Refractivity Observations from Radar Phase Measurements: The 22 May 2002 Dryline Case during IHOP Project
Abstract
:1. Introduction
2. Study Site and Data Sources
2.1. Study Area
2.2. Data Sources
3. Radar Refractivity Algorithm
Theoretical Background
4. Results
4.1. Kriging Interpolated Radar Refractivity Observations during the IHOP_2002 Project: Performance Analysis
4.2. Kriging Interpolated Radar Refractivity Maps: The 22 May 2002 Dryline Evolution
5. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RMSE | Root Mean Square Error |
UTC | Universal Time Coordinated |
NCAR | National Center for Atmospheric Research |
ISFF | Integrated Surface Flux Facility |
AERI | Atmospheric Emitted Radiance Interferometer |
IHOP | International Project |
ECMWF | European Centre for Medium-Range Weather Forecast |
ERA5 | ECMWF reanalysis v5 |
NWP | Numerical Weather Prediction |
References
- Fujita, T. Structure and Movement of a Dry Front. Bull. Am. Meteorol. Soc. 1958, 39, 574–582. [Google Scholar] [CrossRef]
- Rhea, J.O. A Study of Thunderstorm Formation Along Dry Lines. J. Appl. Meteorol. Climatol. 1966, 5, 58–63. [Google Scholar] [CrossRef]
- Ziegler, C.L.; Rasmussen, E.N. The Initiation of Moist Convection at the Dryline: Forecasting Issues from a Case Study Perspective. Weather Forecast. 1998, 13, 1106–1131. [Google Scholar] [CrossRef]
- Ziegler, C.L.; Lee, T.J.; Pielke, R.A. Convective initiation at the dryline: A modeling study. Mon. Weather Rev. 1997, 125, 1001–1026. [Google Scholar] [CrossRef]
- Parsons, D.B.; Shapiro, M.A.; Miller, E. The Mesoscale Structure of a Nocturnal Dryline and of a Frontal–Dryline Merger. Mon. Weather Rev. 2000, 128, 3824–3838. [Google Scholar] [CrossRef]
- Crook, N.A. Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Weather Rev. 1996, 124, 1767–1785. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Wilson, J.W.; Wakimoto, R.M. Thermodynamic Variability within the Convective Boundary Layer due to Horizontal Convective Rolls. Mon. Weather Rev. 1996, 124, 769–784. [Google Scholar] [CrossRef]
- Sun, J. Convective-scale assimilation of radar data: Progress and challenges. Q. J. R. Meteorol. Soc. 2005, 131, 3439–3463. [Google Scholar] [CrossRef]
- Gasperoni, N.A.; Xue, M.; Palmer, R.D.; Gao, J. Sensitivity of Convective Initiation Prediction to Near-Surface Moisture When Assimilating Radar Refractivity: Impact Tests Using OSSEs. J. Atmos. Ocean. Technol. 2013, 30, 2281–2302. [Google Scholar] [CrossRef]
- Ciesielski, P.E.; Johnson, R.H.; Haertel, P.T.; Wang, J. Corrected TOGA COARE Sounding Humidity Data: Impact on Diagnosed Properties of Convection and Climate over the Warm Pool. J. Clim. 2003, 16, 2370–2384. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Sokolovskiy, S.V.; Anthes, R.A.; Vandenberghe, F. Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Ocean. Sci. 2000, 11, 157–186. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- UCAR/ATD. International H2O Project (IHOP_2002): Operations Plan. 2002. Available online: https://www.eol.ucar.edu/field_projects/ihop2002 (accessed on 12 December 2023).
