Determination of Hygroscopic Aerosol Growth Based on the OPC-N3 Counter
Abstract
:1. Introduction
2. Instruments
2.1. OPC-N3
2.2. ACS 1000
2.3. LAS
2.4. GIOŚ
2.5. MERRA-2
2.6. HYSPLIT
3. Methods
3.1. Data Acquisition
3.2. Data Calibration
3.3. -Köhler Theory
4. Results
4.1. Half Year Variability
4.2. Diurnal Variation
- for between time slot 18–21 and 3–6, 6–9, 9–12, with a difference of above 0.01 (p < 0.05),
- for between time slot 3–6 and 15–18, 18–21, 21–00, 00–03, with a difference of above 0.01 (p < 0.05),
- for between time slot 18–21 and 3–6, 9–12, with an average difference of 0.03 (p < 0.05),
- for between time slot 9–12 and 15–18, 18–21, with an average difference of 0.07 (p < 0.05).
- for between time slot 12–15 and 18–21, 21–00, with an average difference of 0.05 (p < 0.05),
- for between time slot 18–21 and 9–12, 12–15 with an average difference of 0.05 (p < 0.05),
4.3. Case Study
4.3.1. Winter 2021/2022 (15 December 2021–31 January 2022)
4.3.2. Spring 2020 (28 April–5 May, 16 May–24 May)
5. Calibrating OPC
6. Summary of the Results
- the hygroscopicity parameter () for PM during winter (December–March) is below 0.05. These periods were when pollution was high (PM and PM WHO norms were exceeded). This is likely that the air pollution consists mostly of soot, from home heating systems, which is non-hygroscopic.
- During winter there are events when the hygroscopicity of PM is low and the hygroscopicity of PM is high up to 1. These events are probably associated with fast flow of air masses from the North Atlantic Ocean during low pressure circumstances. The PM mass in more than consists of sea salt particles.
- There is a dependence of on the time of day. During the sun’s operating hours, the values of are statistically higher than in the evening/night.
- During the New Year’s Eve midnight (when the fireworks are shoot) the parameter for PM, PM and PM raised from values 0.05, 0.08, 0.09 to 0.09, 0.12 and 0.14 respectively. We did not observe higher values of during fireworks shooting.
- The data can be corrected using , however appointing the appropriate kappa for corrections is difficult.
- If one suspect that the aerosol may be hygroscopic, it is worth taking into account the kappa correction, because PM values registered at high RH with respect to those measured in RH may differ more than twice.
- The RH for correction should be taken from a device different from OPC-N3. The RH values from OPC-N3 are significantly lower than ambient and cannot be easily corrected, as the black OPC-N3 body absorbs sun light, changing the amount of bias.
- For cases when is small (for example for winter) registering PM at ambient RH causes a small error up to 10%.
- We do not recommend using PM values from OPC-N3 for ambient RH above without any correction.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS 1000 | Acoem Aerosol Conditioning System |
