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Abstract: High concentrations of ground-level ozone (O3) pose a significant threat to human health.
Obtaining high-spatiotemporal-resolution information about ground-level O3 is of paramount impor-
tance for O3 pollution control. However, the current monitoring methods have a lot of limitations.
Ground-based monitoring falls short in providing extensive coverage, and remote sensing based
on satellites is constrained by specific spectral bands, lacking sensitivity to ground-level O3. To
address this issue, we combined brightness temperature data from the Himawari-8 satellite with
meteorological data and ground-based station data to train four machine learning models to obtain
high-spatiotemporal-resolution information about ground-level O3, including Categorical Boosting
(CatBoost), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), and
Random Forest (RF). Among these, the CatBoost model exhibited superior performance, achieving a
ten-fold cross-validation R2 of 0.8534, an RMSE of 17.735 µg/m3, and an MAE of 12.6594 µg/m3. Fur-
thermore, all the selected feature variables in our study positively influenced the model. Subsequently,
we employed the CatBoost model to estimate averaged hourly ground-level O3 concentrations at
a 2 km resolution. The estimation results indicate a close relationship between ground-level O3

concentrations and human activities and solar radiation.

Keywords: ground-level ozone; high-spatiotemporal-resolution; machine learning

1. Introduction

As a trace gas in the atmosphere, 90% of ozone (O3) is dispersed in the stratosphere
between 10 and 50 km from the ground, and the remaining 10% of atmospheric O3 is
distributed in the troposphere below 10 km from the ground [1,2]. O3 in the stratosphere
protects Earth’s organisms from the damaging effects of ultraviolet radiation [3]. In contrast,
excessively high ground-level O3 concentrations not only emit pungent odors but also
irritate the human respiratory system, causing damage to lung cells and posing signifi-
cant risks to human health [4–6]. According to the World Health Organization (WHO),
humans are subjected to life and health threats when exposed to maximum 8 h average
O3 concentrations exceeding the recommended threshold of ≥100 µg/m3 [7]. However,
according to the Ministry of Ecology and Environment of the People’s Republic of China,
the annual average O3 concentrations in 339 Chinese cities have all surpassed the WHO’s
recommended threshold of 100 µg/m3 [8]. This indicates that ground-level O3 pollution
poses a significant hazard to the health of Chinese residents and the ecological environment.
O3 pollution urgently needs to be addressed. Notably, the high-spatiotemporal-resolution
estimation of ground-level O3 is a crucial step in addressing O3 pollution issues [9,10].
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Currently, ground-based station monitoring and satellite sensor monitoring are the
two main methods for monitoring the spatiotemporal distribution of ground-level O3. As
of 2021, China has established 2024 national monitoring stations for trace gases. However,
these stations are mainly concentrated in provincial capitals and central cities, resulting in
an uneven spatial distribution and the incapacity to provide high-resolution, continuous,
and extensive spatiotemporal O3 distribution information. In the short term, it is difficult
for China to establish a dense and extensive monitoring network for trace gases. Therefore,
relying solely on ground-based station monitoring methods is inadequate for meeting
China’s current requirements for addressing O3 pollution [11].

Compared to ground-based station monitoring, satellite remote sensing monitoring
is not constrained by time, climate, or geographical limitations, facilitating large-scale
synchronous observations and providing extensive spatial coverage [12–14]. For instance, in
2015, the Japan Aerospace Exploration Agency (JAXA) successfully launched the Himawari-
8 satellite, which has a 10 min observation frequency [15]. The satellite is equipped with the
Advanced Himawari Imagers (AHI) sensor, which can provide brightness temperature (BT)
data products with a spatial resolution of 2 km in multiple thermal infrared (TIR) bands.
Based on TIR bands, the Infrared Atmospheric Sounding Interferometer (IASI) can directly
monitor the vertical O3 profile staring from the ground, which has a correlation coefficient
of 0.85 in the validation comparing to ground-based measurements [16,17]. In addition, the
BT at the TIR bands show a positive correlation with solar radiation intensity [18]. Thus,
BT products from AHI are presently being used in various research studies to produce
high-spatiotemporal-resolution O3 distribution information [19,20]. However, owing to
the specific portion of the electromagnetic spectrum used by satellite sensors, the current
satellite instruments have limited sensitivity to ground-level O3. Relying solely on remote
sensing observations also makes it challenging to achieve the precise monitoring of ground-
level O3 [21,22].

