High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Preprocessing
2.2.1. AHI Bright Temperature Data
2.2.2. Meteorological Data
2.2.3. Ground-Based Station Data
2.2.4. Data Preprocessing
2.3. Models
2.4. Model Evaluation
3. Results and Discussion
3.1. Feature Evaluation
3.2. Performance Analysis of Models
3.3. Discussion of Spatiotemporal Distribution of O3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kokhanovsky, A.; Iodice, F.; Lelli l Zschaege, A.; Quattro, N.; Gasbarra, D.; Retscher, C. Retrieval of Total Ozone Column Using High Spatial Resolution Top-of-Atmosphere Measurements by OLCI/S-3 in the Ozone Chappuis Absorption Band over Bright Underlying Surfaces. J. Quant. Spectrosc. Radiat. Transf. 2021, 276, 107903. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F. Rapid Increases in Tropospheric Ozone Production and Export from China. Nat. Geosci. 2015, 8, 690–695. [Google Scholar] [CrossRef]
- Fishman, J.; Ramanathan, V.; Crutzen, P.J.; Liu, S.C. Tropospheric Ozone and Climate. Nature 1979, 282, 818–820. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.G.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The Association between Lung Cancer Incidence and Ambient Air Pollution in China: A Spatiotemporal Analysis. Environ. Res. 2016, 144, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ke, L.; Ma, X.; Di, Q. Impact of Ground-Level Ozone Exposure on Sleep Quality and Electroencephalogram Patterns at Different Time Scales. Environ. Res. 2023, 218, 115025. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Xue, B.; Lv, Z.; Meng, Z.; Yang, X.; Xue, T.; Yu, Q.; He, K. Ground-Level Ozone Pollution and Its Health Impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- The Ministry of Ecology and Environment of the People’s Republic of China. Report on China’s Ecological and Environmental Status in 2021; The Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021. [Google Scholar]
- Chen, J.; Shen, H.; Li, X.; Li, T.; Wei, Y. Ground-Level Ozone Estimation Based on Geo-Intelligent Machine Learning by Fusing in-Situ Observations, Remote Sensing Data, and Model Simulation Data. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102955. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Bi, J.; Liu, Y. A Machine Learning Model to Estimate Ground-Level Ozone Concentrations in California Using TROPOMI Data and High-Resolution Meteorology. Environ. Int. 2022, 158, 106917. [Google Scholar] [CrossRef]
- Wang, H.-W.; Li, X.-B.; Wang, D.; Zhao, J.; He, H.; Peng, Z.-R. Regional Prediction of Ground-Level Ozone Using a Hybrid Sequence-to-Sequence Deep Learning Approach. J. Clean. Prod. 2020, 253, 119841. [Google Scholar] [CrossRef]
- Kim, S.-W.; Yoon, S.-C.; Won, J.-G.; Choi, S.-C. Ground-Based Remote Sensing Measurements of Aerosol and Ozone in an Urban Area: A Case Study of Mixing Height Evolution and Its Effect on Ground-Level Ozone Concentrations. Atmos. Environ. 2007, 41, 7069–7081. [Google Scholar] [CrossRef]
- He, S.; Dong, H.; Zhang, Z.; Yuan, Y. An Ensemble Model-Based Estimation of Nitrogen Dioxide in a Southeastern Coastal Region of China. Remote Sens. 2022, 14, 2807. [Google Scholar] [CrossRef]
- He, Q.; Ye, T.; Chen, X.; Dong, H.; Wang, W.; Liang, Y.; Li, Y. Full-Coverage Mapping High-Resolution Atmospheric CO2 Concentrations in China from 2015 to 2020: Spatiotemporal Variations and Coupled Trends with Particulate Pollution. J. Clean. Prod. 2023, 428, 139290. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Japan Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Boynard, A.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Turquety, S.; George, M.; Hadji-Lazaro, J.; Keim, C.; Meyer-Arnek, J. Measurements of Total and Tropospheric Ozone from IASI: Comparison with Correlative Satellite, Ground-Based and Ozonesonde Observations. Atmos. Chem. Phys. 2009, 9, 6255–6271. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of Atmospheric Composition Using the Thermal Infrared IASI/MetOp Sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef]