AOD | aerosol optical depth |
BC | Black carbon |
DRH | Deliquescent point |
DU | Dust |
ERH | Efflorescence point |
F | F-test (statistics) |
GF | Growth factor |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory model |
Dimensionless parameter proposed by Crilley et al. [21] | |
IPCC | Intergovernmental Panel on Climate Change |
LAS | Laser Aerosol Spectrometer |
MERRA-2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 |
OC | Organic carbon |
OPC-N3 | Low-cost optical particle counter developed by Alphasense Ltd. |
p | p-value (statistics) or pressure [hPa] |
PM, PM, PM | Particulate matter of diameter less than or equal to |
1 m, 2.5 m and 10 m, respectively | |
PNC | particle number concentration |
Effective radius | |
RH | Relative humidity [%] |
RH | Minimum relative humidity possible to achive with ACS 1000 system |
RH | Maximum relative humidity possible to achive with ACS 1000 system |
water density 1.0 [g ·cm] | |
internal aerosol density parameter set in OPC-N3 sensors at 1.65 [g ·cm] | |
RTL | Radiative Transfer Labolatory, Geophysic Insitute, Faculty of Physics, |
University of Warsaw | |
SE | Standard error |
SU | Sulfate aerosol |
SS | Sea salt |
T | Temperature [°C] |
UAV | Unmanned aerial vehicle |
V | Wind [km·h] |
Appendix A. GIOŚ Station Ave. Niepodległości, Warsaw, NOx
Appendix B. OPC-N3 Calibration
Period | Calibration | a ± SE ∗ 10−2 | b ± SE ∗ 10−2 |
---|---|---|---|
nr | for | ||
1 | PM | 0.64 ± 0.11 | −0.12 ± 1.03 |
PM | 0.67 ± 0.17 | 0.03 ± 2.00 | |
PM | 0.57 ± 0.44 | 0.89 ± 6.88 | |
2 | PM | 0.85 ± 0.10 | 0.20 ± 0.50 |
PM | 0.82 ± 0.13 | 0.29 ± 0.81 | |
PM | 0.79 ± 0.27 | 0.47 ± 1.80 | |
3 | PM | 0.88 ± 0.05 | 0.4 ± 0.57 |
PM | 0.86 ± 0.06 | 0.6 ± 0.79 | |
PM | 0.84 ± 0.10 | 0.82 ± 1.39 | |
4 | PM | 0.40 ± 0.12 | 0.03 ± 0.18 |
PM | 0.43 ± 0.31 | 0.18 ± 0.78 | |
PM | 0.24 ± 0.71 | 1.52 ± 3.31 | |
5 | PM | 1.22 ± 0.08 | 0.09 ± 0.36 |
PM | 1.09 ± 0.09 | 0.17 ± 0.51 | |
PM | 1.00 ± 0.15 | 0.45 ± 0.89 | |
6 | PM | 1.24 ± 0.05 | −0.06 ± 0.12 |
PM | 1.11 ± 0.09 | −0.09 ± 0.27 | |
PM | 0.81 ± 0.19 | 0.61 ± 0.74 | |
7 | PM | 1.23 ± 0.12 | 0.01 ± 0.39 |
PM | 1.13 ± 0.16 | −0.01 ± 0.63 | |
PM | 0.75 ± 0.42 | 1.18 ± 2.12 |
Appendix C. Winter 2021–2022
0.19 | 0.31 | 0.25 | 0.25 | 0.40 | 0.28 | |
GF MERRA-2 | 0.14 | 0.23 | 0.34 | 0.16 | 0.24 | 0.28 |
GF MERRA-2 | −0.01 | 0.27 | 0.42 | 0.05 | 0.30 | 0.40 |
dist sea 24 h | 0.18 | 0.24 | 0.32 | 0.18 | 0.24 | 0.34 |
dist sea 48 h | 0.15 | 0.28 | 0.39 | 0.16 | 0.31 | 0.39 |
% SS | −0.01 | 0.26 | 0.41 | 0.04 | 0.29 | 0.39 |
T | 0.56 | 0.35 | 0.49 | 0.48 | 0.39 | 0.34 |
p | 0.06 | 0.16 | 0.25 | 0.04 | 0.21 | 0.33 |
RH | 0.27 | −0.06 | −0.01 | 0.18 | −0.03 | −0.14 |
V | 0.35 | 0.16 | 0.09 | 0.34 | 0.15 | −0.03 |
0.53 | 0.33 | 0.36 | 0.51 | 0.35 | 0.17 | |
GF | GF | GF | ||||
statistically insignificant | ||||||
0.0 ≤ |r| ≤ 0.2—no correlation | ||||||
0.2 < |r| ≤ 0.4—weak correlation | ||||||
