Evaluating the Impact of COVID-19 on the Carbon Footprint of Two Research Projects: A Comparative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Implementation and Scenarios
- All employees adhered to regular commuting routines, traveling to their designated workplaces;
- Bureaucratic procedures mandated the physical printing of essential documents, encompassing deliverables and evaluation reports;
- Participation in conferences and events necessitated physical presence, requiring in-person attendance.
- Mandatory teleworking measures were introduced, ensuring that 50% of the project partner’s employees worked remotely in compliance with public health guidelines. The assessment of the impact of telecommuting on electricity consumption considered the usage of personal computers or laptops equipped with internet connectivity by the employees;
- Bureaucratic processes were transitioned to electronic formats, eliminating the need for physical paperwork and facilitating digital workflows;
- Conferences and events underwent a transformative shift, transitioning to virtual or hybrid formats, thereby facilitating virtual participation and engagement.
2.2. Scientific Project Descriptions: KASTOM and LIFE ASTI
3. Results
4. Discussion
5. Conclusions
- Comparative CF Analysis of KASTOM and LIFE ASTI: The evaluation evinced a conspicuous divergence in CF manifestation between the LIFE ASTI and KASTOM projects during the BC. The LIFE ASTI project, indicative of an elevated CF in comparison to KASTOM, demonstrated a notable dependency on electricity consumption, which emerged as a predominant factor contributing to the CF of both projects. This divergence, attributed to the magnitude of personnel engagement and the pronounced proclivity of the LIFE ASTI project towards external outreach and policy-oriented objectives, underscores the multidimensional determinants shaping CF dynamics;
- Assessment of CF per full-time employee: An aspect under investigation concerns the examination of CF per full-time employee, revealing the emergence of a distinct trajectory. The LIFE ASTI assumed a diminished CF in relation to KASTOM, emblematic of collective moderation in emissions per employee within the former. This manifestation underscores the requisite consideration of nuanced contextual variables whilst delineating CF metrics amidst varying project configurations;
- Differential Impact scenarios on CF: The study further probed discrete scenarios precipitating CF variations. Before the pandemic, the exigencies of commuting, physical documentation, and in-person participation in events manifested as prominent CF instigators across both projects. Conversely, the after pandemic period experienced a profound and fundamental shift in paradigm, characterized by telecommuting, digitization of administrative processes, and the emergence of virtual/hybrid event modalities. The confluence of these sustainable modalities, underpinned by streamlined operational paradigms and virtual conferencing modalities, yielded substantial CF reductions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA Report ‘Trends and Projections in Europe 2021’ with Input from EnergyVille/VITO|EnergyVille. Available online: https://www.energyville.be/en/news-events/eea-report-trends-and-projections-europe-2021-input-energyvillevito (accessed on 7 June 2023).
