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Abstract: Municipal solid waste (MSW) landfills are among the major sources of greenhouse gas
(GHG) emissions affecting global warming and the Earth’s climate. In Bulgaria, 53 regional non-
hazardous waste landfills (RNHWL) are in operation, which necessitates conducting studies to
determine the environmental risk from the emitted GHGs. This study attempted to assess the CH4

and CO2 emissions from three gas wells of a cell (in active and closed phases, each of 2.5 years
duration) in an RNHWL, Harmanli (41◦54′24.29′′ N; 25◦53′45.17′′ E), based on monthly in situ
measurements by portable equipment, using the Interrupted Time Series (ITS) ARMA model. The
obtained results showed a significant variation of the CH4 and CO2 concentrations (2.06–15.1% v/v)
and of the CH4 and CO2 emission rates (172.81–1762.76 kg/y) by gas wells (GWs), months and years,
indicating the dynamics of the biodegradation of the deposited waste in the areas of the three GWs.
Throughout most of the monitoring period (2018–2022), the CH4 concentrations were higher than
the CO2 concentrations (% v/v), while CO2 emissions were lower than CH4 emissions (kg/y), a
fact that could be explained by the differences in the mass of the two gases. The emissions rates of
both gases from GW2 dominated over those from GW1 and GW3, giving a reason to determine the
zone of GW2 as a hotspot of Cell-1. On the whole, CH4 and CO2 emission rates were higher in the
winter (December–February) and partly in the spring (March–May) compared to summer–autumn
(June–November). However, the CH4 and CO2 concentrations and emissions decreased drastically
after the Cell-1 closure. The CH4/CO2 ratio (0.68–2.01) by months and gas wells demonstrated a
great sensitivity, making it a suitable indicator for the assessment of organic waste biodegradation
level in the landfills. The ITS ARMA model confirmed the negative and significant effect of the cell
closure on CH4 and CO2 emissions; the correlations found between predicted and observed values
were strong and positive (0.739–0.896).

Keywords: landfill cell; gas collection system; gas wells; CH4; CO2; concentrations; CH4/CO2

volumetric ratio; emissions; assessment; Interrupted Time Series ARMA model

1. Introduction

The rapid urbanization and population growth around the world has resulted in a
drastic increase of municipal solid waste (MSW) generation [1–3]. The MSW amount is
increasing even faster than the rate of urbanization [4]. In recent years, human activities
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have generated approximately 2 billion tons of MSW annually with an expected growth
up to 3.76 billion tons by 2050 [5], of which between 44 and 46% (by mass) will be or-
ganic waste (food, plant residues, paper, wood) [6]. Despite the different options for
MSW management—prevention, minimization, reuse, recycling, energy recovery, burn-
ing, etc.—MSW landfilling is still the most common method for MSW treatment in many
countries [7–11]. Approximately 60–85% of the global MSW is deposited in landfills of
different types [2,5,12,13]. A number of studies report that MSW landfills may negatively
affect the environment (pollution of air, soil, and groundwater) and human health due
to the generation of landfill gas (LFG) and leachate [10,14–20]. Based on literature data,
the emissions from the landfills can be classified into five different sources: biogas emis-
sions; landfill leachate emissions; emissions related to the disposal of fresh waste (“fresh
waste emissions”); emissions from the temporarily covered landfill surface; and emissions
from the permanently covered landfill surface [21]. The correct choice of site for the con-
struction of the landfill is of key importance. Recent research data provide evidence that
multi-criteria analysis and geographic information systems are successfully used to find a
suitable landfill site location. The method includes three steps: the first step is to process 15
environmental and socio-economic factors utilizing the fuzzy analytic-hierarchy process
method; the second step comprises visual analysis and the selection of the most suitable
locations from the synthetic convenience map; the third step involves the final ranking of
sites by means of the fuzzy multi-objective analysis by ratio plus the full multiplicative form
method, based on four additional beneficial and non-beneficial criteria [22]. That is why the
adequate management of landfills through their whole life cycle is important to mitigate
the potential environmental and human health impacts of MSW landfilling [8,23–25].

MSW landfills are a large source of anthropogenic greenhouse gas (GHGs) emissions
with a contribution rate of between 69% and 95% in the waste sector [26] and about 3–5% of
the total GHG emissions, mainly due to uncontrolled biogas emissions. All this defines land-
fills as prominent contributors to global warming [24,27,28]. LFG production in the landfills
as specific anthropogenic ecological systems depends on many factors: type of the landfill
(sanitary or unsanitary), structural features of the site, type of the landfilling (controlled or
uncontrolled), amount of the deposited waste, waste type and composition, landfill daily
cover, gas and leachate systems design and operation, environmental factors (temperature,
moisture content, pH, inhibitory compounds, type of microorganisms—aerobic/anaerobic
and their activity), etc. [11,29–32]. LFG production involves three stages—anaerobic bac-
terial decomposition of the organic substances, chemical reactions and volatilization or
hydrolysis, acetogenesis, and methanogenesis [33–35]. LFG is a mixture of different gases
divided into two groups; the first group comprises gases generated in large amounts (prin-
cipal gases—CH4: 55–60% v/v and CO2: 40–45% v/v), while the second group is formed
by gases present in very small amounts (minor and trace gases—N2O, H2S, H2, NH3, and
non-methane volatile organic compounds/NMVOCs/, about 1–9% v/v) [3,30,36,37].

Generally, the production of CH4 in landfill MSW dominates compared to that of
CO2 [31,32,38,39]. Moreover, the global warming potential of methane is 21–36 times
higher than that of CO2 over a 100-year time frame and ~80–84 times higher in the short-
term as CH4 is a short-lived greenhouse gas—about 12 years [24,31,40–42]. In addition to
being a potent GHG, CH4 is also an ozone precursor and thus has impacts on air quality,
human health, and plants [43–45]. The relatively high percentage of CH4 in LGE indicates
active anaerobic decomposition of the biodegradable organic waste components [46], while
the lower percentage of CO2 is a result of the decomposition of substrates with a high
hydrogen/oxygen ratio (e.g., fats, hemicellulose, etc.) as well as its dissolution in wa-
ter/leachate within the site [27]. Some researchers propose the CH4/CO2 volumetric ratio
as a reliable indicator for the assessment of the degradation level of the organic compounds
for determination of the anaerobic “age” of the landfill [8,46,47]. Under normal condition
closure, landfill sites continue to generate LFG until the organic compounds in the waste
are degraded, which can last decades [29,31,46,48] and even centuries [13]. Landfill sites are
estimated as the second largest source of anthropogenic CH4 emissions [49], responsible for
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between 5.0 and 20% of the global methane emissions [41,50,51]; in Europe, that percentage
is about 20% [52]–22% [29].

Over the last two decades, EU waste management policy has increasingly shifted the
focus with regard to municipal waste from disposal methods to prevention and recycling,
to reduce the pressure on the environment and create jobs [53]. In 2020, the EU-28 have
generated 225 million tons of MSW—by 13.6% more compared to 1995 (198 million tons)—
but the total MSW landfilled in 2020 fell by 69 million tons, or by 58 % compared to 1995
(from 121 million tons to 52 million tons). As a result, the landfilled MSW of the total gener-
ated MSW in the EU countries dropped from 61% in 1995 to 32.2% in 2020. Nevertheless,
the MSW landfilling is still the most widely used practice in EU countries [54]. For the
same period, the CH4 emissions from the solid waste deposition sector also decreased
by 37%—from 127 Mt CO2eq to 80 Mt CO2eq. Thus, EU countries contribute to climate
change mitigation and air quality and human health improvement [45]. The positive trend
towards CH4 emissions reduction can be attributed to the implementation of Directive
31/1999 on landfill [55], binding Member States to reducing the amount of biodegradable
municipal waste going to landfills to 35% in 2016 and to 10% until 2035. The Directive
has encouraged EU countries to adopt different strategies to avoid sending the organic
municipal waste fraction to landfills through composting (including fermentation), incin-
eration, and pre-treatment, such as mechanical-biological treatments (including physical
stabilization) [54].

