Particle Size, Effects of Distance and Height from Source, Carbon Components, and Source of Dust in Nanchang, Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Pretreatment
2.2.1. Sample Pretreatment Method for the Determination of Dust Particle Size
2.2.2. Sample Pretreatment Method for the Determination of Carbon Components in Dust
2.3. Sample Determination
2.4. Quality Control
3. Results and Discussion
3.1. Particle Size Distribution of Dust
3.1.1. Particle Size of Indoor and Outdoor Dust in Different Areas
3.1.2. Effects of Distance from Road on Particle Size Distribution of Indoor and Outdoor Dust
3.1.3. Effects of Height on Particle Size Distribution of Indoor Dust
3.2. Distribution of Carbon Components in Dust
3.2.1. Distribution of OC and EC in Dust
OC and EC in Dust of Different Sampling Areas
Comparison of OC and EC in Indoor Dust and Outdoor Dust in the Same Area
3.2.2. Distribution of 7 Carbon Fractions in Dust
Carbon Fractions in Dust at Different Sampling Areas/Points
Comparison of Carbon Fractions in Indoor and Outdoor Dust in the Same Area and the Differences of Carbon Fractions in Different Months
3.2.3. Distribution of Secondary Organic Carbon (SOC) in Dust
3.2.4. Comparison of SOC and SOC/OC in Dust or PM2.5 between this Study and Other Regions
3.3. Source Analysis of Carbon Components in Dust
3.3.1. Source Analysis of Carbon Fractions in Residential Area Dust Based on Cluster Analysis
3.3.2. Source Analysis of Carbon Fractions Based on Principal Component Analysis (PCA)
4. Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Yu, S.; Chen, X.; Li, Z.; Zhang, Y.; Song, Z.; Liu, W.; Li, P.; Zhang, X.; Zhang, M.; et al. Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM2.5) in China. Atmos. Chem. Phys. 2022, 22, 11845–11866. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. Three-Year Action Plan of Win the Blue Sky Defence War 2018. Beijing. 2018. Available online: https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (accessed on 27 June 2018).
- State Council of the People’s Republic of China. Air Pollution Prevention and Control Action Plan 2013. Beijing. 2013. Available online: https://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 10 September 2013).
- Yin, Z.; Duan, M.; Li, Y.; Xu, T.; Wang, H. Predicting gridded winter PM2.5 concentration in the east of China. Atmos. Chem. Phys. 2022, 22, 11173–11185. [Google Scholar] [CrossRef]
- Song, T.; Feng, M.; Song, D.; Liu, S.; Tan, Q.; Wang, Y.; Luo, Y.; Chen, X.; Yang, F. Comparative Analysis of Secondary Organic Aerosol Formation during PM2.5 Pollution and Complex Pollution of PM2.5 and O3 in Chengdu, China. Atmosphere 2022, 13, 1834. [Google Scholar]
- Soheili, F.; Woodward, S.; Abdul-Hamid, H.; Naji, H.R. The Effect of Dust Deposition on the Morphology and Physiology of Tree Foliage. Water Air Soil Pollut. 2023, 234, 339. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Variations in the composition of house dust by particle size. J. Environ. Sci. Health Part A 2017, 52, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Batmunkh, T.; Joo, H.S.; Park, K. Comparison of the physical and chemical characteristics of fine road dust at different urban sites. J. Air Waste Manag. Assoc. 2018, 68, 812–823. [Google Scholar] [CrossRef]
- Dai, Q.; Bi, X.; Huangfu, Y.; Yang, J.; Li, T.; Khan, J.Z.; Song, C.; Xu, J.; Wu, J.; Zhang, Y.; et al. A size-resolved chemical mass balance (SR-CMB) approach for source apportionment of ambient particulate matter by single element analysis. Atmos. Environ. 2019, 197, 45–52. [Google Scholar] [CrossRef]
- Lin, Y.; Mu, G.; Zhao, X.; Xu, L.; Zhang, J. Atmospheric dustfall exhibits consistent sedimentary sorting with height evidenced by grain size characteristics. Sci. Total Environ. 2023, 864, 161143. [Google Scholar] [CrossRef]
- Gupta, G.P.; Kumar, B.; Singh, S.; Kulshrestha, U.C. Urban climate and its effect on biochemical and morphological characteristics of Arjun (Terminalia arjuna) plant in National Capital Region Delhi. Chem. Ecol. 2015, 31, 524–538. [Google Scholar] [CrossRef]
- Bibi, M.; Saad, M.; Masmoudi, M.; Laurent, B.; Alfaro, S.C. Long-term (1980–2018) spatial and temporal variability of the atmospheric dust load and deposition fluxes along the North-African coast of the Mediterranean Sea. Atmos. Res. 2020, 234, 104689. [Google Scholar] [CrossRef]