- Liobikienė, G.; Butkus, M. The European Union Possibilities to Achieve Targets of Europe 2020 and Paris Agreement Climate Policy. Renew. Energy 2017, 106, 298–309. [Google Scholar] [CrossRef]
- Graichen, J.; Gores, S.; Schmid, C.; Mandl, N. Trends and Projections under the Effort Sharing Legislation Overview on Developments and Drivers; Climate Change Mitigation and Energy (ETC/CME): Boeretang, Belgium, 2021. [Google Scholar]
- Aujoux, C.; Kotera, K.; Blanchard, O. Estimating the Carbon Footprint of the GRAND Project, a Multi-Decade Astrophysics Experiment. Astropart. Phys. 2021, 131, 102587. [Google Scholar] [CrossRef]
- Wennersten, R.; Sun, Q.; Li, H. The Future Potential for Carbon Capture and Storage in Climate Change Mitigation–an Overview from Perspectives of Technology, Economy and Risk. J. Clean. Prod. 2015, 103, 724–736. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Sebos, I. Enhancing Climate Neutrality and Resilience through Coordinated Climate Action: Review of the Synergies between Mitigation and Adaptation Actions. Climate 2023, 11, 105. [Google Scholar] [CrossRef]
- Malik, A.; Sinha, S.; Goel, S. The “Screen”ing of You and Me: Effects of COVID-19 on Counterproductive Work Behaviors. IEEE Eng. Manag. Rev. 2020, 48, 37–43. [Google Scholar] [CrossRef]
- Nikolaeva, A.; Lin, Y.T.; Nello-Deakin, S.; Rubin, O.; von Schönfeld, K.C. Living without Commuting: Experiences of a Less Mobile Life under COVID-19. Mobilities 2022, 18, 1–20. [Google Scholar] [CrossRef]
- Filimonau, V.; Archer, D.; Bellamy, L.; Smith, N.; Wintrip, R. The Carbon Footprint of a UK University during the COVID-19 Lockdown. Sci. Total Environ. 2021, 756, 143964. [Google Scholar] [CrossRef]
- Progiou, A.G.; Sebos, I.; Zarogianni, A.-M.; Tsilibari, E.M.; Adamopoulos, A.D.; Varelidis, P. Impact of Covid-19 Pandemic on Air Pollution: The Case of Athens, Greece. Environ. Eng. Manag. J. 2022, 21, 879–889. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O. Summary for Policymakers. In Global Warming of 1.5 °C IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2018; pp. 1–24. [Google Scholar] [CrossRef]
- Mariette, J.; Blanchard, O.; Berné, O.; Aumont, O.; Carrey, J.; Ligozat, A.; Lellouch, E.; Roche, P.-E.; Guennebaud, G.; Thanwerdas, J.; et al. An Open-Source Tool to Assess the Carbon Footprint of Research. Environ. Res. Infrastruct. Sustain. 2022, 2, 035008. [Google Scholar] [CrossRef]
- Battistini, R.; Passarini, F.; Marrollo, R.; Lantieri, C.; Simone, A.; Vignali, V. How to Assess the Carbon Footprint of a Large University? The Case Study of University of Bologna’s Multicampus Organization. Energies 2022, 16, 166. [Google Scholar] [CrossRef]
- Stevens, A.R.H.; Bellstedt, S.; Elahi, P.J.; Murphy, M.T. The Imperative to Reduce Carbon Emissions in Astronomy. Nat. Astron. 2020, 4, 843–851. [Google Scholar] [CrossRef]
- Kharvari, F.; Azimi, S.; Hook, A.; Court, V.; Sovacool, B.K.; Sorrell, S. A Systematic Review of the Energy and Climate Impacts of Teleworking You May Also like A Preliminary Scenario Analysis of the Impacts of Teleworking on Energy Consumption and Greenhouse Gas (GHG) Emissions Environmental Research Letters a Systematic Review of the Energy and Climate Impacts of Teleworking. Environ. Res. Lett 2020, 15, 93003. [Google Scholar] [CrossRef]