0.4 < |r| ≤ 0.7—medium correclation | ||||||
0.7 < |r| ≤ 0.9—high correlation | ||||||
0.9 < |r| ≤ 1.0—very high correlation |
Appendix D. Spring 2020
Appendix E. OPC-N3 Correction
Particulate Matter | = 0.01 | Day: 27 December 2020 | ||||||
---|---|---|---|---|---|---|---|---|
RH | PM | PM | ESTIMATED Value Using | |||||
Measured Value | Measured Value | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | ||
60 % | [g·m] | 4.20 | 4.11 | 4.07 | 3.96 | 3.85 | 3.75 | 3.65 |
[%] | 2 | −1 | −4 | −6 | −9 | −11 | ||
65 % | [g·m] | 4.29 | 4.11 | 4.15 | 4.01 | 3.89 | 3.77 | 3.66 |
[%] | 4 | 1 | −2 | −6 | −8 | −11 | ||
70 % | [g·m] | 4.41 | 4.17 | 4.23 | 4.07 | 3.91 | 3.77 | 3.64 |
[%] | 6 | 2 | −2 | −6 | −9 | −13 | ||
75 % | [g·m] | 4.44 | 4.13 | 4.22 | 4.02 | 3.84 | 3.67 | 3.52 |
[%] | 8 | 2 | −3 | −7 | −11 | −15 | ||
80 % | [g·m] | 4.51 | 4.24 | 4.27 | 4.06 | 3.87 | 3.69 | 3.53 |
[%] | 6 | 1 | −4 | −9 | −13 | −17 | ||
85 % | [g·m] | 4.53 | 4.24 | 4.28 | 4.05 | 3.84 | 3.65 | 3.48 |
[%] | 7 | 1 | −5 | −9 | −14 | −18 | ||
90 % | [g·m] | - | - | - | - | - | - | - |
[%] | - | - | - | - | - | - | - | |
Particulate Matter | = 0.13 | Day: 29 March 2020 | ||||||
RH | PM | PM | ESTIMATED value using | |||||
Measured value | Measured value | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | ||
60 % | [g·m] | 15.60 | 14.88 | 14.91 | 14.27 | 13.69 | 13.15 | 12.65 |
[%] | 5 | 0 | −4 | −8 | −12 | −15 | ||
65 % | [g·m] | 16.00 | 14.96 | 15.12 | 14.34 | 13.63 | 12.99 | 12.41 |
[%] | 7 | 1 | −4 | −9 | −13 | −17 | ||
70 % | [g·m] | 13.96 | 12.57 | 13.02 | 12.20 | 11.48 | 10.83 | 10.26 |
[%] | 11 | 4 | −3 | −9 | −14 | −18 | ||
75 % | [g·m] | 15.22 | 12.76 | 13.90 | 12.79 | 11.84 | 11.03 | 10.32 |
[%] | 19 | 9 | 0 | −7 | −14 | −19 | ||
80 % | [g·m] | 16.48 | 13.18 | 14.72 | 13.31 | 12.14 | 11.17 | 10.34 |
[%] | 25 | 12 | 1 | −8 | −15 | −22 | ||
85 % | [g·m] | 19.01 | 13.06 | 16.03 | 13.86 | 12.21 | 10.91 | 9.86 |
[%] | 46 | 23 | 6 | −7 | −16 | −25 | ||
90 % | [g·m] | 22.62 | 14.02 | 18.31 | 15.37 | 13.25 | 11.64 | 10.38 |
[%] | 61 | 31 | 10 | −6 | −17 | −26 | ||
Particulate Matter | = 0.20 | Day: 4 May 2020 | ||||||
RH | PM | PM | ESTIMATED value using | |||||
Measured value | Measured value | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | ||
60 % | [g·m] | 2.05 | 1.90 | 1.96 | 1.87 | 1.79 | 1.72 | 1.66 |
[%] | 8 | 3 | −2 | −6 | −9 | −13 | ||
65 % | [g·m] | 2.87 | 2.53 | 2.72 | 2.59 | 2.46 | 2.35 | 2.25 |
[%] | 14 | 8 | 2 | −3 | −7 | −11 | ||
70 % | [g·m] | 2.87 | 2.32 | 2.68 | 2.52 | 2.37 | 2.24 | 2.13 |
[%] | 24 | 16 | 9 | 2 | −3 | −8 | ||
75 % | [g·m] | 3.81 | 2.83 | 3.48 | 3.20 | 2.96 | 2.76 | 2.58 |
[%] | 35 | 23 | 13 | 5 | −2 | −9 | ||
80 % | [g·m] | 4.15 | 2.76 | 3.69 | 3.31 | 3.01 | 2.76 | 2.54 |
[%] | 51 | 34 | 20 | 9 | 0 | −8 | ||
85 % | [g·m] | 4.92 | 2.60 | 4.13 | 3.56 | 3.13 | 2.79 | 2.52 |
[%] | 89 | 59 | 37 | 20 | 7 | −3 | ||