- Weckwerth, T.M.; Parson, D.B.; Koch, S.E.; Moore, J.A.; LeMone, L.M.; Demoz, B.B.; Flamant, C.; Geerts, B.; Wang, J.; Feltz, W.F. An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Am. Meteorol. Soc. 2004, 85, 253–277. [Google Scholar] [CrossRef]
- Demoz, B.; Miller, D.; di Girolamo, P.; Whiteman, D.; Evans, K.; Flamant, C.; Geerts, B.; Weckwerth, T.; Starr, D.; Schwemmer, G.; et al. The 22 may Dryline in IHOP2002: The Role of Lidars in Quantifying the Convective Variability. In Proceedings of the 22nd Internation Laser Radar Conference (ILRC 2004), Matera, Italy, 12–16 July 2004; ESA Special Publication. Pappalardo, G., Amodeo, A., Eds.; Volume 561, p. 739. [Google Scholar]
- Demoz, B.B.; Flamant, C.; Weckwerth, T.M.; Whiteman, D.; Evans, K.; Fabry, F.; Girolamo, P.; Miller, D.; Geerts, B.; Brown, W.; et al. The Dryline on 22 May 2002 during IHOP_2002: Convective-Scale Measurements at the Profiling Site. Mon. Weather Rev. 2006, 134, 294–310. [Google Scholar] [CrossRef]
- Weldegaber, M.H.; Demoz, B.B.; Sparling, L.C.; Hoff, R.; Chiao, S. Observational analysis of moisture evolution and variability in the boundary layer during the dryline on 22 May 2002. Meteorol. Atmos. Phys. 2010, 110, 87–102. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Parsons, D.B. A review of Convection Initiation and Motivation for IHOP_2002. Mon. Weather Rev. 2006, 134, 5–22. [Google Scholar] [CrossRef]
- Wakimoto, R.M.; Murphey, H.V.; Browell, E.V.; Ismail, S. The Triple Point on 24 May 2002 during IHOP. Part I: Airborne Doppler and LASE Analyses of the Frontal Boundaries and Convection Initiation. Mon. Weather Rev. 2006, 134, 231–250. [Google Scholar] [CrossRef]
- Cai, H.; Lee, W.C.; Weckwerth, T.M.; Flamant, C.; Murphey, H.V. Observations of the 11 June Dryline during IHOP_2002—A Null Case for Convection Initiation. Mon. Weather Rev. 2006, 134, 336–354. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Pettet, C.R.; Fabry, F.; Park, S.; LeMone, M.A.; Wilson, J.W. Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteorol. 2005, 44, 285–300. [Google Scholar] [CrossRef]
- Weiss, C.C.; Bluestein, H.B.; Pazmany, A.L. Finescale Radar Observations of the 22 May 2002 Dryline during the International H2O Project (IHOP). Mon. Weather Rev. 2006, 134, 273–293. [Google Scholar] [CrossRef]
- Wakimoto, R.M.; Murphey, H.V. Frontal and Radar Refractivity Analyses of the Dryline on 11 June 2002 during IHOP. Mon. Weather Rev. 2010, 138, 228–241. [Google Scholar] [CrossRef]
- Fabry, F.; Frush, C.; Zawadzki, I.; Kilambi, A. On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Ocean. Technol. 1997, 14, 978–987. [Google Scholar] [CrossRef]
- Fabry, F. Meteorological Value of Ground Target Measurements. J. Atmos. Ocean. Technol. 2004, 21, 560–573. [Google Scholar] [CrossRef]
- Lutz, J.P.; Lewis, E.; Loew, E.; Randall, M.; Van Andel, J. NCAR SPol: Portable polarimetric S-Band radar. In Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation, Charlotte, NC, USA, 27–31 March 1995; pp. 408–410. [Google Scholar] [CrossRef]
- Fabry, F. The Spatial Variability of Moisture in the Boundary Layer and its Effect on Convection Initiation: Project-Long Characterization. Mon. Weather Rev. 2006, 134, 978–987. [Google Scholar] [CrossRef]