- Brömmelhaus, A.; Feldhaus, M.; Schlegel, M. Family, Work, and Spatial Mobility: The Influence of Commuting on the Subjective Well-Being of Couples. Appl. Res. Qual. Life 2020, 15, 865–891. [Google Scholar] [CrossRef]
- Wynes, S.; Donner, S.D.; Tannason, S.; Nabors, N. Academic Air Travel Has a Limited Influence on Professional Success. J. Clean. Prod. 2019, 226, 959–967. [Google Scholar] [CrossRef]
- Klöwer, M.; Hopkins, D.; Allen, M.; Higham, J. An Analysis of Ways to Decarbonize Conference Travel after COVID-19. Nature 2020, 583, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.A. COVID-19 and Emergency ELearning: Consequences of the Securitization of Higher Education for Post-Pandemic Pedagogy. Contemp. Secur. Policy 2020, 41, 492–505. [Google Scholar] [CrossRef]
- Beck, M.J.; Hensher, D.A.; Wei, E. Slowly Coming out of COVID-19 Restrictions in Australia: Implications for Working from Home and Commuting Trips by Car and Public Transport. J. Transp. Geogr. 2020, 88, 102846. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, P.; Jażdżewska-Gutta, M.; Szmelter-Jarosz, A. Lockdowned: Everyday Mobility Changes in Response to COVID-19. J. Transp. Geogr. 2021, 90, 102906. [Google Scholar] [CrossRef]
- Fatmi, M.R. COVID-19 Impact on Urban Mobility. J. Urban Manag. 2020, 9, 270–275. [Google Scholar] [CrossRef]
- Bouscayrol, A.; Lepoutre, A.; Castex, E. Comparisons of GHG Emissions of On-Site Working and Teleworking: Case Study of a Research Group. In Proceedings of the 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 25–28 October 2021. [Google Scholar] [CrossRef]
- Lannelongue, L.; Inouye, M. Carbon Footprint Estimation for Computational Research. Nat. Rev. Methods Prim. 2023, 3, 9. [Google Scholar] [CrossRef]
- Obringer, R.; Rachunok, B.; Maia-Silva, D.; Arbabzadeh, M.; Nateghi, R.; Madani, K. The Overlooked Environmental Footprint of Increasing Internet Use. Resour. Conserv. Recycl. 2021, 167, 105389. [Google Scholar] [CrossRef]
- Jäckle, S. Reducing the Carbon Footprint of Academic Conferences by Online Participation: The Case of the 2020 Virtual European Consortium for Political Research General Conference; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Ciers, J.; Mandic, A.; Toth, L.D.; Veld, G.O. Carbon Footprint of Academic Air Travel: A Case Study in Switzerland. Sustainability 2018, 11, 80. [Google Scholar] [CrossRef]
- Achten, W.M.J.; Almeida, J.; Muys, B. Carbon Footprint of Science: More than Flying. Ecol. Indic. 2013, 34, 352–355. [Google Scholar] [CrossRef]
- Passalacqua, A. The Carbon Footprint of a Scientific Community: A Survey of the Historians of Mobility and Their Normalized yet Abundant Reliance on Air Travel. J. Transp. Hist. 2021, 42, 121–141. [Google Scholar] [CrossRef]
- Yakar, D.; Kwee, T.C. Carbon Footprint of the RSNA Annual Meeting. Eur. J. Radiol. 2020, 125, 108869. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.; Muñiz, I.; Quintana, M.; Simon, F.; Castillo, B.; de la Fuente, H.; Rivera, J.; Widener, M. Short Run “Rebound Effect” of COVID on the Transport Carbon Footprint. Cities 2022, 131, 104039. [Google Scholar] [CrossRef] [PubMed]
- Donahue, L.M.; Morgan, H.K.; Peterson, W.J.; Williams, J.A. The Carbon Footprint of Residency Interview Travel. J. Grad. Med. Educ. 2021, 13, 89–94. [Google Scholar] [CrossRef]
