furthermore, southeasterly winds also transport more O3 from the outer regions into the coastal regions of Fujian, which jointly results in elevated surface O3 when southeasterly winds dominate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Bell, M.L.; Goldberg, R.; Hogrefe, C.; Kinney, P.L.; Knowlton, K.; Lynn, B.; Rosenthal, J.; Rosenzweig, C.; Patz, J.A. Climate change, ambient ozone, and health in 50 US cities. Clim. Chang. 2007, 82, 61–76. [Google Scholar] [CrossRef]
- Shindell, D.; Kuylenstierna, J.C.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F. Simultaneously mitigating near-term climate change and improving human health and food security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ. Sci. Technol. Lett. 2020, 7, 240–247. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef]
- Dewan, S.; Lakhani, A. Tropospheric ozone and its natural precursors impacted by climatic changes in emission and dynamics. Front. Environ. Sci. 2022, 10, 2499. [Google Scholar] [CrossRef]
- Gong, C.; Liao, H.; Zhang, L.; Yue, X.; Dang, R.; Yang, Y. Persistent ozone pollution episodes in North China exacerbated by regional transport. Environ. Pollut. 2020, 265, 115056. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Li, M.; Liao, Z.; Sun, Y.; Song, T.; Gao, W.; Wang, Y.; Li, Y.; Ji, D. Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmos. Chem. Phys. 2019, 19, 14477–14492. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016–2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmos. Chem. Phys. 2019, 19, 8339–8361. [Google Scholar] [CrossRef]
- Shen, L.; Liu, J.; Zhao, T.; Xu, X.; Han, H.; Wang, H.; Shu, Z. Atmospheric transport drives regional interactions of ozone pollution in China. Sci. Total Environ. 2022, 830, 154634. [Google Scholar] [CrossRef] [PubMed]
- Dang, R.; Liao, H.; Fu, Y. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012–2017. Sci. Total Environ. 2021, 754, 142394. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Liu, J.; Shu, L.; Wang, T.; Yuan, H. Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China. Atmos. Chem. Phys. 2020, 20, 203–222. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 1: The complex and varying roles of meteorology. Atmos. Chem. Phys. 2020, 20, 6305–6321. [Google Scholar] [CrossRef]
- Bei, N.; Zhao, L.; Wu, J.; Li, X.; Feng, T.; Li, G. Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): A case study. Environ. Pollut. 2018, 234, 429–438. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, P.; Wang, Y.; Miao, S.; Gao, J. Impact of mountain-valley wind circulation on typical cases of air pollution in Beijing. Huan Jing Ke Xue 2017, 38, 2218–2230. [Google Scholar]
- Wentworth, G.; Murphy, J.; Sills, D. Impact of lake breezes on ozone and nitrogen oxides in the Greater Toronto Area. Atmos. Environ. 2015, 109, 52–60. [Google Scholar] [CrossRef]
- Xu, J.; Huang, X.; Wang, N.; Li, Y.; Ding, A. Understanding ozone pollution in the Yangtze River Delta of eastern China from the perspective of diurnal cycles. Sci. Total Environ. 2021, 752, 141928. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Huang, X.; Pu, X.; Li, M.; Chen, P.; Yang, X.Q.; Wang, M. Impact of East Asian summer monsoon on surface ozone pattern in China. J. Geophys. Res. Atmos. 2018, 123, 1401–1411. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, H.; Li, J. Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China. Atmos. Chem. Phys. 2014, 14, 6867–6879. [Google Scholar] [CrossRef]
- Zhou, D.; Ding, A.; Mao, H.; Fu, C.; Wang, T.; Chan, L.; Ding, K.; Zhang, Y.; Liu, J.; Lu, A. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China. Environ. Res. Lett. 2013, 8, 044011. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Zhao, T.; Liu, J.; Hu, X.-M.; Liu, D.; Jiang, Y.; Xu, J.; Chang, L. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China. Atmos. Chem. Phys. 2018, 18, 16239–16251. [Google Scholar] [CrossRef]