Following the EU waste management policy, in the last decade, Bulgaria (111,000 km2,
population 6,520,000) has constantly reduced the amount of MSW generated (from 3572 thou-
sand tons in 2011 to 2829 thousand tons in 2020) as well as the amount of MSW landfilled
(from 72% in 2011 to 29% in 2020) [56]. One of the measures to achieve the main goal of
the new National Waste Management Plan 2021–2028 [57], namely reducing the impact of
harmful waste on the environment and public health, is to apply environmentally friendly
practices of MSW landfilling and LFG emission control. Nowadays, 53 regional sanitary
non-hazardous MSW landfills with different structures and capacities are in operation in the
country. All landfills are constructed and function using a similar technology with minor
modifications according to specific conditions of each site. In general, the construction and
management of the landfills complies with the EU Landfill Directive [55]. The sanitary
landfill construction includes four specific layers that play an important role in the entire
process of waste decomposition; the first layer is at the bottom, made of compact clay and
a synthetic geomembrane to protect the underground area of pollution; the second layer is
a drainage system to drain away the leachate; the third layer is a gas collection system to
extract the LFG and the fourth layer forms the repository in which to store the deposited
waste. The biogas well-pipes collection system with LFG flaring and daily, temporary, and
final covers with the available native soil of the landfill site, followed by its reclamation as
the general LFG management practice. The mentioned practices are widely used to control
LFG emissions from the landfills in many countries over the world [20,49,58,59]. According
to the requirements of Ordinance No. 6/2013 [60], Bulgarian landfill operators are obliged
to carry out monitoring on GHG emissions on their own and to report annually collected
data to the National Environmental Executive Agency.

The future actions of the authorized Bulgarian institutions regarding the management
of MSW and their landfilling follow the EU policy, which aims to achieve a “circular
economy” and “zero waste” up to 2050. In this regard, it is planned to build installations
for the separation/pretreatment of waste and installations for composting green and
other biodegradable waste at all landfills. Currently, 22 bio-waste recovery plants are
in operation, another 30 are in the process of implementation and one is in the process
of evaluation; of the separation/pretreatment plants—25 are in operation, 21 are in the
process of implementation, two are at the working project stage, one is in the process of
evaluation and there is an investment intention for another one. There are also ongoing
procedures for closing landfills that do not meet the regulatory requirements, as well as
procedures for the reclamation of landfills whose capacity has already been filled. The
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intention is to carry out the technical reclamation of the landfills in the shortest possible
terms to prevent the negative impact on the environment from possible self-ignition of
the landfilled waste and from other incidents. The building of additional cells to landfills
in regions where significant amounts of MSW are generated has been devised. All this
creates more favorable and environmentally friendly conditions for landfilling and landfill
management in the country [57].

With regard to a more appropriate national policy on the management of non-hazardous
MSW landfills and the implementation of more appropriate measures in compliance with
the local conditions in the country, it is necessary to conduct scientific research to provide
reliable information about the processes in landfills in both active and closed phases. As
pointed out by [48], the first step in controlling and managing LFG is to determine the
quantity of CH4 and CO2 emissions as those gases are the basic greenhouse gases emitted
from the landfills [34,61]. It is strongly suggested to collect biogas emission samples directly
at the extraction wells or at the inlet of the LFG combustion facilities [21]. The aim of this
study was to assess the CH4 and CO2 emissions from a gas collection system of a cell in
a regional non-hazardous waste landfill—Harmanli, Bulgaria—on the basis of: (1) in situ
measured concentrations of both gases during the active and closed phases of the cell;
(2) the results from statistical and correlation analysis, using the Interrupted Time Series
ARMA Model.

2. Materials and Methods
2.1. Site Description

The regional non-hazardous waste landfill (RNHWL) under study is located 2.5 km
south of Harmanli town (41◦54′24.29′′ N; 25◦53′45.17′′ E; 70 m asl) in Southeast Bulgaria on
a surface area of 10.3 ha (Figure 1). The climate of the region is Transitional-Mediterranean—
Cfa by the Köppen climate classification. The Mediterranean climatic influence is mainly
expressed by the higher average annual temperatures. The micro-climate of the investigated
site is characterized by an average annual air temperature of 18.4 ◦C (maximum average
monthly temperature of 28.0 ◦C—August and minimum of −5.0 ◦C—January; average
annual temperature amplitude 20–22◦C), precipitation of 550–600 mm (with autumn–winter
rainfall maximum and summer minimum; a secondary precipitation maximum in May),
and about 2220 h of sunshine (from 59–69 h in December–January to 320–325 in July–
August). The first snow cover forms in the middle of December and in recent years the
average annual number of days with snow cover is about five; winter precipitation is mostly
rain. Cloud cover is greatest in the winter months, with a score of 6.4 to 6.9, during which
the heat flow to the Earth’s surface in the region decreases by about 67%. The average
annual total cloud cover is 5.2 points. On average, there are 40.2 days per year with fog; the
foggiest days are during November and December. The relative air humidity is within the
range 42–77% with a minimum in July and a maximum in January, with an annual average
of around 59%. The Harmanli area is characterized by a windy spring with the highest
average wind speed in April. The orographic features of the region influence the direction
and speed of the wind, with winds with a southern component (SE, S, SW) prevailing. The
average annual wind speed is 3.3 m/s [62].

The RNHWL has been in operation since 2003 (Complex Permit No 285-H2/2018)
and accepts MSW from seven municipalities with a total of 74,270 inhabitants. The landfill
site is a small ravine situated on an east–west slope (23–30◦) and consists of two cells
for non-hazardous waste: Cell-1, 4.0 ha, capacity 292,254 t and Cell-2, 3.2 ha, capacity
157,102 t, a facility for waste separation, capacity up to 30,000 t/y and a composting facility,
capacity up to 2756 t/y (Figure 2). The west borders of the two cells, their lowest parts,
are formed with retaining earth dikes: Cell-1—length 41.00 m, height 6.50 m, width in
the top 3.00 m and Cell-2—20.00 m, 5.00 m and 3.00 m, respectively. To prevent soil and
groundwater pollution, the bottom and the side boundaries of the cells are covered with
several layers: a dense and compact clay layer (0.50 m), a geomembrane of high-density
polyethylene (HDPE), geotextile, and old car tires covered by sand and gravel (0.50 m,
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fraction 16–32 mm). Both cells are equipped with a drainage system for leachate treatment
and a passive LFG collection and extraction system. The drainage system is constructed by
perforated (6.00–22.00 mm) HDPE pipes (Ø 315 mm) and HDPE collector pipe (Ø 355 mm)
for taking the leachate to a pumping station. The leachate collected in the pumping station
is pumped back over the deposited waste in the cells, mostly during rain.
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Legend: 1—Input; 2—Waste separation facility; 3—Waste composting facility; GW1, GW2, GW3,
GW4, GW5 and GW6—Gas wells.

The LFG collection and extraction system of one cell includes three gas wells (GWs),
each of them consisting of a vertical perforated HDPE pipe (Ø 50 mm, 4.00 m), a collector
and three perforated horizontal HDPE pipes (Ø 50 mm, 25 m). The vertical pipe is fixed in
the center of a cylindrical body of gravel (0.80/1.80 m, fraction 30–50 mm) built by concrete
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rings with a total height of 1.80 m, the maximal level of the deposited waste in the cell;
0.60 m of the pipe above this level is placed in a metal tube (d = 0.60 m) filled with gravel
(fraction 30–50 mm), the rest of the pipe (1.60 m) remaining free. The collector is installed
at the bottom of the well and connects the well with the horizontal pipes, placed in the
drainage layer in three directions (120◦ apart) with an upward slope of 1% towards to the
collector. The generated LFG is transported to the vertical pipe of the gas well under its
own pressure and emitted in the atmosphere.