For the estimation of O3 concentrations, numerous methodologies have been widely
implemented. There are many ways to estimate O3 concentrations, including frameworks
of chemical transport models (CTMs) and statistical models. A CTM typically consists of
four main components: physical transport, pollutant emissions, dispersion, and chemical
transformation. Depending on various input parameters, the model can integrate and
process pollutant concentrations for a specific period, providing the average pollutant
concentration during that interval [23]. Some scholars have utilized CTMs to investigate
the spatiotemporal distribution of ground-level O3 concentrations, such as the global 3-D
CTM from the Goddard Earth Observing System (GEOS-chem) [24] and the Copernicus
Atmosphere Monitoring Service (CAMS) [25]. CTMs comprehensively consider various
physical, chemical, and dynamical atmospheric processes. They have precise physical and
chemical meanings and possess strong interpretability. However, due to limited knowledge
and input data, the fine-scale predictions of atmospheric chemistry models may deviate
considerably from the actual results, and their ability to predict the spatial and temporal
distribution of high-resolution ozone concentrations may need to be improved [26].

For statistical methods, initially, spatial interpolation methods, such as inverse distance
weighting, which are relatively straightforward and cost-effective, were employed [27–29].
Then, traditional statistical models, which have evolved from linear regression to more
complex methods that can incorporate many geographic features and satellite-derived data,
such as geographic-temporal weighted regression models and land-use regression models,
have emerged to estimate O3 information. For instance, Kerckhoffs [30] devised a land-use
regression model that centers on summer average O3 concentrations and annual average
O3 concentrations as the primary exposure variables. This model effectively accounts for
71% of the spatial variability in summer average O3 concentrations.

In recent years, the use of machine learning models based on multi-source data to
estimate O3 concentrations has become a prominent area of research. Felder [31] constructed
a neural network O3 inversion system. This system utilized automatic feature selection
and automatic architecture search to reduce the training time by approximately two orders
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of magnitude, thereby rendering the O3 concentrations inversion system more stable.
Zhan [32] combined meteorological data, elevation data, emission inventories, normalized
difference vegetation indices (NDVI), land use data, and road density data to estimate
the daily maximum 8 h average O3 concentrations in the region of China in 2015 with the
random forest model (RF). The results of the cross-validation indicated an R2 of 0.69 and an
RMSE of 26 µg/m3. Li [33] initially used the RF model to patch in missing total O3 column
data over Hainan Island, China. They then employed the eXtreme Gradient Boosting
algorithm to estimate ground-level O3 concentrations over Hainan Island based on the
total O3 column and other estimated parameters. The model obtained an R2 of 0.59 and
an RMSE of 6.36 µg/m3. Li [34] employed a gradient boosting regression tree algorithm,
incorporating ground-level O3 concentration data, MODIS NDVI data, weather research
and forecasting (WRF) meteorological data, and population data. They used a backward
variable selection method to train the model with the best feature variables, resulting in a
distribution of high-spatiotemporal-resolution ground-level O3 concentrations. The model
obtained an R2 of 0.89 and an RMSE of 4.75 µg/m3 in cross-validation. These findings
indicate that machine learning models exhibit exceptional performance when it comes to
estimating O3 concentrations. However, in existing studies, either the spatial or temporal
resolution is always coarse (e.g., 0.75◦ × 0.75◦ with three-hourly measurements in CAMS),
which will be challenging to provide effective support for the precise control of ozone
in China.

In order to obtain high-spatiotemporal-resolution information on ground-level O3
concentrations, we integrated data from the AHI, ground-based stations, and ERA5-Land
(meteorological data), and we contrasted prominent machine learning models, which
have become popular in recent years for their fast training speeds, high efficiency, and
accurate predictions, including Categorical Boosting (CatBoost), eXtreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LGBM), and RF, to determine the best-
performing model. Finally, we estimated the average hourly spatiotemporal distribution
of O3 over one week by implementing the optimal model and feature variables. This
research intends to provide a scientific basis and methodological support for the control
and prevention of O3 pollution.