- Elperin, T.; Fominykh, A.; Katra, I.; Krasovitov, B. Modelling of nitric acid gas adsorption by atmospheric dust particles. Aerosol Sci. Technol. 2019, 53, 381–393. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, T.; Guan, T.; Zhu, Y.; Liu, J.; Ji, Y.; Gao, S.; Wang, F.; Lu, H.; Huang, W. Association between size-segregated particles in ambient air and acute respiratory inflammation. Sci. Total Environ. 2016, 565, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Tétreault, L.-F.; Doucet, M.; Gamache, P.; Fournier, M.; Brand, A.; Kosatsky, T.; Smargiassi, A. Childhood Exposure to Ambient Air Pollutants and the Onset of Asthma: An Administrative Cohort Study in Québec. Environ. Health Perspect. 2016, 124, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Bao, L.-J.; Guo, Y.; Li, S.-M.; Zeng, E.Y. Size-dependent atmospheric deposition and inhalation exposure of particle-bound organophosphate flame retardants. J. Hazard. Mater. 2016, 301, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Downward, G.S.; van Nunen, E.J.; Kerckhoffs, J.; Vineis, P.; Brunekreef, B.; Boer, J.M.; Messier, K.P.; Roy, A.; Verschuren, W.M.M.; van der Schouw, Y.T.; et al. Long-Term Exposure to Ultrafine Particles and Incidence of Cardiovascular and Cerebrovascular Disease in a Prospective Study of a Dutch Cohort. Environ. Health Perspect. 2018, 126, 127007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, X.; Gao, S.; Liu, R. Assessing the in vitro and in vivo toxicity of ultrafine carbon black to mouse liver. Sci. Total Environ. 2019, 655, 1334–1341. [Google Scholar] [CrossRef]
- Liu, X.; Kong, S.; Yan, Q.; Liu, H.; Wang, W.; Chen, K.; Yin, Y.; Zheng, H.; Wu, J.; Qin, S.; et al. Size-segregated carbonaceous aerosols emission from typical vehicles and potential depositions in the human respiratory system. Environ. Pollut. 2020, 264, 114705. [Google Scholar] [CrossRef]
- Li, Z.; Ju, S.; Duan, M.; Cai, S. Quantitative Selection of Leading Industries of Green Economy in Coastal Cities Based on Industrial Relevance. J. Coast. Res. 2020, 103 (Suppl. S1), 566. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Duan, K.; Cai, J.; Niu, W.; Dong, X. Assessments of Water-Soluble Inorganic Ions and Heavy Metals in Atmospheric Dustfall and Topsoil in Lanzhou, China. Int. J. Environ. Res. Public Health 2020, 17, 2970. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, T.; He, Q.; Yang, X.; Mamtimin, A.; Wang, M.; Pan, H.; Huo, W.; Yang, F.; Zhou, C. Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China. Remote Sens. 2022, 14, 1167. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, M.; Huang, W.; Tan, C.; Zhao, Z.; Ding, F. Study on dust occurrence and transportation related to boundary layer height in Northwest China. Atmos. Sci. Lett. 2022, 23, e1083. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Pan, M.; Zhong, X.; Zhao, E.; Wang, Y.; Du, C. Black carbon and mineral dust in snow cover across a typical city of Northeast China. Sci. Total Environ. 2022, 807, 150397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Tan, F.; Bao, M.; Zhang, L.; Rodgers, T.F.; Chen, J. Characteristics and risk assessment of organophosphorus flame retardants in urban road dust of Dalian, Northeast China. Sci. Total Environ. 2020, 705, 135995. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Du, W.; Chen, J.; Hong, Y.; Zhao, J.; Xu, L.; Xiao, H. Chemical composition, structural properties, and source apportionment of organic macromolecules in atmospheric PM10 in a coastal city of Southeast China. Environ. Sci. Pollut. Res. 2017, 24, 5877–5887. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Feng, W.; Liu, M.; Xu, H. Atmospheric elemental carbon deposition from urban and suburban sites of Shanghai: Characteristics, sources and comparison with aerosols and soils. Atmos. Pollut. Res. 2021, 12, 193–199. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, R.; Yan, Y.; Cheng, Y.; Hu, G.; Huang, H. Bioaccessibility and provenance of heavy metals in the park dust in a coastal city of southeast China. Appl. Geochem. 2020, 123, 104798. [Google Scholar] [CrossRef]
- Zou, C.; Wang, J.; Gao, Y.; Huang, H. Distribution characteristics and optical properties of carbonaceous aerosol: Brown carbon and black carbon in Nanchang, inland China. Atmos. Pollut. Res. 2023, 14, 101700. [Google Scholar] [CrossRef]
- Nanchang Municipal Bureau of Ecology and Environment. Data Table of Traffic Flow and Noise Monitoring of Various Roads in Nanchang. Nanchang. 2021. Available online: https://sthjj.nc.gov.cn/ncgbj/zsjcbg/202112/6908b76094184f569c2f91d11929c640.shtml (accessed on 6 December 2021).