The daily accepted MSW in the landfill is disposed by layers. The waste is spread by a
bulldozer (Shantui SD16, 17 t, Shantui Construction Machinery Co., Ltd., Jining, China)
and compacted with a 32 t compactor machine (Hanomag GL 66 D, Hanover, Germany)
until a layer with a thickness of 25–40 cm is formed. At the end of the day, the compacted
waste layer is covered with native soil and other inert materials about 0.20 m thick. These
operations are repeated until the designed thickness (1.80 m) of the landfill waste in the
cell is reached. Finally, the temporarily covered cell is closed and prepared for reclamation.

The characteristics and composition of the deposited MSW are listed in Tables 1 and 2.
The data in the two tables were collected from their own monitoring, which the landfill
operator is obliged to carry out according to Ordinance No. 6 of 27 August 2013 [60]. Based
on the methodology approved by the Ministry of the Environment and Water [63], the
settlements in the territory from which the MSW is collected are distributed in two zones:
Zone 1, which includes seven cities with a population of 3000 to 25,000 inhabitants and
Zone 2, which includes villages with a population of up to 3000 inhabitants. All parameters,
included in Table 1—fractional composition, moisture content, bulk weight of the waste,
weight of compacted waste (without daily accepted waste and degree of waste compaction)
were determined annually, and during the four seasons, two samples were taken for
analysis—one sample from Zone 1 and one sample from Zone 2. The formation of an
average sample for the analysis of these parameters goes through several stages: Stage
1—the vehicle with waste that arrived at the landfill is weighed on an electronic scale
installed at the entrance to the landfill, after which it is directed to a concrete platform for
unloading; date and time of arrival, air temperature, and weather conditions are recorded
and the waste compaction is visually assessed; Stage 2—after unloading the waste at the
site, a visual inspection is performed for the presence of non-domestic waste or hazardous
waste; if there are any, they are removed; Stage 3—the obtained waste sample is mixed
until a relatively uniform composition is obtained in the different points of the waste
pile; Stage 4—the waste is spread in the form of a circle with a height of 30–40 cm; Stage
5—the resulting configuration is divided into four equal parts with solid wooden partitions
(i.e., first quartering is carried out); Stage 6—the separated waste in the two diagonally
opposite quarters is removed and deposited; the remaining amount of waste is again spread
into a circle and a second quartering is carried out; Stage 7—the procedure is repeated
until obtaining an average sample of about 120–150 kg. After that, the determination of
individual parameters begins as follows: (a) fractional composition—the amount of the
received waste sample is successively sifted through sieves with hole sizes of 150 mm
and 65 mm, resulting in waste distributed in three fractions (0–65 mm, 65–150 mm and
above 150 mm); (b) moisture content, %—BDS EN 15934:2012 (gravimetric) [64]; (c) bulk
weight of accepted waste, kg—gravimetric, is determined by the difference in the weight
of a container (1 m3) filled with waste from the sample and its weight after emptying;
(d) weight of the compacted waste, kg—gravimetric, the procedure is the same as for the
determination of bulk weight of the accepted waste, but an average sample of compacted
waste (by compacting machine) is used.
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Table 1. Characteristic of the deposited MSW, 2003–2020.

No Parameter Unit

1 Daily accepted waste 83–132 m3

2 Fractional composition of the
waste

0–65 mm: 32.6–45.7%
65–150 mm: 22.4–33.8%
>100 mm: 13.3–20.4%

3 Moisture content of the waste

Spring: 38–58%
Summer: 26–35%
Autumn: 40–60%
Winter: 60–78%

4 Bulk weight of accepted waste 0.183–0.252 t/m3

5 Weight of the compacted
waste 0.905–0.943 t/m3

6 Degree of waste compaction 1:3.5
Source: Data from the own monitoring of the landfill presented by Annual reports of landfill’ operator to
the Environmental Executive Agency at the Ministry of Environment and Water, Sofia, Bulgaria according to
Ordinance No. 6 of 27 August 2013 [60].

Table 2. MSW composition.

Fraction
2005 2010 2015 2020

Percentage by Weight

Food 15.61 15.30 14.42 13.88
Garden 10.62 10.28 9.35 9.74
Plastic 18.26 18.05 21.40 18.57

Paper and cardboard 14.67 14.50 15.46 15.71
Textile 3.53 3.28 2.73 2.02
Wood 2.84 3.05 2.08 3.62
Glass 3.22 4.63 4.52 3.53
Metal 2.93 2.25 1.80 2.82

Leather 0.96 1.53 0.53 0.74
Rubber 0.92 1.36 0.76 1.62

Dangerous 1.10 0.77 0.71 1.08
Inert materials 6.90 5.98 5.08 6.44

Others 18.44 19.02 21.17 20.23
Source: Data from their own monitoring of the landfill presented by annual reports of the landfill operator to
the Environmental Executive Agency at the Ministry of Environment and Water, Sofia, Bulgaria according to
Ordinance No. 6 of 27 August 2013 [60].

When determining the fractional composition of the waste, an average waste sample
was also prepared, and this procedure include nine stages. The first seven stages are
repeated as for the above-cited parameters. Stage 8—from the average sample of waste
determined in Stage 7, the large fractions of the different types of waste are manually
removed and are collected in separate plastic bags; the remaining amount of waste is sifted
through a sieve with a hole size of 4 mm; sifted waste is classified as inert materials; Stage
9—the bags with the different waste are weighed on an electronic scale ± 0.1 kg, and the
results are recorded. Data by types of waste from all of 8 samples during the year are
averaged and presented in percentages.

The study was carried out on Cell-1 of the RNHWL for a 5-year period, 2018–2022,
and comprised two phases: Phase 1—active cell (from January 2018 to June 2020, when
the cell was filled up and closed for operation) and Phase 2—closed cell with temporary
soil cover (from July 2020 to December 2022). After Cell-1 was closed, the MSW started
to be disposed in Cell-2. The amount of the annually deposited MSW in Cell-1 varied
between 5333 t (2003) and 21,800 t (2013), with a total of 292,254 t for the operational period.
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When the monitoring started, in the sixteenth year of the landfill operation, 87.3% of Cell-1
capacity was full of MSW.

2.2. Monitoring, Sampling, Measurement

For the monitored period, the CH4 and CO2 concentrations in the LFG of the three gas
wells of Cell-1: GW1—41◦54′24.81250′′ N, 25◦53′40.86719′′ E; GW2—41◦54′24.81525′′ N,
25◦53′38.96831′′ E and GW3—41◦54′27.57308′′ N, 25◦53′39.56314′′ E (Figure 3) were mea-
sured in situ monthly from 11:00 to 13:00 h by a portable gas-analyzer GA-21 Plus. In
parallel, the air temperature (◦C), atmospheric pressure (hPa), and biogas velocity (m/s) at
the outlet of the corresponding GW were also measured by a digital thermometer Testo
106, ±0.1 ◦C, a digital barometer Testo 511, ±3 hPa, and a thermal anemometer Testo 405,
respectively. The air temperature and the atmospheric pressure were measured at a height
of 1.0 m above the Cell-1 surface and 0.50 m from the vertical pipe of the corresponding GW.
Biogas velocity was measured by putting the positioning stick of the apparatus in the duct
of the pipe of the corresponding GW for 2 min. All parameters were measured in triplicate
(n = 3). CH4 and CO2 concentrations were presented in % v/v, kg/season and kg/y.
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Figure 3. View of the gas wells of Cell-1.