- Peng, Z.; Letu, H.; Wang, T.; Shi, C.; Zhao, C.; Tana, G.; Zhao, N.; Dai, T.; Tang, R.; Shang, H.; et al. Estimation of Shortwave Solar Radiation Using the Artificial Neural Network from Himawari-8 Satellite Imagery over China. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106672. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.; Huang, J.; Zhao, L.; Chen, R.; Song, Z.; Hu, J. Estimation of Near-Surface Ozone Concentration and Analysis of Main Weather Situation in China Based on Machine Learning Model and Himawari-8 TOAR Data. Sci. Total Environ. 2023, 864, 160928. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Zhu, L.; Zhang, L. Spatiotemporal Estimation of Hourly 2-Km Ground-Level Ozone over China Based on Himawari-8 Using a Self-Adaptive Geospatially Local Model. Geosci. Front. 2022, 13, 101286. [Google Scholar] [CrossRef]
- Shaohu, Z.; Xiaoyu, Y.; Zhengqiang, L.; Zhongting, W.; Yuhuan, Z.; Yu, W.; Chunyan, Z.; Pengfei, M. Advances of Ozone Satellite Remote Sensing in 60 Years. J. Remote Sens. 2022, 26, 817–833. [Google Scholar]
- Zhen, L.; Heng, D.; Zili, D.; Lan, L.; Sicong, H. Estimation of Near-Ground Ozone with High Spatio-Temporal Resolution in the Yangtze River Delta Region of China Based on a Temporally Ensemble Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7051–7061. [Google Scholar] [CrossRef]
- Henze, D.K.; Hakami, A.; Seinfeld, J.H. Development of the Adjoint of GEOS-Chem. Atmos. Chem. Phys. 2007, 7, 2413–2433. [Google Scholar] [CrossRef]
- Zhang, L.; Jacob, D.J.; Downey, N.V.; Wood, D.A.; Blewitt, D.; Carouge, C.C.; van Donkelaar, A.; Jones, D.B.; Murray, L.T.; Wang, Y. Improved Estimate of the Policy-Relevant Background Ozone in the United States Using the GEOS-Chem Global Model with 1/2× 2/3 Horizontal Resolution over North America. Atmos. Environ. 2011, 45, 6769–6776. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Barth, M.; Emmons, L.; Carmichael, G.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S. Effect of Different Emission Inventories on Modeled Ozone and Carbon Monoxide in Southeast Asia. Atmos. Chem. Phys. 2014, 14, 12983–13012. [Google Scholar] [CrossRef]
- Lee, G.; Lee, J.-H. Spatial Correlation Analysis Using the Indicators of the Anthropocene Focusing on Atmospheric Pollution: A Case Study of Seoul. Ecol. Indic. 2021, 125, 107535. [Google Scholar] [CrossRef]
- Duan, X.; Cao, N.; Wang, X.; Zhang, Y.; Liang, J.; Yang, S.; Song, X. Analysis of Near-Surface Ozone Concentrations in China in 2015. Environ. Sci. 2017, 38, 4976–4982. [Google Scholar]
- Gogeri, I.; Gouda, K.C.; Aruna, S.T. Spatio-Temporal Analysis of Air Pollution Dynamics over Bangalore City during Second Wave of COVID-19. Nat. Hazards Res. 2023. [Google Scholar] [CrossRef]
- Kerckhoffs, J.; Wang, M.; Meliefste, K.; Malmqvist, E.; Fischer, P.; Janssen, N.A.; Beelen, R.; Hoek, G. A National Fine Spatial Scale Land-Use Regression Model for Ozone. Environ. Res. 2015, 140, 440–448. [Google Scholar] [CrossRef]
- Felder, M.; Sehnke, F.; Kaifel, A. Combined Ozone Retrieval from METOP Sensors Using META-Training of Deep Neural Networks. Proc. ESA Living Planet Symp. 2013, 722, 219. [Google Scholar]
- Zhan, Y.; Luo, Y.; Deng, X.; Grieneisen, M.L.; Zhang, M.; Di, B. Spatiotemporal Prediction of Daily Ambient Ozone Levels across China Using Random Forest for Human Exposure Assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Hongbo, F.; Li, J.; Zhao, Y.; Chen, J. Satellite-Based Estimation of Full-Coverage Ozone (O3) Concentration and Health Effect Assessment across Hainan Island. J. Clean. Prod. 2020, 244, 118773. [Google Scholar] [CrossRef]
- Li, Y.; Qin, K.; Li, D.; Pan, W.; He, Q. Estimation of Ground-Level Ozone Concentration Based on Gradient Boosting Regression Trees Algorithm. China Environ. Sci. 2020, 40, 997–1007. [Google Scholar]