- Reyes-García, V.; Graf, L.; Junqueira, A.B.; Madrid, C. Decarbonizing the Academic Sector: Lessons from an International Research Project. J. Clean. Prod. 2022, 368, 133174. [Google Scholar] [CrossRef]
- Knödlseder, J.; Brau-Nogué, S.; Coriat, M.; Garnier, P.; Hughes, A.; Martin, P.; Tibaldo, L. Estimate of the Carbon Footprint of Astronomical Research Infrastructures. Nat. Astron. 2022, 6, 503–513. [Google Scholar] [CrossRef]
- Gomez, N.; Cadarso, M.-A.; Monsalve, F. Carbon Footprint of a University in a Multiregional Model: The Case of the University of Castilla-La Mancha. J. Clean. Prod. 2016, 138, 119–130. [Google Scholar] [CrossRef]
- Sweke, R.; Boes, P.; Ng, N.; Sparaciari, C.; Eisert, J.; Goihl, M. Transparent Reporting of Research-Related Greenhouse Gas Emissions through the Scientific CO2nduct Initiative. Commun. Phys. 2022, 5, 150. [Google Scholar] [CrossRef]
- Larsen, H.N.; Pettersen, J.; Solli, C.; Hertwich, E.G. Investigating the Carbon Footprint of a University-The Case of NTNU. J. Clean. Prod. 2013, 48, 39–47. [Google Scholar] [CrossRef]
- Burtscher, L.; Barret, D.; Borkar, A.P.; Grinberg, V.; Jahnke, K.; Kendrew, S.; Maffey, G.; Mccaughrean, M.J. The Carbon Footprint of Large Astronomy Meetings. Nat. Astron. 2020, 4, 823–825. [Google Scholar] [CrossRef]
- Spinellis, D.; Louridas, P. The Carbon Footprint of Conference Papers. PLoS ONE 2013, 8, e66508. [Google Scholar] [CrossRef]
- Desiere, S. The Carbon Footprint of Academic Conferences: Evidence from the 14th EAAE Congress in Slovenia. EuroChoices 2016, 15, 56–61. [Google Scholar] [CrossRef]
- Stroud, J.T.; Feeley, K.J. Responsible Academia: Optimizing Conference Locations to Minimize Greenhouse Gas Emissions. Ecography 2015, 38, 402–404. [Google Scholar] [CrossRef]
- Beno, M. Face-to-Display Working: Decarbonisation Potential of Not Commuting to Work before Covid-19 and during and after Lockdowns. Acad. J. Interdiscip. Stud. 2021, 10, 17–24. [Google Scholar] [CrossRef]
- El Geneidy, S.; Baumeister, S.; Govigli, V.M.; Orfanidou, T.; Wallius, V. The Carbon Footprint of a Knowledge Organization and Emission Scenarios for a Post-COVID-19 World. Environ. Impact Assess. Rev. 2021, 91, 106645. [Google Scholar] [CrossRef]
- Liora, N.; Poupkou, A.; Papadogiannaki, S.; Parliari, D.; Giama, E.; Pieretti, G.A.; Da Rugna, L.C.; Susanetti, L.; Bressan, M.; Villanueva, J.A.B.; et al. A Methodology for Carbon Footprint Estimations of Research Project Activities—A Scenarios Analysis for Reducing Carbon Footprint. Atmosphere 2023, 14, 6. [Google Scholar] [CrossRef]
- Wecaremedapp. Available online: https://wecaremed.netlify.app/login?redirect=/ (accessed on 12 June 2023).
- WECAREMED. Available online: https://wecaremed.interreg-med.eu/ (accessed on 12 June 2023).
- World Business Council for Sustainable Development; World Resources Institute. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; World Business Council for Sustainable Development: Geneva, Switzerland; World Resources Institute: Washington, DC, USA, 2004; ISBN 978-1-56973-568-8. [Google Scholar]
- DEFRA—UK Department for Environmental, Food and Rural Affairs. Greenhouse Gas Reporting: Conversion Factors 2021. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2021 (accessed on 12 June 2023).