The conversion of the values for both gases from volume percentages to mg/m3 was
carried out according to the following formulas [65]:

CCH4 = (CCH4(% v/v) × 10,000 ×Mm CH4)/22.4, mg/m3 (1)

CCO2 = (CCO2(% v/v) × 10,000 ×Mm CO2)/22.4, mg/m3, (2)

where:

CCH4—Converted amount of CH4 from % v/v in to mg/m3;
CCO2—Converted amount of CO2 from % v/v in to mg/m3;
CCH4(% v/v)—CH4 concentration in % v/v;
CCO2(% v/v)—CO2 concentration in % v/v;
MmCH4—Molar mass of methane = 16.04 g/mol;
MmCO2—Molar mass of carbon dioxide = 44.01 g/mol;
22.4—Conversion factor, represents the volume per mole of an ideal gas.

Rainfall data (mm) by months and years of the monitored period were provided by
the database of the nearest meteorological station in the area, situated 30 km from the
landfill [62].

The annual CH4 and CO2 emissions from the investigated gas wells were calculated
by Equations (1) and (2) [66], adapted to the present study:

QCH4 = 365 × 24 × dh × Ngw, kg/y (3)
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QCO2 = 365 × 24 × dh × Ngw, kg/y, (4)

where:

QCH4—Annual amount (emission) of the emitted CH4, kg/y;
QCO2—Annual amount (emission) of the emitted CO2, kg/y;
dh—Average flow rate per gas well, kg/h;
Ngw—Number of the gas wells;
365 and 24—the annual days and daily hours, respectively.

The CH4 and CO2 emissions were converted to the equivalent amount of carbon
dioxide equivalents (CO2-eq) on a 100-year time horizon basis by the Greenhouse Gas
Equivalencies calculator. The multiplication factors of 25 for CH4 and 1 for CO2 based on
mass basis were used [67].

2.3. Statistical Analysis

For all statistical computing, test and graphics the software environment R version
4.2.2 was used [68]. The statistical analysis was implemented using the agricolae, forecast,
lmtest and tseries packages of R. The results for investigated parameters are shown as mean
value and standard deviation (SD). The Duncan multiple range test (p < 0.05) was used
for the evaluation of specific differences between the pairs of CH4 and CO2 concentration
means by gas wells and years. The Jarque-Bera test (p < 0.05) was used to check whether
the data (CH4 and CO2 emissions, air pressure and air temperature from the three GWs)
were normally distributed (H0 hypothesis) or not (H1 hypothesis). To assess the effect of
the consequence of the temporary cover of the Cell-1 (after it closure) on the CH4 and CO2
emissions, the Interrupted Time Series ARMA Model was used.

Interrupted Time Series (ITS), the strongest and most commonly used method of
statistical analysis involving tracking a period before and after an intervention at a known
point in time to assess the intervention’s effects within a single group/population was
applied [69–71].

For the purpose of the study, the following designations were adopted: yt denoted the
CH4 or CO2 emissions at time t (t = 1, . . . , n), measured by a single gas well; ¶t

CC represents
the Cell-1 closed (CC) dummy variable, which is equal to 0 for all the time points before the
Cell-1 was covered (i.e., during Phase 1: from January 2018 to June 2020) and 1 afterwards
(i.e., during Phase 2: from July 2020 to December 2022); the variable T = 1, . . . , n represents
the time elapsed in months (n = 60) starting from January 2018, the first considered time
point in the analysis to December 2022. The year was divided into two periods—the winter
period (December, January, and February) and the non-winter period (March, April, May,
June, July, August, September, October, and November). This asymmetric division of the
year into two periods was based on the climate change in the country resulting from the
global warming, especially in its southeastern part [72,73], where the landfill under study
was located. The process was accompanied by a blurring of the boundaries between the
seasons and, practically, two periods were observed—cold (winter), a shorter one, and
non-winter (warm), a longer one.

To adjust for seasonality and autocorrelation in the response variable, meteorological
variables are included in the model: the 1× p vector Xt contains the values of the considered
regressors referred to as day t, given by atmospheric pressure, air temperature, precipitation,
and a dummy variable introduced to capture the non-winter effect (the variable is equal
to 1 if month t occurred between March to November, and 0 otherwise). The non-winter
season was chosen because during this temporal range, the air and soil temperatures are
higher and thus greater oxidation of CH4 and CO2 are produced. Therefore, higher values
of CH4 and CO2 emissions are expected [74,75].

The ITS ARMA model is defined by two equations [76–78]: the first Equation (5)
includes the intercept, the linear effect of time and the regressors together with the dummy
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for Cell-1’s closed period, which is also included in the interaction term with time; the
second Equation (6) instead defines the temporal structure of the regression errors.

yt = α0 + α1T + α2¶t
CC + α3(T¶t

CC) + Xtβ +εt (5)

εt = ϕ1εt−1 + . . . + ϕpεt−p + εt + θ1εt−1 + . . . + θqεt−q. (6)

In particular, the regression error term εt follows an ARMA process with coefficients
ϕ1, . . . , ϕp, θ1, . . . , θp, whereas the innovation error term εt is assumed to be a normally
distributed white-noise process with zero mean and variance σ2.

In the considered model, β is the p × 1 vector of coefficients for the regressors. More-
over, α0 + Xtβ presents the baseline level of the response variable when ¶t

CC = 0 (before
the Cell-1 closure), whereas α1 is the baseline trend slope, i.e., the expected change in yn
that occurs with each month before the Cell-1 closure. When the Cell-1 closure takes effect,
the level change and the trend slope change become equal to α2 and α3, respectively. The
final vector of parameters is given by (α, β, ϕ1, . . . , ϕp, θ1, . . . , θq, σ2), with α = (α0, α1, α2,
α3), and the maximum likelihood approach was used for estimation [79]. In particular, a
backward stepwise approach was adopted by starting from the full model and by removing
the non-significant regressors (among atmospheric pressure, air temperature, precipitation,
and non-winter dummy variable) according to the p-value (the considered threshold is
10%). The α coefficients were kept in the model even if not significant because they improve
the model fit. Moreover, the α parameters were not removed from the model in order to
discuss the effectiveness of the Cell-1 closure period in changing the level and trend slope
of the time series. The best ARMA(p,q) structure for the error term was obtained using
the auto.arima function in R, which chooses the model having the lowest AIC score. A
residual analysis was carried out in order to assess whether the ARMA errors εt resemble a
white-noise series. This was undertaken by checking the autocorrelation structure of the
residues using autocorrelation function (ACF) and the Ljung–Box test. The test was applied
to the residuals after fitting the ARMA model to the data. If the autocorrelations are very
small, it follows that the model does not exhibit a significant lack of fit [80].

3. Results and Discussion
3.1. Variation of CH4 and CO2 Contents

The measured concentrations of CH4 and CO2 varied widely across gas wells, months,
and years as follows: for CH4—GW1 from 2.06% v/v (September 2022) to 9.73% v/v
(November 2018); GW2 from 5.38% v/v (June 2019) to 15.1% (December 2019); and GW3
from 2.21% v/v (September 2022) to 8.21% v/v (December 2018). For CO2—GW1 from
2.60% v/v (October 2022) to 12.7% v/v (March 2020); GW2 from 4.49% v/v (February 2018)
to 10.2% v/v (January 2020); and GW3 from 2.19% v/v (December 2022) to 6.13% v/v
(December 2018), see Table 3.