- Demir, T.; Yenisoy-Karakaş, S.; Karakaş, D. PAHs, elemental and organic carbons in a highway tunnel atmosphere and road dust: Discrimination of diesel and gasoline emissions. Build. Environ. 2019, 160, 106166. [Google Scholar] [CrossRef]
- Chu, G.; Sun, Q.; Zhaoyan, G.; Rioual, P.; Qiang, L.; Kaijun, W.; Han, J.; Liu, J. Dust records from varved lacustrine sediments of two neighboring lakes in northeastern China over the last 1400 years. Quat. Int. 2009, 194, 108–118. [Google Scholar] [CrossRef]
- Han, Y.; Cao, J.; Chow, J.C.; Watson, J.G.; An, Z.; Jin, Z.; Fung, K.; Liu, S. Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere 2007, 69, 526–533. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Green, M.C.; Wang, X.; Chen, L.-W.A.; Trimble, D.L.; Cropper, P.M.; Kohl, S.D. Separation of brown carbon from black carbon for IMPROVE and Chemical Speciation Network PM2.5 samples. J. Air Waste Manag. Assoc. 2018, 68, 494–510. [Google Scholar] [CrossRef] [PubMed]
- Papaefstathiou, E.; Bezantakos, S.; Stylianou, M.; Biskos, G.; Agapiou, A. Comparison of particle size distributions and volatile organic compounds exhaled by e-cigarette and cigarette users. J. Aerosol Sci. 2020, 141, 105487. [Google Scholar] [CrossRef]
- Gondwal, T.K.; Mandal, P. Review on Classification, Sources and Management of Road Dust and Determination of Uncertainty Associated with Measurement of Particle Size of Road Dust. MAPAN 2021, 36, 909–924. [Google Scholar] [CrossRef]
- Li, N.; Wei, X.; Han, W.; Sun, S.; Wu, J. Characteristics and temporal variations of organic and elemental carbon aerosols in PM1 in Changchun, Northeast China. Environ. Sci. Pollut. Res. 2020, 27, 8653–8661. [Google Scholar] [CrossRef]
- Ruprecht, A.A.; De Marco, C.; Saffari, A.; Pozzi, P.; Mazza, R.; Veronese, C.; Angellotti, G.; Munarini, E.; Ogliari, A.C.; Westerdahl, D.; et al. Environmental pollution and emission factors of electronic cigarettes, heat-not-burn tobacco products, and conventional cigarettes. Aerosol Sci. Technol. 2017, 51, 674–684. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Li, C.; Hu, Z.; Tripathee, L.; Rai, M.; Pu, T.; Yin, X.; Gustafsson, O. Carbonaceous aerosol transport from the Indo-Gangetic Plain to the Himalayas: Carbon isotope evidence and light absorption characteristics. Geosci. Front. 2023, 14, 101516. [Google Scholar] [CrossRef]
- Zhang, Q.; Sarkar, S.; Wang, X.; Zhang, J.; Mao, J.; Yang, L.; Shi, Y.; Jia, S. Evaluation of factors influencing secondary organic carbon (SOC) estimation by CO and EC tracer methods. Sci. Total Environ. 2019, 686, 915–930. [Google Scholar] [CrossRef]
- Mbengue, S.; Fusek, M.; Schwarz, J.; Vodička, P.; Šmejkalová, A.H.; Holoubek, I. Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe. Atmos. Environ. 2018, 182, 335–346. [Google Scholar] [CrossRef]
- Sun, J.; Liang, M.; Shi, Z.; Shen, F.; Li, J.; Huang, L.; Ge, X.; Chen, Q.; Sun, Y.; Zhang, Y.; et al. Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere 2019, 221, 452–463. [Google Scholar] [CrossRef]
- Wu, C.; Wu, D.; Yu, J.Z. Quantifying black carbon light absorption enhancement with a novel statistical approach. Atmos. Chem. Phys. 2018, 18, 289–309. [Google Scholar] [CrossRef]