90 % | [g·m] | 5.73 | 2.62 | 4.59 | 3.83 | 3.28 | 2.88 | 2.56 |
[%] | 119 | 75 | 46 | 25 | 10 | −2 |
References
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Book Section SPM; pp. 1–30. [Google Scholar] [CrossRef]
- Laden, F.; Neas, L.; Dockery, D.; Schwartz, J. Association of Fine Particulate Matter from Different Sources with Daily Mortality in Six U.S. Cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, K. Short-term impact of PM2.5, PM10, and PMc on mortality and morbidity in the agglomeration of Warsaw, Poland. Air Qual. Atmos. Health 2020, 13, 659–672. [Google Scholar] [CrossRef]
- European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L152, 1–44. [Google Scholar]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. 2006. Available online: https://apps.who.int/iris/handle/10665/69477 (accessed on 13 November 2023).
- European Environment Agency. Air Quality in Europe — 2020 Report No 9/2020; Technical Report; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- WMO/GAW. Aerosol Measurement Procedures Guidelines and Recommendations; World Meteorological Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Zieger, P.; Fierz-Schmidhauser, R.; Gysel, M.; Ström, J.; Henne, S.; Yttri, K.E.; Baltensperger, U.; Weingartner, E. Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. 2010, 10, 3875–3890. [Google Scholar] [CrossRef]
- Zieger, P.; Väisänen, O.; Corbin, J.; Partridge, D.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U.; Leck, C.; et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 2017, 8, 15883. [Google Scholar] [CrossRef] [PubMed]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Moore, R.H.; Ziemba, L.D.; Dutcher, D.; Beyersdorf, A.J.; Chan, K.; Crumeyrolle, S.; Raymond, T.M.; Thornhill, K.L.; Winstead, E.L.; Anderson, B.E. Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator. Aerosol Sci. Technol. 2014, 48, 467–479. [Google Scholar] [CrossRef]
- Titos, G.; Cazorla, A.; Zieger, P.; Andrews, E.; Lyamani, H.; Granados-Muñoz, M.i.; Olmo, F.; Arboledas, L. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmos. Environ. 2016, 141, 494–507. [Google Scholar] [CrossRef]
- Vlasenko, S.S.; Su, H.; Pöschl, U.; Andreae, M.O.; Mikhailov, E.F. Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties. Atmos. Meas. Tech. 2017, 10, 1269–1280. [Google Scholar] [CrossRef]
- Wise, M.E.; Martin, S.T.; Russell, L.M.; Buseck, P.R. Water Uptake by NaCl Particles Prior to Deliquescence and the Phase Rule. Aerosol Sci. Technol. 2008, 42, 281–294. [Google Scholar] [CrossRef]
- Nurowska, K.; Mohammadi, M.; Malinowski, S.; Markowicz, K. Applicability of the low-cost OPC-N3 optical particle counter for microphysical measurements of fog. Atmos. Meas. Tech. 2023, 16, 2415–2430. [Google Scholar] [CrossRef]