All average annual CH4 values by gas wells were 1.14 times (GW1, 2019) to 1.54 times
(GW3, 2020) higher than the CO2 values. Exceptions were the GW1 and GW3 values in 2021
and 2022, where the concentrations of CO2 slightly exceeded those of CH4 (1.02–1.06 times).
In previous studies, researchers usually reported higher levels of CH4 in the LFG compared
to CO2 [8,32,66,81,82] but, although less often, inverse ratios of the two gases were also
encountered [42,83,84]. The monthly CH4 and CO2 concentrations by gas wells among
individual years of the observed period varied within more narrow limits than among
individual gas wells within the same year. Based on the results obtained from Duncan’s
multiple range test, the average annual CH4 and CO2 values by gas wells were statistically
different (p < 0.05): for CH4 between 2018 and 2022 and between GW2 from one side and
GW1/GW3 from the other in 2019, 2020 and 2021; for CO2 between all average annual
values in 2018, 2019, 2020, and 2022 and between GW2 and GW1/GW3 in 2021. The average
annual concentrations of the two gases from all gas wells were significantly different
(p < 0.05) between 2018 and 2021/2022; between 2021 and 2018/2020/2022, and between
2022 and 2018/2019/2020/2021 for CH4, and between 2022 and 2018/2019/2020/2021



Atmosphere 2023, 14, 1089 11 of 29

for CO2. Coefficients of variation (Cv) revealed slight to significant variability in the
concentrations of both gases by gas wells as well as by years: for CH4 Cv(GW1) = 1.04%
(2018)–44.9% (2021), Cv(GW2) = 1.06% (2018)–37.1% (2019) and Cv(GW3) = 2.26% (2018)–
16.9% (2021); for CO2 Cv(GW1) = 1.22% (2018)–38.6% (2020), Cv(GW2) = 1.31% (2018)–20.7%
(2019) and Cv(GW3) = 2.36% (2018)–8.04% (2022). By years, the coefficients of variation
indicated slight to moderate variations of the content of both gases, within a broader range
for CH4 (Cv = 1.36–16.5%) than for CO2 (Cv = 1.51–9.96%), see Table 3.

Table 3. Concentration of CH4 and CO2 in LFG by gas wells and years, 2018–2022.

Year Gas
Well

CH4 v/v %
Cv, %

CO2, % v/v
Cv, %Average

Mean ± SD Min. Max. Average
Mean ± SD Min. Max.

2018
GW1 9.57 ± 0.10 a 9.45 9.73 1.04 7.34 ± 0.09 a 7.12 7.45 1.22
GW2 6.59 ± 0.07 c 6.49 6.68 1.06 4.58 ± 0.06 c 4.49 4.68 1.31
GW3 7.94 ± 0.18 b 7.70 8.21 2.26 5.91 ± 0.14 b 5.69 6.13 2.36

8.03 ± 0.11 A - - 1.36 5.94 ± 0.09 A - - 1.51

2019
GW1 6.39 ± 0.74 b 5.81 8.11 11.6 5.62 ± 0.37 b 4.84 6.20 6.58
GW2 9.12 ± 3.38 a 5.38 15.1 37.1 7.69 ± 1.59 a 6.62 11.1 20.7
GW3 6.12 ± 0.33 b 5.78 6.61 5.38 4.39 ± 0.18 c 4.07 4.70 4.10

7.21 ± 1.19 AB - - 16.5 5.90 ± 0.58 A - - 9.83

2020
GW1 8.24 ± 3.70 b 4.37 17.3 44.9 6.24 ± 2.41 b 4.23 12.7 38.6
GW2 10.4 ± 1.34 a 9.21 14.2 12.9 8.11 ± 1.19 a 5.72 10.2 14.7
GW3 6.64 ± 0.89 b 5.29 8.42 13.4 4.31 ± 0.29 c 3.98 5.03 6.72

8.41 ± 1.33 A - - 15.8 6.22 ± 0.62 A - - 9.96

2021
GW1 4.12 ± 0.60 b 3.29 5.18 14.6 4.26 ± 0.53 b 3.32 4.90 12.4
GW2 10.3 ± 0.92 a 9.26 12.2 8.96 8.70 ± 1.05 a 5.96 9.95 12.1
GW3 3.79 ± 0.64 b 2.56 4.86 16.9 4.03 ± 0.31 b 3.69 4.79 7.69

6.06 ± 0.48 B - - 7.92 5.66 ± 0.50 A - - 8.83

2022
GW1 2.85 ± 0.41 b 2.06 3.48 14.4 2.92 ± 0.17 b 2.60 3.16 5.82
GW2 8.18 ± 0.30 a 7.69 8.53 3.67 5.44 ± 0.47 a 4.86 6.27 8.64
GW3 2.56 ± 0.22 c 2.21 2.88 8.59 2.61 ± 0.21 c 2.19 2.95 8.04

4.53 ± 0.27 C - - 5.96 3.66 ± 0.25 B - - 6.83

Note: Different letters (a, b and c, or A, B and C) indicate significant differences at p < 0.05 according by Duncan’s
multiple range test.

The large variability of the CH4 and CO2 concentrations from the three gas wells
of the investigated landfill cell is not unusual as many factors can influence the LFG
production. Considering that the atmospheric pressure, air temperature, and the quantity
of the precipitation around the three gas wells were very close during the corresponding
month of measurement (Table 4), the most probable factor determining the significant
variability and dynamics of gas concentrations was the heterogeneity of the MSW in the
cell. Previous studies underlined that there were noticeable discrepancies between LFG
concentrations of different sampling points of the same landfill cell due to the spatial
heterogeneity of waste in the landfill, with respect to different decay rates, which was a
spot-specific factor [11,13]. Because of this, varying amounts of CO2 and CH4 in different
spots of the site [85], as well as from well to well, could be found [66].
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Table 4. Meteorological parameters, 2018–2022.

Year Parameter Average
Mean ± SD Min. Max.

2018
Atmospheric pressure, hPa (n = 36) * 976.12 ± 4.75 970.5 982.5

Air temperature, T ◦C (n = 36) 16.28 ± 8.71 3.3 28.6
Precipitation, mm (n = 12) ** 44.533 ± 39.104 1.20 102.8

2019
Atmospheric pressure, hPa (n = 36) 978.48 ± 9.80 962.5 995.7

Air temperature, T ◦C (n = 36) 17.62 ± 7.96 3.4 29.0
Precipitation, mm (n = 12) 25.017 ± 18.306 2.20 59.3

2020
Atmospheric pressure, hPa (n = 36) 994.08 ± 7.39 982.4 1002.0

Air temperature, T ◦C (n = 36) 18.58 ± 9.71 3.5 29.2
Precipitation, mm (n = 12) 37.033 ± 33.711 5.30 123.1

2021
Atmospheric pressure, hPa (n = 36) 990.38 ± 20.85 929.1 1008.2

Air temperature, T ◦C (n = 36) 18.43 ± 9.99 5.2 35.8
Precipitation, mm (n = 12) 42.142 ± 37.989 1.30 109.4

2022
Atmospheric pressure, hPa (n = 36) 998.22 ± 5.55 991.6 1011.2

Air temperature, T ◦C (n = 36) 18.03 ± 9.03 7.6 31.4
Precipitation, mm (n = 12) 23.967 ± 23.561 1.10 89.4

Note: * n = 36—measured 12 months at the three gas wells (GW1, GW2, GW3); ** n = 12—measured 12 months.

A general trend towards decreasing CH4 and CO2 concentrations in produced LFG
was observed during the tested period and especially after the Cell-1 closure in June 2020.
The average annual content of the two gases in 2022 was lower by 25.3% and 35.3% than in
2021, by 46.1% and 41.2% compared to 2020, by 37.2% and 38.0% compared to 2019, and
by 43.6% and 38.4% than in 2018, respectively. Exceptions were the average annual values
at GW2 in 2021 and 2022, when CH4 and CO2 content remained high and comparable to
those of the previous three years. The results indicated that the biodegradation of the MSW,
i.e., CH4 and CO2 production, proceeded at a different intensity in the areas of the three gas
wells of the cell both before and after its closure.