2. Materials and Methods
2.1. Study Area

China is situated in eastern Asia on the west coast of the Pacific Ocean, with latitudes
extending from 4◦ N to 53◦ N and longitudes from 73◦ E to 135◦ E. China has a land area
of 9.6 million km2 and a complex topography, which is characterized by a topography of
high in the west and low in the east, with mountainous terrain dominating the west and
plains and hills dominating the east. The topography of China decreases in a sequence of
one, two, and three steps from the Tibetan Plateau to the north and east. Since the full-disk
scanning area of the Himawari-8 satellite is 80◦ E–160◦ W, 60◦ S–60◦ N [15], it unable to
thoroughly cover the Xinjiang Autonomous Region and Tibet Autonomous Region, so
these two provinces were excluded from the study area. In recent years, China has made
significant efforts to address environmental pollution issues, including the establishment of
a network of in situ stations to monitor air pollutants such as ground-level trace gases. We
selected the 1935 in situ stations that covered the study area by 2021 (see Figure 1). These
stations are primarily concentrated in densely populated areas such as provincial capitals
and central cities, and there are not enough monitoring stations in suburban counties
and townships.
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Figure 1. The distribution of in situ stations in the study area. The study area is delineated by a light
grey shading. The base-map is the global imagery provided by Earthstar Geographics.

2.2. Datasets and Preprocessing

According to previous research, the high-spatiotemporal-resolution distribution of
O3 can be determined using infrared radiation with a wavelength of 9.6 µm measured
by geostationary satellites. In this paper, the AHI BT data products were selected as the
primary input parameters and were combined with meteorological data from ERA5-Land
as the auxiliary input parameters (Table 1). In previous research, in order to estimate the
O3 concentrations near the ground surface, some scholars accounted for the influence
of anthropogenic and topographic factors and frequently analyzed popular data, land
use data, and road network data. Nevertheless, according to the research findings of
Li [35], Zhao [36], and others [37,38], in the estimation of O3 concentrations at a high
spatial-temporal resolution, the characteristic variables such as terrain, surface cover, and
road networks are slow or nearly unchanged on the time scale, and the dispersion of the
characteristics is poor, which has a negative impact on the training of the model and the
estimation performance, etc. Therefore, this research did not consider feature variables
such as DEM (digital elevation model), NDVI, and road density.

Table 1. Data list used in the study area and related information.

Data Source Data Name Spatial Resolution Time Resolution

JAXA
AHI BT data

0.02◦ × 0.02◦ 10 min(band 10–band 16 except band 11)

ERA5-Land

2 m temperature (T2M)

0.25◦ × 0.25◦ 1 h
2 m dewpoint temperature (D2M)
The top-net solar radiation (TSR)
The boundary layer height (BLH)

The surface latent heat flux (SLHF)

CNEMC Ground-level station data 1 h
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2.2.1. AHI Bright Temperature Data

In our study, the wavelength of 9.6 µm (the absorption peak of O3) in the AHI BT
data product (band 12) was used as the model’s primary input parameter. In addition,
band 8 (wavelength of 6.2 µm)–band 10 (wavelength of 7.3 µm) and band 13 (wavelength
of 10.4 µm)–band 16 (wavelength 13.3 µm) were selected as the model auxiliary parameters
according to Lee et al. In addition, band 11 (wavelength of 8.6 µm) was excluded from the
estimation of ground-level O3 concentrations because it is particularly susceptible to desert
emissivity fluctuations. All of the AHI BT data were at a resolution of 10 min 0.02◦ × 0.02◦.

2.2.2. Meteorological Data

Taking into account the significant impact of meteorological conditions on ozone
formation [39,40], we utilized meteorological data as the auxiliary information for the
model. The meteorological data in our study were derived from ERA5-Land (a reanalysis
dataset) provided by the European Center for Medium-Range Weather Forecasts (ECMWF).
Based on the laws of physics, ECMWF produced the reanalysis dataset by combining model
data with observations from across the world. ERA5-Land dataset can provide hourly
meteorological products at a resolution of hourly 0.25◦ × 0.25◦. Considering that the effect
of meteorological conditions on O3 is not instantaneous, we used the ERA5-Land portion
of the meteorological data from 08:00–17:00 (UTC + 8) from 1 June 2021 to 31 December
2021, including the 2 m temperature (T2M), the 2 m dewpoint temperature (D2M), the
top-net solar radiation (TSR), the boundary layer height (BLH), and the surface latent heat
flux (SLHF).