- Liora, N.; Kontos, S.; Parliari, D.; Akritidis, D.; Poupkou, A.; Papanastasiou, D.; Melas, D. “On-Line” Heating Emissions Based on WRF Meteorology— Application and Evaluation of a Modeling System over Greece. Atmosphere 2022, 13, 568. [Google Scholar] [CrossRef]
- Keppas, S.C.; Papadogiannaki, S.; Parliari, D.; Kontos, S.; Poupkou, A.; Tzoumaka, P.; Kelessis, A.; Zanis, P.; Casasanta, G.; De’donato, F.; et al. Future Climate Change Impact on Urban Heat Island in Two Mediterranean Cities Based on High-Resolution Regional Climate Simulations. Atmosphere 2021, 12, 884. [Google Scholar] [CrossRef]
- Bousema, T.; Selvaraj, P.; Djimde, A.A.; Yakar, D.; Hagedorn, B.; Pratt, A.; Barret, D.; Whitfield, K.; Cohen, J.M. Reducing the Carbon Footprint of Academic Conferences: The Example of the American Society of Tropical Medicine and Hygiene. Am. J. Trop. Med. Hyg. 2020, 103, 1758. [Google Scholar] [CrossRef] [PubMed]
- Barret, D. Estimating, Monitoring and Minimizing the Travel Footprint Associated with the Development of the Athena X-Ray Integral Field Unit: An on-Line Travel Footprint Calculator Released to the Science Community. Exp. Astron. 2020, 49, 183–216. [Google Scholar] [CrossRef] [PubMed]
- Duane, B.; Lyne, A.; Faulkner, T.; Windram, J.D.; Redington, A.N.; Saget, S.; Tretter, J.T.; McMahon, C.J. Webinars Reduce the Environmental Footprint of Pediatric Cardiology Conferences. Cardiol. Young 2021, 31, 1625–1632. [Google Scholar] [CrossRef]
- Luewarasirikul, N. A Study of Electrical Energy Saving in Office. Procedia Soc. Behav. Sci. 2015, 197, 1203–1208. [Google Scholar] [CrossRef]
- Lim, G.H.; Keumala, N.; Ghafar, N.A. Energy Saving Potential and Visual Comfort of Task Light Usage for Offices in Malaysia. Energy Build. 2017, 147, 166–175. [Google Scholar] [CrossRef]
- Kawamoto, K.; Shimoda, Y.; Mizuno, M. Energy Saving Potential of Office Equipment Power Management. Energy Build. 2004, 36, 915–923. [Google Scholar] [CrossRef]
- Allen, S.; Marquart-Pyatt, S.T. Workplace Energy Conservation at Michigan State University. Int. J. Sustain. High. Educ. 2018, 19, 114–129. [Google Scholar] [CrossRef]
- Di Stefano, J. Energy Efficiency and the Environment: The Potential for Energy Efficient Lighting to Save Energy and Reduce Carbon Dioxide Emissions at Melbourne University, Australia. Energy 2000, 25, 823–839. [Google Scholar] [CrossRef]
- Berawi, M.A.; Kim, A.A.; Naomi, F.; Basten, V.; Miraj, P.; Medal, L.A.; Sari, M. Designing a Smart Integrated Workspace to Improve Building Energy Efficiency: An Indonesian Case Study. Int. J. Constr. Manag. 2021, 23, 410–422. [Google Scholar] [CrossRef]
- Waste & Resources the Old Academy Action Programme (WRAP) Green Office: A Guide to a More Cost-Effective and Environmentally Sustainable Office. Available online: https://greenbusiness.ie/wp-content/uploads/2016/06/WRAP_Green_Office_Guide.pdf (accessed on 7 June 2023).