Measured concentrations of the two gases were significantly lower in comparison
to the results of other studies on landfills with gas collection systems equipped with gas
extraction wells: CH4 44.80–54.60% and CO2 37.50–44.60% [82]; CH4 14.54–65.59% and
CO2 21.74–31.62% [8]; CH4 59.4–60.4% and CO2 39.6–40.6% [86]; CH4 59–67% and CO2
31–42% [87]; CH4 35–60% and CO2 25–40% [66]; CH4 36.2–49.2% and CO2 24.3–34.5% [34],
and in the lower part of the range for a site with 47 gas extraction wells where CH4 and CO2
fluctuated between 1% and 68% [74]. Lower values than ours for methane concentration
(0–2.14% v/v) from collection wells of a MSW landfill were also reported [88]. The potential
causes that may explain the differences between our results and those of the above-cited
authors are numerous and different, but two of them are of particular importance—the
amount of the deposited MSW in the landfill and the content of organic matter in the
deposited waste. In the present study, the amount of the deposited MSW in the monitored
cell was much smaller than that in the cited papers, a fact presuming a smaller amount of
organic matter in the waste, i.e., lower CH4 and CO2 concentrations.

3.2. CH4/CO2 Volumetric Ratio

The CH4/CO2 volumetric ratio was calculated to provide an insight into the anaerobic
reaction stage, i.e., the degree of CH4 oxidation into the deposited MSW in
Cell-1 [47,74,81,89]. The CH4/CO2 ratio varied significantly among the gas wells, months,
and years as follows: GW1 from 0.70, September 2021 to 1.54, November 2020; GW2 from
0.90, August 2019 to 2.01, March 2021 and GW3 from 0.68, December 2021 to 2.01, May 2020
(Figure 4). Despite variable results, predominantly higher values of that ratio (>1.24) were
found in 2018, 2019, and 2020 (Phase 1—active cell, January 2018–June 2020) compared
to 2021 and 2022 (<1.18) (Phase 2—closed cell, July 2020–December 2022). Exceptions to
the general trend were observed during both periods: at GW1 (June–December) and at
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GW2 (June–September) in 2019, at GW1 (January, August and December) and at GW2
(September–December) in 2020 with lower values (0.90–1.15) than those during Phase 1 of
Cell-1 as well as at GW2 (March) in 2021 and at GW2 for all months of 2022 with higher
values (1.18–2.01) than those during Phase 2 of Cell-1. These contradictory results revealed
the fragmented nature of organic waste biodegradation processes in the investigated cell
by place and by time. Overall, the CH4/CO2 ratio for the three gas wells was greater
than 1.0 throughout most of the monitoring period (GW1—92.78%, GW2—97.78% and
GW3—92.22% of the time), indicating that the MSW in Cell-1 was still in the active phase
of biomethanization [46]. Some authors noted that the CH4/CO2 ratio increases up to
typical values (≥1.50) for a mature LFG [89]. The results obtained are logical, as newer
waste typically has a CH4/CO2 ratio of about 1.5 and higher, as was found in this study in
2018 and most of the months in 2019 and 2020, while older waste (2021–2022) had a lower
CH4/CO2 ratio as expected [74]. The results reported by other investigations of sites of
different types, capacities, and age were within our results’ range: 1.53 [46], 1.00–1.50 [74],
0.7–2.2 [8], 0.69–0.76 [90]. In conclusion, the CH4/CO2 ratio in the present study demon-
strates a great sensitivity and enables an accurate assessment of the methane phase of
organic waste decomposition in different areas of the cell.

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 30 
 

 

general trend were observed during both periods: at GW1 (June–December) and at GW2 
(June–September) in 2019, at GW1 (January, August and December) and at GW2 (Sep-
tember–December) in 2020 with lower values (0.90–1.15) than those during Phase 1 of 
Cell-1 as well as at GW2 (March) in 2021 and at GW2 for all months of 2022 with higher 
values (1.18–2.01) than those during Phase 2 of Cell-1. These contradictory results re-
vealed the fragmented nature of organic waste biodegradation processes in the investi-
gated cell by place and by time. Overall, the CH4/CO2 ratio for the three gas wells was 
greater than 1.0 throughout most of the monitoring period (GW1—92.78%, 
GW2—97.78% and GW3—92.22% of the time), indicating that the MSW in Cell-1 was still 
in the active phase of biomethanization [46]. Some authors noted that the CH4/CO2 ratio 
increases up to typical values (≥1.50) for a mature LFG [89]. The results obtained are log-
ical, as newer waste typically has a CH4/CO2 ratio of about 1.5 and higher, as was found 
in this study in 2018 and most of the months in 2019 and 2020, while older waste 
(2021–2022) had a lower CH4/CO2 ratio as expected [74]. The results reported by other 
investigations of sites of different types, capacities, and age were within our results’ 
range: 1.53 [46], 1.00–1.50 [74], 0.7–2.2 [8], 0.69–0.76 [90]. In conclusion, the CH4/CO2 ratio 
in the present study demonstrates a great sensitivity and enables an accurate assessment 
of the methane phase of organic waste decomposition in different areas of the cell. 

 

Figure 4. CH4/CO2 ratio by gas wells (GW1, GW2 and GW3), months, and years. 

3.3. CH4 and CO2 Emissions 
The results showed that the CO2 emissions were greater than CH4 emissions during 

the monitoring period and that their amount by gas wells and by years varied between 
491.97 kg/y (GW3, 2022) and 1762.76 kg/y (GW2, 2019), and between 172.81 kg/y (GW3, 
2022) and 750.41 kg/y (GW2, 2021), respectively (Table 5). Considering that the content of 
CH4, measured in volumetric percentages (% v/v), was greater than that of CO2 content 
(Table 3), the greater CO2 emission rates (kg) compared to those of CH4 could be ex-
plained by the differences in the mass of the two gases. The molecular mass of CO2 is 2.74 
times greater than that of CH4 (44.01 vs. 16.04) and converting the values from volume 
percentages (% v/v) to mg/m3 resulted in higher values in mg/m3 with respect to CO2 
emissions compared to those of CH4. Previous studies also reported that the CO2 emis-
sion rates are usually higher than the CH4 emission rates from landfills of different types 

Figure 4. CH4/CO2 ratio by gas wells (GW1, GW2 and GW3), months, and years.

3.3. CH4 and CO2 Emissions

The results showed that the CO2 emissions were greater than CH4 emissions during
the monitoring period and that their amount by gas wells and by years varied between
491.97 kg/y (GW3, 2022) and 1762.76 kg/y (GW2, 2019), and between 172.81 kg/y (GW3,
2022) and 750.41 kg/y (GW2, 2021), respectively (Table 5). Considering that the content of
CH4, measured in volumetric percentages (% v/v), was greater than that of CO2 content
(Table 3), the greater CO2 emission rates (kg) compared to those of CH4 could be explained
by the differences in the mass of the two gases. The molecular mass of CO2 is 2.74 times
greater than that of CH4 (44.01 vs. 16.04) and converting the values from volume percent-
ages (% v/v) to mg/m3 resulted in higher values in mg/m3 with respect to CO2 emissions
compared to those of CH4. Previous studies also reported that the CO2 emission rates are
usually higher than the CH4 emission rates from landfills of different types [2,42]. The
emissions of both gases demonstrated significant variability by gas wells both within the
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same year and among the different years of the observed period. On the whole, CH4 and
CO2 emission rates by gas wells were higher in the winter period (December, January, and
February) and in the first three months of the non-winter period (March, April, and May)
compared to the last six months of the non-winter period (June–November).

Table 5. CH4 and CO2 emissions by gas wells, periods, and years (2018–2022).