2.2.3. Ground-Based Station Data

The China National Environmental Monitoring Centre (CNEMC) provided the hourly
ground-level O3 concentration data from 09:00–18:00 (UTC + 8) for the period from 1 June
2021 to 31 December 2021 for 1935 in situ stations in the study area. In accordance with the
HJ818-2018 standard, CNEMC employs ultraviolet dual-beam detection technology by the
ozone standard reference photometer to measure ground-level O3 concentrations. In our
study, we used the station data provided by CNEMC as the true O3 concentrations to train
our models.

2.2.4. Data Preprocessing

To assure the consistent spatial resolution of our input data set, we applied the IDW to
resample meteorological data from ERA5-Land to 2-km. Due to the incapacity of AHI to
mitigate atmospheric scattering and cloud interference, AHI data cannot accurately capture
ground-level information in cloud-covered regions. To address this issue, we eradicate
cloud-contaminated pixels using the daytime cloud property product (L2CLP) provided by
JAXA. In the L2CLP, each pixel is classified according to the cloud classification standards of
the World Meteorological Organization (WMO), where pixels with “CLTYPE = 0” represent
those not covered by clouds. In the process of cloud removal, we therefore overlayed the
daytime cloud attribute product with the brightness temperature data, retaining pixels
with “CLTYPE = 0” and removing those with other values for “CLTYPE.”

We then performed a temporal and spatial alignment of ground-based station data with
AHI and ERA5-Land data. In terms of time alignment, BT data are available at a temporal
resolution of 10 min, whereas data from ground-based stations and ERA5-Land are hourly.
To ensure temporal uniformity, we averaged the BT data within each hour, reducing it to an
hourly temporal resolution. In addition, acknowledging that meteorological factors do not
have an instantaneous effect on O3 [41,42], we advanced the alignment of meteorological
data with ground-based station data by one hour. For instance, the meteorological data
for 8:00 on a particular day was matched with the station data for 9:00 on the same day.
Regarding spatial alignment, we matched the ground-based station data with other datasets
that fell within the same grid by extracting the attribute values to the grid.
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2.3. Models

RF is an ensemble learning method based primarily on the construction of multiple
decision trees for classification or regression tasks. Each decision tree is trained on a random
subset of the data with random feature selection (using the bootstrap sampling method).
The final forecast is determined by a vote or average of all trees. By integrating multiple
decision trees, RF improves model performance by exhibiting strong resistance to noise
and outliers.

Categorical Boosting (CatBoost) is a gradient boosting algorithm, uniquely character-
ized by its adoption of gradient boosting strategies to progressively refine prediction results.
It automatically handles data encoding without the need for manual intervention, reducing
the workload of feature engineering. Simultaneously, it mitigates the risk of overfitting.

eXtreme Gradient Boosting (XGBoost) is a highly optimized gradient boosting algo-
rithm known for its ability to train multiple weak learners and then integrate them into
a powerful model by optimizing the loss function. The capacity of XGBoost to manage
massive datasets and intricate relationships is considerable. It employs regularization
techniques to reduce model complexity and mitigate the risk of overfitting. Additionally, it
facilitates parallel computation, which speeds up the training process.

Light Gradient Boosting Machine (LGBM) is a gradient boosting algorithm based on
histograms that is renowned for its extraordinary performance and memory efficiency.
It accelerates data partitioning by constructing histograms. LGBM employs a leaf-wise
growth strategy as opposed to traditional depth-first strategies, allowing for faster training
on large-scale datasets. Additionally, LGBM allows for the customization of loss functions
and evaluation metrics.

In our study, we employed the above-mentioned four machine learning models to
capture the nonlinear relationship between the input feature variables and ground-level
O3 concentrations.

2.4. Model Evaluation

We employed a ten-fold cross-validation (CV) method to evaluate the estimation
accuracy of various machine learning models in both spatial and temporal dimensions. All
matching grids were divided into ten subsets at random. The machine learning models
were trained using nine subsets, while the remaining subset was used for validation. This
procedure was carried out ten times. The estimation results were validated by three metrics:
the coefficient of determination (R2), the root mean square error (RMSE), and the mean
absolute error (MAE).