- Li, Y. Remote Sensing Estimation of Ground-Level O3 Concentrations in China Based on Gradient Boosting Regression Trees. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2020. [Google Scholar]
- Zhao, N.; Lu, Y. Remote Estimation of Ground-Level Ozone Concentration Based on the XGBoost Algorithm. Acta Sci. Circumstantiae 2022, 42, 95–108. [Google Scholar]
- Jingping, W.; Xiaodan, W.; Dujuan, M.; Jianguang, W.; Qing, X. Machine Learning-Based Remote Sensing Inversion: Analysis of Uncertainty Factors. J. Remote Sens. 2023, 27, 790–801. [Google Scholar]
- Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of Biomass in Wheat Using Random Forest Regression Algorithm and Remote Sensing Data. Crop J. 2016, 4, 212–219. [Google Scholar]
- Yan, X.; Gou, X.; Yang, J.; Zhao, W.; Xu, Q.; Liu, Y. The Variety of Ozone and Its Relationship with Meteorological Conditions in Typical Cities in China. Plateau Meteorol. 2020, 39, 416–430. [Google Scholar]
- Liu, J.; He, C.; Zhao, S.; Zhu, J.; Wang, W.; Wang, L.; Wang, Y. Variations in Ozone Concentration in Seven Regions under Different Temperature and Humidity Conditions. Huanjing Kexue 2023, 44, 5392–5399. [Google Scholar]
- Chen, Z.; Li, R.; Chen, D.; Zhuang, Y.; Gao, B.; Yang, L.; Li, M. Understanding the Causal Influence of Major Meteorological Factors on Ground Ozone Concentrations across China. J. Clean. Prod. 2020, 242, 118498. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone Pollution in China: A Review of Concentrations, Meteorological Influences, Chemical Precursors, and Effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Y.; Huang, X.; Wang, Y.; Hu, B.; Zhang, Y.; Song, T.; Li, X.; Wu, S.; Li, Q.; et al. Aggravated Ozone Pollution in the Strong Free Convection Boundary Layer. Sci. Total Environ. 2021, 788, 147740. [Google Scholar] [CrossRef]
- Zang, X.; Lu, Y.; Yao, H.; Li, F.; Zhang, S. Study of the Spatiotemporal Distribution Characteristics of Major Atmospheric Pollutants in China. Ecol. Environ. Sci. 2015, 24, 1322. [Google Scholar]
- He, S.; Yuan, Y.; Wang, Z.; Luo, L.; Zhang, Z.; Dong, H.; Zhang, C. Machine Learning Model-Based Estimation of XCO2 with High Spatiotemporal Resolution in China. Atmosphere 2023, 14, 436. [Google Scholar] [CrossRef]
- Kou, W.; Gao, Y.; Zhang, S.; Cai, W.; Geng, G.; Davis, S.; Wang, H.; Guo, X.; Cheng, W.; Zeng, X.; et al. High downward surface solar radiation conducive to ozone pollution more frequent under global warming. Sci. Bull 2023, 68, 388–392. [Google Scholar] [CrossRef] [PubMed]
Data Source | Data Name | Spatial Resolution | Time Resolution |
---|---|---|---|
JAXA | AHI BT data | 0.02° × 0.02° | 10 min |
(band 10–band 16 except band 11) | |||
ERA5-Land | 2 m temperature (T2M) | 0.25° × 0.25° | 1 h |
2 m dewpoint temperature (D2M) | |||
The top-net solar radiation (TSR) | |||
The boundary layer height (BLH) | |||
The surface latent heat flux (SLHF) | |||
CNEMC | Ground-level station data | 1 h |
Model Name | R2 | RMSE | MAE |
---|---|---|---|
CatBoost | 0.8534 | 17.735 | 12.6594 |
XGBoost | 0.7947 | 20.987 | 15.4337 |
LGBM | 0.7872 | 21.367 | 15.8119 |
RF | 0.7424 | 23.510 | 17.3154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Dong, H.; Zhang, Z.; Quan, B.; Luo, L. High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning. Atmosphere 2024, 15, 34. https://doi.org/10.3390/atmos15010034
Chen J, Dong H, Zhang Z, Quan B, Luo L. High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning. Atmosphere. 2024; 15(1):34. https://doi.org/10.3390/atmos15010034
Chicago/Turabian StyleChen, Jiahuan, Heng Dong, Zili Zhang, Bingqian Quan, and Lan Luo. 2024. "High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning" Atmosphere 15, no. 1: 34. https://doi.org/10.3390/atmos15010034
APA StyleChen, J., Dong, H., Zhang, Z., Quan, B., & Luo, L. (2024). High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning. Atmosphere, 15(1), 34. https://doi.org/10.3390/atmos15010034