Gas Well

Winter Period Non-Winter Period
Year

December, January,
February March, April, May June, July, August September, October,

November

kg kg kg kg kg

CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2

2018

GW1 131.76 278.65 149.40 311.85 122.75 257.20 116.35 247.56 520.26 1095.26
GW2 84.02 158.74 84.24 163.22 80.39 155.09 72.70 141.09 321.53 618.14
GW3 102.42 208.43 109.92 225.67 83.98 173.13 85.20 174.79 381.52 782.02
Total 318.20 645.82 343.56 700.74 287.12 585.42 274.25 563.44 1223.3 2495.42

2019

GW1 139.73 288.01 147.62 339.43 154.60 408.66 145.54 393.18 587.49 1429.28
GW2 184.85 381.45 156.60 384.62 129.53 450.41 279.07 546.28 750.05 1762.76
GW3 118.13 222.62 107.81 196.64 97.09 203.79 89.10 181.87 412.13 804.92
Total 442.71 892.08 412.03 920.69 381.22 1062.86 503.71 1121.33 1749.67 3996.96

2020

GW1 194.09 460.30 205.44 394.97 123.55 259.22 194.52 382.08 717.60 1496.57
GW2 209.47 415.01 158.42 313.90 176.01 397.42 188.54 465.41 732.44 1591.74
GW3 125.67 244.1 151.22 225.19 106.40 198.21 99.05 193.63 482.34 861.13
Total 529.23 1119.41 515.02 934.06 405.94 854.85 482.11 1041.12 1932.38 3949.44

2021

GW1 90.51 237.24 73.58 224.81 69.28 225.84 68.46 173.71 301.83 861.60
GW2 198.76 400.75 179.04 457.51 196.69 473.71 175.92 413.99 750.41 1745.96
GW3 80.73 206.76 60.43 194.35 68.43 191.47 52.22 174.41 261.81 766.99
Total 370.00 844.75 313.05 876.67 334.40 891.02 296.60 762.11 1314.05 3374.55

2022

GW1 51.31 135.84 53.14 149.26 47.91 154.49 48.52 134.66 200.88 574.25
GW2 150.38 295.78 150.60 267.84 140.62 245.23 138.35 243.51 579.95 1052.36
GW3 43.83 139.06 45.09 123.74 41.25 119.26 42.64 109.61 172.81 491.97
Total 245.52 570.68 248.83 540.84 229.78 518.98 229.51 487.78 953.64 2118.58

According to the amount of the generated CH4 and CO2 emissions, the gas wells
ranked differently during the individual years of the observed period. In 2018, the
majority of CO2 and CH4 emissions were emitted from GW1, followed by GW3 and
GW2, while in the remaining four years (2019–2022), the arrangement by gas wells was
GW2 > GW1 > GW3. Although the spatial variability (according to the gas well location) in
the emission of the two gases was very large, the quantity emitted from GW2 dominated
over those from GW1 and GW3 (an exception was 2018), giving a reason to determine the
zone of GW2 as a hotspot of Cell-1. Other researchers [91,92] have also identified hotspot
areas of high CO2 and CH4 concentrations on MSW landfills, where the CO2 and CH4
hotspot areas have been very close.

The results for contradictory emission dynamics from the gas wells of the investigated
landfill cell suggested that the factors influencing the CO2 and CH4 production were quite
variable. Among those factors, the air temperature, atmospheric pressure, and precipitation
could be highlighted. A relationship between meteorological factors and the topography
of the terrain on which the landfill is located has also been reported [93]. In the literature,
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there are conflicting data about the influence of meteorological factors on LFG production.
Some researchers found out that the LFG emission rates demonstrated a seasonal variabil-
ity, with low values in summer and the highest values between September and May [94];
others reported the existence of a strong influence of atmospheric pressure on LFG CH4
concentration, LFG flow, and CH4 flow, while the ambient temperature was not a major me-
teorological parameter affecting LFG recovery [36]. The air temperature was not correlated
with either CO2 or CH4 fluxes, despite the significant variation of that parameter [82,86];
whereas other data demonstrate that the LFG emissions generally increased as the average
air temperature became higher [95]. CH4 emissions were commonly higher during colder
temperatures in winter than during warm temperatures in summer [96]; the CH4 and CO2
emissions were the highest during the summer season, followed by the monsoon and the
winter seasons [74,90] but LGE emissions did not show a significant difference between the
end of the rainy period and the end of the dry period [92]. Therefore, it can be concluded
that all these results reflect the specific conditions for each of the studied landfills.

Regarding the total annual CH4 and CO2 emissions, a general trend was observed.
The emission of both gases increased from 2018 to 2020 (by 57.96% for CH4 and by 58.26%
for CO2) when they reached the highest levels; afterwards, the emissions decreased to
2022 (by 50.65% for CH4 and by 46.36% for CO2) and attained the lowest levels. This
divergent trend in the emissions of both gases could be explained by the different activities
occurring in Cell-1 during the tested years. From January 2018 until the end of June
2020, Cell-1 was in operation and daily new amounts of MSW, including new amounts of
organic matter, had been added. Therefore, during that phase there were conditions for the
production of larger amounts of LFG, leading to an increase in CH4 and CO2 emissions.
Previously reported data revealed that the exploitation parameters have a considerable
influence on the emission of LFG in an operating landfill [97]. Another reason could be the
high content of rapidly degradable organic carbon in MSW combined with high moisture
content, which stimulates anaerobic degradation, i.e., the production of more LFG within a
short period [98]. After June 2020, Cell-1 was closed as its capacity was reached and it was
temporarily covered by native soil. The discontinuation of MSW disposal in the cell led to
the depletion of the organic matter reserves and, accordingly, to a decrease in the emission
rates of both gases until the end of 2022. These results are in the line with previous studies
reporting that operational landfills emit more LFG/CH4 than closed landfills, since the
major part of degradation occurs in the first few years following MSW disposal (during the
active phase of the landfills) with emission rates decreasing with time after their closure
(during the closed phase of the landfills) [50,98]. Other researchers [23,26,38,42] pointed out
that, after landfill closure, LFG/methane generation decreases and the process usually lasts
many years. Our results are distinguished from those of other authors by the high rates of
growth (>57–58%) and the decrease (<46–50%) in CH4 and CO2 emissions, respectively,
during the active and closed phases of the cell, each of them lasting 2.5 years. The probable
reasons for this phenomenon are multiple and different but are most likely related to
the amount of deposited MSW, the content of MSW organic matter, and the thickness
of the deposited waste as well as the environmental conditions (atmospheric pressure,
temperature, moisture, pH, microbial activities, etc.). The monitored landfill cell has a
relatively small capacity (292,254 t) and a small thickness of the deposited MSW (1.80 m),
while in other studies the capacity of the landfills and the thickness of the deposited MSW
were much greater; therefore, the produced CH4 and CO2 levels were also much higher
than in the present study [36,66,83,99–102]. Some authors reported that the changes in the
quantity of waste affected the annual methane production from the landfill more than the
changes of waste composition [103].

The CH4 and CO2 emissions from Cell-1, presented as equivalent amounts of carbon
dioxide (CO2-eq), exhibited the same dynamics over the years of the monitoring period
as did the individual emissions of both gases. Carbon footprint calculations showed that,
for the five tested years, the three gas wells of Cell-1 emitted between 25.96 t CO2-eq/y
(2022) and 52.26 t CO2-eq/y (2020), see Figure 5. It turned out that the three gas wells had
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different contributions to those quantities: the greatest contribution was made by GW2,
followed by GW1 and GW3. The annually emitted amounts of CO2-eq from all gas wells of
Cell-1 were relatively small but were multiplied for the cells of all 53 landfills in Bulgaria;
therefore, the picture was dramatically different. That is why, no matter how insignificant
these amounts are, an environmentally friendly solution for their reduction and utilization
must be sought. Due to the low profitability of energy production from LFG (methane)
produced by the investigated cell, the plan for the management of generated biogas in
cells/landfills after their reclamation includes gathering and flaring LFG from all wells in a
common duct.
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3.4. Interrupted Time Series ARMA Model Analysis

Table 6 presents the results of the descriptive statistics of the variables. Regarding the
gas wells, the CH4 and CO2 emissions from GW2 had the highest mean values of 52.237
and 112.849, respectively, while the CH4 and CO2 emissions from GW3 had the lowest
mean values of 28.560 and 61.779, respectively. The highest mean values of atmospheric
pressure and air temperature were found at GW3—988.093 and 18.192, respectively—while
the lowest were computed at GW1—987.453 and 17.783, respectively. The mean value of
the precipitation was 34.538.