- Buban, M.S.; Ziegler, C.L.; Rasmussen, E.N.; Richardson, Y.P. The Dryline on 22 May 2002 during IHOP: Ground-Radar and In Situ Data Analyses of the Dryline and Boundary Layer Evolution. Mon. Weather Rev. 2007, 135, 2473–2505. [Google Scholar] [CrossRef]
- Roberts, R.D.; Fabry, F.; Kennedy, P.C.; Nelson, E.; Wilson, J.; Rehak, N.; Fritz, J.; Chandrasekar, V.; Braun, J.; Sun, J.; et al. REFRACTT_2006: Real-Time retrieval of high-resolution low-level moisture fields from operational NEXRAD and research radars. Bull. Am. Meteorol. Soc. 2008, 89, 1535–1548. [Google Scholar] [CrossRef]
- Bodine, D.; Heinselman, P.L.; Cheong, B.L.; Palmer, R.D.; Michaud, D. A Case Study on the Impact of Moisture Variability on Convection Initiation Using Radar Refractivity Retrievals. J. Appl. Meteorol. Climatol. 2010, 49, 1766–1778. [Google Scholar] [CrossRef]
- Besson, L.; Caumont, O.; Goulet, L.; Bastin, S.; Menut, L.; Bresson, E.; Fourrie, N.; Fabry, F.; Parent du Chatelet, J. Comparison of real-time refractivity measurements by radar with automatic weather stations, AROME-WMED and WRF forecast simulations during SOP1 of the HyMeX campaign. Q. J. R. Meteorol. Soc. 2016, 142, 138–152. [Google Scholar] [CrossRef]
- Feng, Y.C.; Hsu, H.W.; Weckwerth, T.M.; Lin, P.L.; Liou, Y.C.; Wang, T.C.C. The Spatiotemporal Characteristics of Near-Surface Water Vapor in a Coastal Region Revealed from Radar-Derived Refractivity. Mon. Weather Rev. 2021, 149, 2853–2873. [Google Scholar] [CrossRef]
- Park, S.; Fabry, F. Simulation and interpretation of the phase data used by radar refractivity retrieval algorithm. J. Atmos. Ocean. Technol. 2010, 27, 1286–1301. [Google Scholar] [CrossRef]
- Feng, Y.; Fabry, F.; Weckwerth, T.M. Improving Radar Refractivity Retrieval by considering the change in the Refractivity Profile and the Varying Altitudes of Ground Targets. J. Atmos. Ocean. Technol. 2016, 33, 989–1004. [Google Scholar] [CrossRef]
- Nocelo, R.; Santalla, V. High Temporal Resolution Refractivity Retrieval from Radar Phase Measurements. Remote Sens. 2018, 10, 896. [Google Scholar] [CrossRef]
- Nocelo López, R.; Sánchez-Rama, B.; Santalla del Río, V.; Barbosa, S.; Narciso, P.; Pérez-Santalla, R.; Pettazzi, A.; Pinto, P.; Salsón, S.; Viegas, T. Refractivity and Refractivity Gradient Estimation From Radar Phase Data: A Least Squares Based Approach. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5103214. [Google Scholar] [CrossRef]
- Sánchez-Rama, B.; Nocelo López, R.; Santalla Del Río, V.; Darlington, T. Radar-Based Refractivity Maps Using Geostatistical Interpolation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- UCAR/NCAR-Earth Observing Laboratory. S-Band/Ka-Band Polarimetric (S-PolKa) Data cfRadial Format, Version 1.0; UCAR/NCAR-Earth Observing Laboratory: Boulder, CO, USA, 1996; Retrieved 11 January 2015. [Google Scholar] [CrossRef]
- Bean, B.R.; Dutton, E.J. Radio Meteorology. Natl. Bur. Stand. Monogr. N. Y. Dover. 1968, 92, 435. [Google Scholar] [CrossRef]