- Shu, L.; Wang, T.; Han, H.; Xie, M.; Chen, P.; Li, M.; Wu, H. Summertime ozone pollution in the Yangtze River Delta of eastern China during 2013–2017: Synoptic impacts and source apportionment. Environ. Pollut. 2020, 257, 113631. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xue, L.; Wang, Y.; Li, L.; Lin, J.; Ni, R.; Yan, Y.; Chen, L.; Li, J.; Zhang, Q. Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. Atmos. Chem. Phys. 2019, 19, 1455–1469. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, X.; Guo, H.; Wang, Y.; Zou, S.; Ling, Z.; Wang, X.; Jiang, F.; Zeren, Y.; Pan, W. Ozone pollution around a coastal region of South China Sea: Interaction between marine and continental air. Atmos. Chem. Phys. 2018, 18, 4277–4295. [Google Scholar] [CrossRef]
- Feng, X.; Li, M.; Li, Y.; Yu, F.; Yang, D.; Gao, G.; Xu, L.; Yin, B. Typhoon storm surge in the southeast Chinese mainland modulated by ENSO. Sci. Rep. 2021, 11, 10137. [Google Scholar] [CrossRef] [PubMed]
- Herzschuh, U.; Cao, X.; Laepple, T.; Dallmeyer, A.; Telford, R.J.; Ni, J.; Chen, F.; Kong, Z.; Liu, G.; Liu, K.-B. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 2019, 10, 2376. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, J.; Lu, X.; Gong, C.; Zhang, L.; Liao, H. Impact of western Pacific subtropical high on ozone pollution over eastern China. Atmos. Chem. Phys. 2021, 21, 2601–2613. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Lin, Y.; Fei, R.; Gao, J. Effects of terrain and landmass near Fujian Province of China on the structure and propagation of a long-lived rainband in Typhoon Longwang (2005): A numerical study. J. Geophys. Res. Atmos. 2020, 125, e2020JD033393. [Google Scholar] [CrossRef]
- Luo, T.; Zhang, T.; Wang, Z.; Gan, Y. Driving forces of landscape fragmentation due to urban transportation networks: Lessons from Fujian, China. J. Urban Plan. Dev. 2016, 142, 04015013. [Google Scholar] [CrossRef]
- Ge, C.; Liu, J.; Cheng, X.; Fang, K.; Chen, Z.; Chen, Z.; Hu, J.; Jiang, D.; Shen, L.; Yang, M. Impact of regional transport on high ozone episodes in southeast coastal regions of China. Atmos. Pollut. Res. 2022, 13, 101497. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos. 2001, 106, 23073–23095. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Liu, J.; Shen, L.; Cheng, X.; Han, H.; Yang, M.; Shen, Y.; Zhao, T.; Hu, J. Distinct seasonality in vertical variations of tropospheric ozone over coastal regions of southern China. Sci. Total Environ. 2023, 874, 162423. [Google Scholar] [CrossRef]
- Liu, J.J.; Jones, D.B.; Worden, J.R.; Noone, D.; Parrington, M.; Kar, J. Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. J. Geophys. Res. Atmos. 2009, 114, D05304. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Xie, M.; Fang, K.; Tarasick, D.W.; Wang, H.; Meng, L.; Cheng, X.; Han, H.; Zhang, X. ENSO teleconnection to interannual variability in carbon monoxide over the North Atlantic European region in spring. Front. Environ. Sci. 2022, 10, 1027. [Google Scholar] [CrossRef]
- Lin, J.; McElroy, M.B. Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing. Atmos. Environ. 2010, 44, 1726–1739. [Google Scholar]
- Keller, C.A.; Long, M.S.; Yantosca, R.M.; Da Silva, A.; Pawson, S.; Jacob, D.J. HEMCO v1. 0: A versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci. Model Dev. 2014, 7, 1409–1417. [Google Scholar] [CrossRef]
- Guenther, A.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.a.; Emmons, L.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Hudman, R.C.; Moore, N.E.; Mebust, A.K.; Martin, R.V.; Russell, A.R.; Valin, L.C.; Cohen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space based-constraints. Atmos. Chem. Phys. 2012, 12, 7779–7795. [Google Scholar] [CrossRef]
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.; Jin, Y.v.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Gong, C.; Liao, H. A typical weather pattern for ozone pollution events in North China. Atmos. Chem. Phys. 2019, 19, 13725–13740. [Google Scholar] [CrossRef]