- Kaur, K.; Kelly, K.E. Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah. Atmos. Meas. Tech. 2023, 16, 2455–2470. [Google Scholar] [CrossRef]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016, 50, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Samad, A.; Melchor Mimiaga, F.E.; Laquai, B.; Vogt, U. Investigating a Low-Cost Dryer Designed for Low-Cost PM Sensors Measuring Ambient Air Quality. Sensors 2021, 21, 804. [Google Scholar] [CrossRef]
- Sousan, S.; Regmi, S.; Park, Y.M. Laboratory Evaluation of Low-Cost Optical Particle Counters for Environmental and Occupational Exposures. Sensors 2021, 21, 4146. [Google Scholar] [CrossRef]
- Dubey, R.; Patra, A.K.; Joshi, J.; Blankenberg, D.; Kolluru, S.S.R.; Madhu, B.; Raval, S. Evaluation of low-cost particulate matter sensors OPC N2 and PM Nova for aerosol monitoring. Atmos. Pollut. Res. 2022, 13, 101335. [Google Scholar] [CrossRef]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef]
- Bílek, J.; Bílek, O.; Maršolek, P.; Buček, P. Ambient Air Quality Measurement with Low-Cost Optical and Electrochemical Sensors: An Evaluation of Continuous Year-Long Operation. Environments 2021, 8, 114. [Google Scholar] [CrossRef]
- Dubey, R.; Patra, A.K.; Joshi, J.; Blankenberg, D.; Nazneen. Evaluation of vertical and horizontal distribution of particulate matter near an urban roadway using an unmanned aerial vehicle. Sci. Total Environ. 2022, 836, 155600. [Google Scholar] [CrossRef]
- Hagan, D.H.; Kroll, J.H. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 2020, 13, 6343–6355. [Google Scholar] [CrossRef]
- Air Quality Portal of the Chief Inspectorate of Environmental Protection— Measurement Data Archives. Available online: https://powietrze.gios.gov.pl/pjp/current/station_details/archive/530?lang=en (accessed on 5 September 2023).
- Global Modeling and Assimilation Office. MERRA2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Aerosol Diagnostics, Version 5.12.4. 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2T1NXAER_5.12.4/summary (accessed on 31 August 2023).
- MERRA-2 Frequently Asked Questions. Available online: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/FAQ/ (accessed on 5 September 2023).
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Seber, G.; Wild, C. Nonlinear Regression; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Lundgren, D.A. Atmospheric Aerosol Composition and Concentration as a Function of Particle Size and of Time. J. Air Pollut. Control. Assoc. 1970, 20, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Klejnowski, R.; Olędzki, R.; Ostrowski, M. Weatherman Commentary. Available online: https://meteo.icm.edu.pl/komentarze (accessed on 5 September 2023).
- Weather Service of the Polish Institute of Meteorology and Water Management—National Research Institute. Available online: http://meteo.imgw.pl/ (accessed on 5 September 2023).
- Natural Earth-Free Vector and Raster Map Data. Available online: https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-ocean/ (accessed on 5 September 2023).