- Wu, C.; Yu, J.Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: Secondary OC-EC correlation minimization method. Atmos. Chem. Phys. 2016, 16, 5453–5465. [Google Scholar] [CrossRef]
- Porter, W.C.; Jimenez, J.L.; Barsanti, K.C. Quantifying Atmospheric Parameter Ranges for Ambient Secondary Organic Aerosol Formation. ACS Earth Space Chem. 2021, 5, 2380–2397. [Google Scholar] [CrossRef]
- Wu, C.; Wu, D.; Yu, J.Z. Estimation and Uncertainty Analysis of Secondary Organic Carbon Using 1 Year of Hourly Organic and Elemental Carbon Data. J. Geophys. Res. Atmos. 2019, 124, 2774–2795. [Google Scholar] [CrossRef]
- Moretti, S.; Tassone, A.; Andreoli, V.; Carbone, F.; Pirrone, N.; Sprovieri, F.; Naccarato, A. Analytical study on the primary and secondary organic carbon and elemental carbon in the particulate matter at the high-altitude Monte Curcio GAW station, Italy. Environ. Sci. Pollut. Res. 2021, 28, 60221–60234. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Jiang, L.; Liu, Y.; Xiong, Q.; Sun, C.; Li, X.; Zhao, W.; Yang, X. Analysis of the Characteristics and Sources of Carbonaceous Aerosols in PM2.5 in the Beijing, Tianjin, and Langfang Region, China. Int. J. Environ. Res. Public Health 2018, 15, 1483. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, L.; Li, T.; Chen, Y.; Yang, F. Seasonal Variation of Carbonaceous Species of PM2.5 in a Small City in Sichuan Basin, China. Atmosphere 2020, 11, 1286. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.; Hegde, P. Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. Atmos. Environ. 2008, 42, 6785–6796. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Cary, R.A.; Laulainen, N.S. Primary and secondary organic carbon downwind of Mexico City. Atmos. Chem. Phys. 2009, 9, 6793–6814. [Google Scholar] [CrossRef]
- Wang, C.; Hui, F.; Wang, Z.; Zhu, X.; Zhang, X. Chemical characteristics of size-fractioned particles at a suburban site in Shijiazhuang, North China: Implication of secondary particle formation. Atmos. Res. 2021, 259, 105680. [Google Scholar] [CrossRef]
- Ji, X.; Ji, W. Determination of the Volatile Organic Compounds (VOCs) in Mature and Immature Foliage of Five Species of Pinaceae by Gas Chromatography–Mass Spectrometry (GC-MS) with Principal Component Analysis (PCA) and Cluster Analysis (CA). Anal. Lett. 2022, 55, 1412–1424. [Google Scholar] [CrossRef]
- Li, H.Z.; Dallmann, T.R.; Li, X.; Gu, P.; Presto, A.A. Urban Organic Aerosol Exposure: Spatial Variations in Composition and Source Impacts. Environ. Sci. Technol. 2018, 52, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, J.; Han, G.; Liu, T.; Ma, W.-M.; Li, J. Preliminary investigation of soil organic carbon distribution and turnover patterns, and potential pollution sources in and around a typical coking plant in North China. Environ. Res. 2023, 228, 115845. [Google Scholar] [CrossRef]
- Chen, Q.; Sun, H.; Mu, Z.; Wang, Y.; Li, Y.; Zhang, L.; Wang, M.; Zhang, Z. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi’an, Northwestern China. Environ. Pollut. 2019, 247, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Koçak, E.; Kılavuz, S.A.; Öztürk, F.; İmamoğlu, İ.; Tuncel, G. Characterization and source apportionment of carbonaceous aerosols in fine particles at urban and suburban atmospheres of Ankara, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 25701–25715. [Google Scholar] [CrossRef] [PubMed]