- Kumar, A.; Mishra, S.; Pandey, R.; Yu, Z.G.; Kumar, M.; Khoo, K.S.; Thakur, T.K.; Show, P.L. Microplastics in Terrestrial Ecosystems: Un-Ignorable Impacts on Soil Characterises, Nutrient Storage and Its Cycling. TrAC Trends Anal. Chem. 2023, 158, 116869. [Google Scholar] [CrossRef]
Project | No. of Partners | Duration (Years) | Employees | Person Months | Two-Way Travels |
---|---|---|---|---|---|
KASTOM | 4 | 4.5 | 37 | 163 | 8264 |
LIFE ASTI | 6 | 4 | 71 | 348 | 18,582 |
Project | Fuels (kWh) | Electricity (kWh) | Freshwater Bodies (m3) | Materials (t) | Project-Hosted Events | Participation in External Events | Equipment | Deliverables (pg) |
---|---|---|---|---|---|---|---|---|
KASTOM | 7561 | 58,188 | 243 | 29 | 3 | 13 | 4 | 1806 |
LIFE ASTI | 17,378 | 114,187 | 471 | 53 | 13 | 20 | 10 | 5060 |
Project: KASTOM | Project: LIFE ASTI | |||
---|---|---|---|---|
CF | ||||
Emission Source | tCO2e | tCO2e/year | tCO2e | tCO2e/year |
Fuels (Heating) | 1.66 | 0.37 | 3.81 | 0.95 |
Electricity | 26.77 | 5.95 | 52.55 | 13.14 |
Freshwater bodies | 0.05 | 0.01 | 0.10 | 0.03 |
Transportation | 3.41 | 0.76 | 8.78 | 2.19 |
Materials | 14.02 | 3.12 | 27.19 | 6.80 |
Deliverables | 0.01 | 0.01 | 0.04 | 0.01 |
Equipment | 3.95 | 0.88 | 8.97 | 2.24 |
tCO2e/event | tCO2e/event | |||
Project-hosted events | 7.77 | 2.59 | 16.86 | 1.31 |
Participation in external events | 6.13 | 0.47 | 3.51 | 0.18 |
Total | tCO2e | tCO2e/year | tCO2e | tCO2e/year |
63.77 | 14.17 | 121.79 | 30.45 |
CF (tCO2e) | ||||
---|---|---|---|---|
Before COVID-19 Scenario | After COVID-19 Scenario | |||
Emission Source | KASTOM | LIFE ASTI | KASTOM | LIFE ASTI |
Fuels (Heating) | 2.55 | 5.54 | 1.15 | 2.73 |
Electricity | 41.09 | 75.33 | 18.52 | 38.24 |
Freshwater bodies | 0.08 | 0.14 | 0.04 | 0.07 |
Transportation | 6.18 | 14.93 | 3.33 | 7.29 |
Materials | 21.58 | 39.07 | 9.72 | 19.79 |
Deliverables | 0.03 | 0.15 | 0.002 | 0.01 |
Equipment | 3.95 | 8.97 | 3.95 | 8.97 |
Project-hosted events | 9.33 | 20.69 | 7.48 | 11.16 |
Participation in external events | 7.07 | 8.62 | 5.48 | 3.34 |
tCO2e | tCO2e | |||
Total | 91.9 | 173.4 | 49.7 | 91.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadogiannaki, S.; Liora, N.; Parliari, D.; Cheristanidis, S.; Poupkou, A.; Sebos, I.; Progiou, A.; Melas, D. Evaluating the Impact of COVID-19 on the Carbon Footprint of Two Research Projects: A Comparative Analysis. Atmosphere 2023, 14, 1365. https://doi.org/10.3390/atmos14091365
Papadogiannaki S, Liora N, Parliari D, Cheristanidis S, Poupkou A, Sebos I, Progiou A, Melas D. Evaluating the Impact of COVID-19 on the Carbon Footprint of Two Research Projects: A Comparative Analysis. Atmosphere. 2023; 14(9):1365. https://doi.org/10.3390/atmos14091365
Chicago/Turabian StylePapadogiannaki, Sofia, Natalia Liora, Daphne Parliari, Stavros Cheristanidis, Anastasia Poupkou, Ioannis Sebos, Athena Progiou, and Dimitrios Melas. 2023. "Evaluating the Impact of COVID-19 on the Carbon Footprint of Two Research Projects: A Comparative Analysis" Atmosphere 14, no. 9: 1365. https://doi.org/10.3390/atmos14091365
APA StylePapadogiannaki, S., Liora, N., Parliari, D., Cheristanidis, S., Poupkou, A., Sebos, I., Progiou, A., & Melas, D. (2023). Evaluating the Impact of COVID-19 on the Carbon Footprint of Two Research Projects: A Comparative Analysis. Atmosphere, 14(9), 1365. https://doi.org/10.3390/atmos14091365