3. Results and Discussion

In this research, a total of 1,070,869 samples were obtained after data preprocessing
and sample selection (removal of outliers and zero values). Firstly, the complete dataset
was randomly divided into a training dataset comprising 70% of the samples and a testing
dataset comprising 30% to preliminarily train the models to adjust the model’s hyperparam-
eters. After the hyperparameter tuning, the models were evaluated based on the principle
of ten cross-validation processes.

3.1. Feature Evaluation

Evaluating and selecting features is crucial for maximizing the performance of a model
and improving the accuracy of predictions. In order to ascertain the positive contribution
of the selected features to the models, we evaluate them from two different perspectives.
One way we analyzed the relationship between the features and the target variable was
by calculating the Pearson correlation coefficients (PCCs), as shown in Figure 2. The PCC
figure clearly demonstrates the strong correlation between the meteorological parameters,
including the T2M, BLH, TSR, and BT data from band 12 and band 13, and ground-level
O3 concentrations.
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the ground-level O3 concentrations.

Then, we calculated importance coefficients for each feature with respect to the four
machine learning models, as depicted in Figure 3. In each model, the meteorological
factors T2M and BLH demonstrated significant importance, which was consistent with the
computation of the PCC. The observed outcome can be attributed to the reduction in the
BLH, resulting in the accumulation of O3 precursors, namely nitrogen oxides (NOx) and
volatile organic compounds (VOCs), in close proximity to the surface [43]. Moreover, T2M
is essential in the chemical reaction that results in the synthesis of O3 from the precursors
NOx and VOC. The contribution of features was more evenly distributed in both the
CatBoost and LGBM models, especially in the LGBM model. In the CatBoost model, the
BT data of band 12, in addition to meteorological conditions, also made a substantial
contribution. Regarding the XGBoost and RF models, the BT data largely functioned as
a model correction component, making a smaller contribution to the model compared to
T2M and BLH, which played more major roles.

Subsequently, we carried out a systematic process of feature reduction. This involved
starting with the features that were determined to be the least essential based on their
importance coefficients in various models. For each feature removal, we reported the
model’s validation metrics (R2, RMSE, MAE) on the test dataset. The procedure is depicted
in Figure 4. When features were eliminated one by one individually in the CatBoost,
XGBoost, and RF models, the R2 of the models generally decreased, while the RMSE and
MAE typically increased. This suggests a progressive deterioration in the performance of
the models. Nevertheless, the LGBM model exhibited a slight increase in R2, accompanied
by decreased RMSE and MAE values, upon the removal of the first feature. This indicates a
moderate improvement in the model’s performance. The reason for this could be that LGBM
employs a leaf-wise growth approach as opposed to the conventional depth-first technique.
This strategy prioritizes increasing the depth of trees rather than expanding all branches at
each level. Eliminating one feature could potentially enhance tree segmentation, resulting
in an improved performance of the model. To optimize the predictive performance, we
eliminated the feature with the lowest importance scores for LGBM while keeping the
features unchanged in the other models.
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3.2. Performance Analysis of Models

Based on the results discussed in Section 3.1, we trained the four models using the
features that achieved the best predictive performance for each model. The CV performance
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of each model is shown in Table 2 and Figure 5. The R2 values for the CatBoost, XGBoost,
LGBM, and RF models were 0.8534, 0.7947, 0.7872, and 0.7424, respectively. The RMSE
values were 17.735 µg/m3, 20.987 µg/m3, 21.367 µg/m3, and 23.510 µg/m3, respectively.
The MAE values were 12.6594 µg/m3, 15.4337 µg/m3, 15.8119 µg/m3, and 17.3154 µg/m3,
respectively. From CatBoost to RF, the model’s fitting performance rapidly diminished, and
the errors for the target variable progressively increased.

Table 2. The validated metrics for each model.