Sampling Period | OC/EC | (OC/EC)pri | POC/(mg/g) | SOC/(mg/g) | (SOC/OC)/% |
---|---|---|---|---|---|
September | 2.60 ± 0.28 | 1.24 | 17.30 | 14.60 | 45.78 |
October | 2.22 ± 0.37 | 1.18 | 23.09 | 16.01 | 40.95 |
November | 1.97 ± 0.23 | 1.48 | 30.91 | 8.90 | 22.35 |
Location | Sample Type | Sampling Period | SOC/ (mg/g) | SOC/OC (%) | Reference |
---|---|---|---|---|---|
Nanchang, China | dust | September 2020 | 14.60 | 46 | This study |
October 2020 | 16.01 | 41 | |||
November 2020 | 8.90 | 22 | |||
Guangzhou, China | Outdoor PM2.5 | September 2012 | / | 48 | [46] |
October 2012 | / | 40 | |||
November 2012 | / | 39 | |||
Calabria, Italy | Outdoor PM2.5 | September 2016 | 88.99 | 60 | [47] |
October 2016 | 65.36 | 55 | |||
November 2016 | 36.93 | 37 | |||
Beiing, China | Indoor dust | December 2016 | 94.85 | 38 | [48] |
Tianjing, China | Indoor dust | December 2016 | 84.41 | 42 | |
Langfang, China | Outdoor dust | December 2016 | 147.62 | 37 | |
Sichuan, China | Outdoor PM2.5 | Spring 2016 | 18.79 | 37 | [49] |
Summer 2016 | 14.89 | 47 | |||
Autumn 2016 | 12.77 | 27 | |||
Winter 2016 | 34.89 | 41 | |||
Manora Peak, India | Outdoor PM2.5 | September–November 2006 | 24.81 | 28 | [50] |
Abu Mountain, India | Outdoor PM2.5 | September–November 2006 | 27.13 | 20 | |
Mexico City, Mexico | Outdoor PM2.5 | March 2006 | / | 74 | [51] |
Fraction | Factor1 | Factor2 | Factor3 |
---|---|---|---|
OC1 | 0.208 | 0.756 | 0.543 |
OC2 | 0.711 | 0.307 | −0.037 |
OC3 | 0.822 | −0.159 | −0.456 |
OC4 | 0.768 | 0.281 | −0.459 |
EC1 | 0.907 | 0.089 | 0.022 |
EC2 | 0.731 | −0.212 | 0.583 |
EC3 | 0.582 | −0.663 | 0.433 |
Eigenvalue | 3.510 | 1.263 | 1.166 |
Variance contribution rate | 50.141 | 18.036 | 16.664 |
Cumulative variance contribution rate | 50.141 | 68.178 | 84.841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Huang, Z.; Zou, C.; Tang, Y.; Li, J.; Yu, C.; Zhu, F. Particle Size, Effects of Distance and Height from Source, Carbon Components, and Source of Dust in Nanchang, Central China. Atmosphere 2024, 15, 133. https://doi.org/10.3390/atmos15010133
Huang H, Huang Z, Zou C, Tang Y, Li J, Yu C, Zhu F. Particle Size, Effects of Distance and Height from Source, Carbon Components, and Source of Dust in Nanchang, Central China. Atmosphere. 2024; 15(1):133. https://doi.org/10.3390/atmos15010133
Chicago/Turabian StyleHuang, Hong, Zihan Huang, Changwei Zou, Yuan Tang, Jianlong Li, Chenglong Yu, and Fangxu Zhu. 2024. "Particle Size, Effects of Distance and Height from Source, Carbon Components, and Source of Dust in Nanchang, Central China" Atmosphere 15, no. 1: 133. https://doi.org/10.3390/atmos15010133
APA StyleHuang, H., Huang, Z., Zou, C., Tang, Y., Li, J., Yu, C., & Zhu, F. (2024). Particle Size, Effects of Distance and Height from Source, Carbon Components, and Source of Dust in Nanchang, Central China. Atmosphere, 15(1), 133. https://doi.org/10.3390/atmos15010133