- ten Brink, H.; Henzing, B.; Otjes, R.; Weijers, E. Visibility in the Netherlands during New Year’s fireworks: The role of soot and salty aerosol products. Atmos. Environ. 2018, 173, 289–294. [Google Scholar] [CrossRef]
- Drewnick, F.; Hings, S.S.; Curtius, J.; Eerdekens, G.; Williams, J. Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany. Atmos. Environ. 2006, 40, 4316–4327. [Google Scholar] [CrossRef]
RH [%] | 0 | 50 | 70 | 80 | 90 | 95 | 99 |
---|---|---|---|---|---|---|---|
GF | 1.0 | 1.4 | 1.5 | 1.6 | 1.8 | 1.9 | 2.2 |
GF | 1.0 | 1.2 | 1.4 | 1.5 | 1.6 | 1.8 | 2.2 |
GF | 1.0 | 1.0 | 1.0 | 1.2 | 1.3 | 1.5 | 1.8 |
GF | 1.0 | 1.6 | 1.8 | 2.0 | 2.4 | 2.9 | 4.8 |
Period | Calibration Performed | Begining | Ending |
---|---|---|---|
nr | for RH [%] Below: | [YYYY.MM.DD] | [YYYY.MM.DD] |
1 | 60 | 2020.03.26 | 2020.05.23 |
2 | 55 | 2020.12.17 | 2021.01.05 |
3 | 50 | 2021.01.06 | 2021.01.17 |
4 | 60 | 2021.06.04 | 2021.06.13 |
5 | 50 | 2021.12.16 | 2022.01.20 |
6 | 50 | 2022.01.20 | 2022.02.28 |
7 | 50 | 2022.03.01 | 2022.03.15 |
1.00 | ||||||
0.78 | 1.00 | |||||
0.38 | 0.63 | 1.00 | ||||
0.98 | 0.76 | 0.36 | 1.00 | |||
0.77 | 0.97 | 0.61 | 0.77 | 1.00 | ||
0.39 | 0.62 | 0.89 | 0.38 | 0.62 | 1.00 | |
0.9 < |r| ≤ 1.0—very high correlation | ||||||
0.7 < |r| ≤ 0.9—high correlation | ||||||
0.4 < |r| ≤ 0.7—medium correlation | ||||||
0.2 < |r| ≤ 0.4—weak correlation | ||||||
0.0 ≤ |r| ≤ 0.2—no correlation |
Season | Year | |||
---|---|---|---|---|
winter (January–March) | 2020 | 0.04 ± 0.04 | 0.05 ± 0.05 | 0.06 ± 0.07 |
2021 | 0.04 ± 0.03 | 0.05 ± 0.07 | 0.08 ± 0.13 | |
2022 | 0.04 ± 0.05 | 0.07 ± 0.08 | 0.16 ± 0.20 | |
Over all years | 0.04 ± 0.04 | 0.06 ± 0.07 | 0.12 ± 0.17 | |
spring (April–July) | 2020 | 0.14 ± 0.15 | 0.15 ± 0.15 | 0.15 ± 0.15 |
2021 | 0.11 ± 0.09 | 0.09 ± 0.09 | 0.09 ± 0.09 | |
2022 | ||||
Over all years | 0.13 ± 0.13 | 0.13 ± 0.13 | 0.13 ± 0.13 | |
Season | Year | GF | GF | GF |
winter (January–March) | 2020 | 1.16 ± 0.15 | 1.19 ± 0.16 | 1.22 ± 0.29 |
2021 | 1.14 ± 0.12 | 1.21 ± 0.26 | 1.35 ± 0.63 | |
2022 | 1.16 ± 0.13 | 1.30 ± 0.30 | 1.71 ± 0.87 | |
Over all years | 1.16 ± 0.13 | 1.25 ± 0.27 | 1.51 ± 0.76 | |
spring (April–July) | 2020 | 1.58 ± 0.26 | 1.63 ± 0.26 | 1.63 ± 0.26 |
2021 | 1.43 ± 0.14 | 1.38 ± 0.14 | 1.38 ± 0.14 | |
2022 | ||||
Over all years | 1.52 ± 0.23 | 1.53 ± 0.23 | 1.53 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurowska, K.; Markowicz, K.M. Determination of Hygroscopic Aerosol Growth Based on the OPC-N3 Counter. Atmosphere 2024, 15, 61. https://doi.org/10.3390/atmos15010061
Nurowska K, Markowicz KM. Determination of Hygroscopic Aerosol Growth Based on the OPC-N3 Counter. Atmosphere. 2024; 15(1):61. https://doi.org/10.3390/atmos15010061
Chicago/Turabian StyleNurowska, Katarzyna, and Krzysztof M. Markowicz. 2024. "Determination of Hygroscopic Aerosol Growth Based on the OPC-N3 Counter" Atmosphere 15, no. 1: 61. https://doi.org/10.3390/atmos15010061
APA StyleNurowska, K., & Markowicz, K. M. (2024). Determination of Hygroscopic Aerosol Growth Based on the OPC-N3 Counter. Atmosphere, 15(1), 61. https://doi.org/10.3390/atmos15010061