Model Name R2 RMSE MAE

CatBoost 0.8534 17.735 12.6594
XGBoost 0.7947 20.987 15.4337
LGBM 0.7872 21.367 15.8119

RF 0.7424 23.510 17.3154

The units of RMSE and MAE are µg/m3.
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3.3. Discussion of Spatiotemporal Distribution of O3

We chose the week from 20 September to 26 September 2021, which had the lowest
level of cloud contamination. We performed hourly assessments of ground-level O3 concen-
trations from 09:00 to 18:00 (UTC + 8) for each day throughout that week and subsequently
calculated their average. Figure 6 displays the results of the multi-day average estimation
of ground-level O3 concentrations for each hour. Following that, we conducted a statistical
analysis on the estimated hourly ground-level O3 concentrations, computing the mean and
standard deviation, as shown in Figure 7.
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Regarding the spatial distribution, we identify high-value areas of O3 concentrations
in eastern coastal regions such as Shandong, Jiangsu, and Zhejiang provinces, where the
values concentrated around 210 µg/m3. High-density regions characterized by substantial
industrial, transportation, and residential emissions are responsible for elevated levels of O3
precursors, including NOx and VOCs [44,45]. Moreover, the culmination of summer char-
acterized by elevated temperatures and increased thunderstorms intensified the increase
in ground-level O3 levels. Conversely, areas at higher latitudes, such as northeast China
(Heilongjiang, Jilin, and Liaoning provinces) and the Inner Mongolia Autonomous Region,
experienced a slower increase in ground-level O3 concentrations because of diminished
solar radiation caused by higher latitudes. Unfortunately, starting at 16:00, the sun begins
to set in Heilongjiang Province. Himawari-8 cannot provide nighttime cloud property data,
resulting in partial data gaps after 16:00. This accounts for the significant fluctuations in
the standard deviation of ground-level O3 concentrations between 16:00 and 18:00.
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When considering the temporal aspect, combining these two figures, we observed that
the predicted ground-level O3 concentrations as well as the standard deviation experienced
a significant and quick increase from 09:00 to 13:00. This phenomenon was caused by the
increasing solar radiation and temperature [46], which facilitate the chemical production
of ground-level O3. Subsequently, the mean ground-level O3 concentrations reached a
steady state of approximately 105 µg/m3 until sunset, as ground-level O3 does not disperse
quickly before dusk. Regarding the sudden changes at 16:00, the easternmost section of
the study area began to be influenced by the sunset, leading to a rapid dissipation of
ground-level O3. At this time, the sunset had a lesser effect on the remaining research
area and did not yet cause the dissipation of ground-level O3. Consequently, the mean of
ground-level O3 concentrations increased. Between 17:00 and 18:00, the influence of the
sunset progressively extended to the middle and western areas of the study area. However,
due to the limitations of the Himawari satellite, we were unable to collect data after sunset.
Consequently, the statistics for both periods do not include the lowest ground-level O3
concentrations in the eastern portion of the area. As a result, the mean of ground-level O3
rose in comparison to the prior period.

Finally, we compared our average multi-day (20 September 2021–26 September 2021)
estimations with results of the ECMWF’s CAMS, as shown in Figure 8. The comparative
results indicate that the ozone concentration trends predicted by both models were generally
consistent, especially at 14:00 (UTC + 8). Moreover, our high-precision results provide a
more detailed reflection of the changes in near-surface ozone concentration. We believe
that our study can contribute to the scientific prevention and control of ozone pollution.
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Figure 8. The comparison of estimations between CatBoost model and CAMS. (a) The results of the
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4. Conclusions

Upon training the machine learning models with the most effective feature com-
binations and assessing the performance of the four models, we determined that the
CatBoost model exhibited optimal performance in this research endeavor. The chosen
features exerted a favorable influence on the model’s predictions, specifically the features
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of T2M, BLH, and data from band 12 of AHI. Afterwards, we employed the CatBoost
model to estimate the average multi-day ground-level O3 concentrations for each hour
in the study area. The findings demonstrated a robust association between ground-level
O3 levels and the intensity of solar radiation, with peak values even reaching as high
as 210 µg/m3, hence presenting a substantial health hazard to inhabitants. Moreover,
the spatial distribution of ground-level O3 concentrations was notably impacted by the
extent of human activity. Areas characterized by more concentrated human activity and
greater industrial emissions displayed elevated levels of near-ground O3. We hope that
the high-spatiotemporal-resolution estimation in our study will contribute to the scientific
management of ground-level O3.
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