- Ambade, B.; Sankar, T.K.; Kumar, A.; Sethi, S.S. Characterization of PAHs and n-Alkanes in atmospheric aerosol of Jamshedpur city, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020003. [Google Scholar] [CrossRef]
- Hussain, A.J.; Sankar, T.K.; Vithanage, M.; Ambade, B.; Gautam, S. Black Carbon emissions from traffic contribute sustainability to air pollution in urban cities of India. Water Air Soil Pollut. 2023, 234, 217. [Google Scholar] [CrossRef]
- Ambade, B. Characterization of PM10 over urban and rural sites of Rajnandgaon, central India. Nat. Hazard. 2015, 80, 589–604. [Google Scholar] [CrossRef]
- Lv, M.; Li, Z.; Jiang, Q.; Chen, T.; Wang, Y.; Hu, A.; Cribb, M.; Cai, A. Contrasting trends of surface PM2.5, O3, and NO2 and their relationships with meteorological parameters in typical coastal and inland cities in the Yangtze River Delta. Int. J. Environ. Res. Public Health 2021, 18, 12471. [Google Scholar] [CrossRef] [PubMed]
Wind Direction | O3 (μg/m3) | ΔO3 (μg/m3) | T (°C) | RH (%) | Precipitation (mm/h) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Coastal | Inland | Coastal | Inland | Coastal | Inland | Coastal | Inland | Coastal | Inland | |
Northeasterly (0°–90°) | 78.1 | 64.9 | 0.4 | 0.7 | 21.8 | 21.5 | 66.0 | 67.2 | 0.2 | 0.2 |
Southeasterly (90°–180°) | 83.5 | 65.7 | 5.0 | 2.2 | 24.7 | 24.3 | 69.5 | 66.2 | 0.1 | 0.2 |
Southwesterly (180°–270°) | 67.4 | 64.8 | −4.8 | −0.1 | 26.1 | 25.1 | 71.0 | 65.3 | 0.2 | 0.2 |
Northwesterly (270°–360°) | 57.9 | 62.2 | −6.4 | −1.8 | 21.7 | 22.2 | 71.6 | 67.2 | 0.3 | 0.3 |
Wind Direction | O3 (μg/m3) | ΔO3 (μg/m3) | NO2 (μg/m3) | ΔNO2 (μg/m3) | ||||
---|---|---|---|---|---|---|---|---|
Coastal | Inland | Coastal | Inland | Coastal | Inland | Coastal | Inland | |
Northeasterly (0°–90°) | 62.8 | 37.5 | 6.6 | 3.7 | 18.1 | 18.3 | −3.0 | −2.3 |
Southeasterly (90°–180°) | 51.5 | 32.3 | 0.4 | −0.6 | 21.1 | 23.0 | −0.5 | 1.7 |
Southwesterly (180°–270°) | 38.7 | 29.8 | −8.4 | −1.5 | 24.2 | 22.6 | 2.8 | 0.7 |
Northwesterly (270°–360°) | 47.4 | 32.6 | −1.4 | −1.1 | 22.5 | 21.6 | 1.4 | −0.1 |
Wind Direction | ΔTotal O3 Budget (kg/s) | ΔO3 (μg/m3) | ΔC-Term (kg/s) | ΔT-Term (kg/s) | ΔCMD-Term (kg/s) |
---|---|---|---|---|---|
Northeasterly (0°–90°) | −0.23 | −0.79 | −0.43 | 0.17 | 0.02 |
Southeasterly (90°–180°) | 0.39 | 5.57 | 0.46 | 0.08 | −0.15 |
Southwesterly (180°–270°) | 0.32 | −1.3 | 0.57 | −0.29 | 0.04 |
Northwesterly (270°–360°) | −0.23 | −0.76 | −0.04 | −0.24 | 0.04 |
Wind Direction | ΔTotal O3 Budget (kg/s) | ΔO3 (μg/m3) | ΔC-Term (kg/s) | ΔT-Term (kg/s) | ΔCMD-Term (kg/s) |
---|---|---|---|---|---|
Northeasterly (0°–90°) | 0.07 | 1.69 | −0.02 | 0.08 | 0.01 |
Southeasterly (90°–180°) | −0.23 | 0.50 | −0.06 | −0.13 | −0.04 |
Southwesterly (180°–270°) | −0.07 | −4.47 | 0.05 | −0.17 | 0.05 |
Northwesterly (270°–360°) | 0.03 | −0.66 | 0.06 | 0.07 | −0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Liu, J.; Chen, Z.; Yang, M.; Shu, L.; Gai, C.; Jiang, Y. Influence of Wind Flows on Surface O3 Variation over a Coastal Province in Southeast China. Atmosphere 2024, 15, 262. https://doi.org/10.3390/atmos15030262
Shen Y, Liu J, Chen Z, Yang M, Shu L, Gai C, Jiang Y. Influence of Wind Flows on Surface O3 Variation over a Coastal Province in Southeast China. Atmosphere. 2024; 15(3):262. https://doi.org/10.3390/atmos15030262
Chicago/Turabian StyleShen, Yukun, Jane Liu, Zhixiong Chen, Mengmiao Yang, Lei Shu, Chende Gai, and Yongcheng Jiang. 2024. "Influence of Wind Flows on Surface O3 Variation over a Coastal Province in Southeast China" Atmosphere 15, no. 3: 262. https://doi.org/10.3390/atmos15030262
APA StyleShen, Y., Liu, J., Chen, Z., Yang, M., Shu, L., Gai, C., & Jiang, Y. (2024). Influence of Wind Flows on Surface O3 Variation over a Coastal Province in Southeast China. Atmosphere, 15(3), 262. https://doi.org/10.3390/atmos15030262