- Feltz, W.F.; Howell, H.B.; Knuteson, R.O.; Woolf, H.M.; Revercomb, H.E. Near continuous profiling of temperature, moisture and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteorol. 2003, 42, 584–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Cheong, B.L.; Palmer, R.; Curtis, C.D.; Yu, T.Y.; Zrnic, D.S.; Forsyth, D. Refractivity Retrieval Using the Phased-Array Radar: First Results and Potential for Multimission Operation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2527–2537. [Google Scholar] [CrossRef]
- Chen, S.; Guo, J. Spatial interpolation techniques: Their applications in regionalizing climate-change series and associated accuracy evaluation in Northeast China. Geomat. Nat. Hazards Risk 2017, 8, 689–705. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Frequency | 2.8 GHz |
Wavelength | 10 cm |
Pulse-width | 0.994 s |
Pulse repetition frequency (PRF) | 960 Hz |
Range resolution | 150 m |
Beam width | 0.918 |
Scan-rate | 8.0/8.8/13.7/s |
Samples | 110/100/64 |
Scanning elevation angle | 0 |
Noise Power | −114 dBm |
Station | Longitude | Latitude | Altitude (m) | Distance (km) | Azimuth () |
---|---|---|---|---|---|
S-Pol Radar | 1004658 W | 363415 N | 875 | – | – |
S-Pol Surface | 1004958 W | 363419 N | 883 | 2.5 | 89.44 |
Verle | 1010350 W | 364304 N | 862 | 29.9 | 302.8 |
Lincoln | 1005801 W | 362114 N | 915 | 29.3 | 214.1 |
Rusty | 1011131 W | 362457 N | 922 | 40.43 | 244.5 |
Playhouse | 1005258 W | 363502 N | 876 | 9.05 | 278.3 |
Homestead | 1003621 W | 363328 N | 862 | 15.88 | 95.6 |
ISFF1 | 1003704 W | 362822 N | 872 | 18.33 | 126.5 |
ISFF2 | 1003737 W | 363719 N | 859 | 15.03 | 67.7 |
ISFF3 | 1003540 W | 365139 N | 780 | 36.37 | 27.5 |
Weather | RMSE | Bias | |
---|---|---|---|
Station | (N-Units) | (N-Units) | |
Verle | 4.51 | 0.96 | −0.24 |
Lincoln | 5.88 | 0.95 | 3.24 |
Rusty | 5.86 | 0.95 | 1.48 |
Playhouse | 4.39 | 0.97 | 1.52 |
Homestead | 3.99 | 0.97 | 1.20 |
S-Pol Surface | 5.99 | 0.95 | 3.38 |
ISFF1 | 4.52 | 0.97 | 2.87 |
ISFF2 | 2.92 | 0.98 | 0.70 |
ISFF3 | 4.56 | 0.96 | −0.89 |
Weather | RMSE | Bias | |
---|---|---|---|
Station | (N-Units) | (N-Units) | |
Verle | 4.20 | 0.99 | −3.67 |
Lincoln | 5.48 | 0.96 | −2.69 |
Rusty | 6.93 | 0.97 | −4.19 |
Playhouse | 3.57 | 0.99 | −2.34 |
Homestead | 3.18 | 0.96 | −0.87 |
S-Pol Surface | 4.06 | 0.98 | −2.48 |
ISFF1 | 2.69 | 0.97 | 0.68 |
ISFF2 | 3.93 | 0.98 | −2.48 |
ISFF3 | 6.13 | 0.97 | −4.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, R.N.; Rio, V.S.d.; Sánchez-Rama, B. Refractivity Observations from Radar Phase Measurements: The 22 May 2002 Dryline Case during IHOP Project. Atmosphere 2024, 15, 33. https://doi.org/10.3390/atmos15010033
López RN, Rio VSd, Sánchez-Rama B. Refractivity Observations from Radar Phase Measurements: The 22 May 2002 Dryline Case during IHOP Project. Atmosphere. 2024; 15(1):33. https://doi.org/10.3390/atmos15010033
Chicago/Turabian StyleLópez, Rubén Nocelo, Verónica Santalla del Rio, and Brais Sánchez-Rama. 2024. "Refractivity Observations from Radar Phase Measurements: The 22 May 2002 Dryline Case during IHOP Project" Atmosphere 15, no. 1: 33. https://doi.org/10.3390/atmos15010033
APA StyleLópez, R. N., Rio, V. S. d., & Sánchez-Rama, B. (2024). Refractivity Observations from Radar Phase Measurements: The 22 May 2002 Dryline Case during IHOP Project. Atmosphere, 15(1), 33. https://doi.org/10.3390/atmos15010033