The skewness of data for all gas wells was positive for CH4 and CO2 (except for CO2
from GW3) and negative for the atmospheric pressure and air temperature. The highest
values of 1.150 for CH4 and 1.196 for CO2 were for GW1, meaning that the data were
skewed to the right. With regard to atmospheric pressure and air temperature, the lowest
values of −1.323 and −0.179 were found at GW3. The skewness value for precipitation was
positive (1.179). In assessing the kurtosis of the CH4 and CO2 datasets, the emissions had
the highest values of 2.185 and 2.933 for GW1, respectively, while the lowest values were
0.548 for GW3 and −0.789 for GW2, respectively. The highest values were 3.701 for the
atmospheric pressure of GW3 and −0.981 for the air temperature of GW1, while the lowest
values were 3.587 for the atmospheric pressure of GW1 and −1.048 for the air temperature
of GW3, respectively. The kurtosis value of precipitation was 0.484.
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Table 6. Descriptive statistics results of the variables between January 2018 and December 2022.

Variable Mean St. Dev. Max Min Skewness Kurtosis Jarque–Bera
(p-Value)

Emission CH4_GW1 38.801 19.462 110.7000 13.390 1.150 2.185 21.664
(1.976 × 10−5)

Emission CO2_GW1 91.116 36.532 237.340 37.630 1.196 2.933 30.431
(2.466 × 10−7)

Air pressure_GW1 987.453 13.992 1011.200 929.100 −1.279 3.587 41.101
(1.189 × 10−9)

Air temperature_GW1 17.783 8.832 35.7000 1.500 −0.154 −0.981 2.725
(0.256)

Emission CH4_GW2 52.237 17.956 108.700 20.880 0.539 1.041 4.598
(0.100)

Emission CO2_GW2 112.849 43.177 217.440 40.320 0.046 −0.789 1.714
(0.424)

Air pressure_GW2 987.477 13.999 1011.200 929.100 −1.281 3.588 41.164
(1.152 × 10−9)

Air temperature_GW2 18.022 8.956 35.800 1.500 −0.165 −1.022 2.950
(0.229)

Emission CH4_GW3 28.560 10.632 64.080 12.240 0.475 0.548 2.558
(0.278)

Emission CO2_GW3 61.779 13.523 97.920 34.970 −0.120 −0.037 0.180
(0.914)

Air pressure_GW3 988.093 14.091 1011.200 929.100 −1.323 3.701 43.879
(2.963 × 10−10)

Air temperature_GW3 18.192 9.037 35.800 1.600 −0.179 −1.048 3.121
(0.210)

Precipitation 34.538 31.726 123.100 1.100 1.179 0.484 13.501
(0.001)

Note: GW1, GW2 and GW3 denote gas well 1, gas well 2 and gas well 3, respectively.

The Jarque–Bera test failed to reject the H0 hypothesis that the data were normally
distributed in all variables, excluding the CH4 and CO2 from GW1, atmospheric pressure
from all gas wells, and precipitation—the Jarque–Bera statistic was positive with a p-value
of more than 0.05. Nevertheless, we can conclude that residuals of all variables were
approximately normally distributed, as the skewness was between −2 and +2 and kurtosis
was between −7 and +7 [104,105]. Normality is a desirable characteristic for the data
analysis required.

Tables 7 and 8 present the estimates of α and β parameters and corresponding p-values
for the obtained ITS models implemented for CH4 and CO2 emissions from each gas well.
In the case of an empty cell, meaning that the corresponding coefficient was not significantly
different from zero, it was removed from the model. Besides the covariate coefficients β, the
following parameters were estimated: the intercept α0, the baseline trend slope α1, and the
post-closed Cell-1 level (trend slope) change α2 (α3), which are represented in Equation (1).
Specifically, α0 + α2 + Xtβ and α1 + α3 described the level and the trend slope after the
Cell-1 closure, to be compared with α0 + Xtβ and α1, respectively.

It can be noted that precipitation had no significant effect on CH4 and CO2 emissions,
thus it was excluded from all models. The most important meteorological variable was the
atmospheric pressure with a significant positive effect for CH4 (from GW1 and GW2) and
CO2 (from GW1) emissions, and a negative effect for the emissions of both gases from GW2.
Air temperature had a significant, negative effect for CH4 (from GW2) and CO2 (from GW3)
emissions. The dummy variable related to the non-winter effect was significantly different
from zero for the emissions of both gases, only from GW1 located at the top of the cell in
the area last filled up with MSW and last covered with a temporary layer of soil (Figure 2).
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Table 7. Estimates of α and β parameters for the ITS models implemented for CH4 emissions from
each of the three gas wells (GW1, GW2, and GW3).

GW1 GW2 GW3

Estimate p-Value Estimate p-Value Estimate p-Value

α0 −0.153 0.131 364.398 0.487 × 103 **** −1.685 0.807
α1 0.532 0.167 1.820 0.121 × 10−6 **** 0.299 0.109
α2 −6.226 0.486 0.868 0.925 −4.819 0.242
α3 −1.997 0.337 × 103 **** −2.576 0.127 × 10−6 **** −1.153 0.360 × 10−6 ****

βair presure 0.037 0.2058 × 10−7 **** −0.347 0.001 *** 0.032 <0.220 × 10−17 ****
βair temperature −0.361 0.099 *
βprecipitation
βnon-winter 9.880 0.026 **

Note: *, **, *** and **** presents significance level at 10%, 5%, 1% and 0.1%, respectively.

Table 8. Estimates of α and β parameters for the ITS models implemented for CO2 emissions from
each of the three gas wells (GW1, GW2 and GW3).

GW1 GW2 GW3

Estimate p-Value Estimate p-Value Estimate p-Value

α0 −1.058 0.495 518.260 0.023 ** 163.695 0.034 **
α1 2.124 1.260 × 10−6 *** 4.034 0.716 × 10−6 *** 0.250 0.310
α2 −38.857 0.258 × 103 *** 15.548 0.457 5.276 0.356
α3 −4.496 0.211 × 10−14 *** −6.986 0.605 × 10−7 *** −1.558 0.106 × 10−6 ***

βair presure 0.075 0.303 × 10−14 *** −0.479 0.040 **
βair temperature −0.287 0.085 *
βprecipitation
βnon-winter 14.582 0.080 *

Note: *, ** and *** presents significance level at 10%, 5% and 0.1%, respectively.

Parameter α1 indicates the air pollution trend before Cell-1 closure. It was significantly
positive for CH4 (from GW2) and CO2 (from GW1 and GW2) emissions. This was perhaps
associated with the approach of warmer weather and sunny days. For each passing day,
the air pollution with CH4 (from GW2) increased by 1.820 points whereas that of CO2 (at
GW1 and GW2) increased by 2.124 and 4.034 points, respectively. These trends were also
evident from the observed time series represented in Figures 6 and 7.
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The α2 coefficient indicates the air pollution immediately after Cell-1 closure. Its
immediate effect was negative and significant only for CO2 emissions from GW1. This
result makes sense, since the decrease was not expected to be very high immediately after
Cell-1 closure. In this regard, some authors reported that LFG emissions peak a year after
the closure of a landfill [42].

The α3 coefficient indicates how the trend changed after Cell-1 closure. The sustained
effect was negative and significant for CH4 and CO2 emissions from all gas wells. Therefore,
for each day after the Cell-1 closure, the air pollution of CH4 decreased by −1.997 (from
GW1), −2.576 (from GW2), and −1.153 (from GW3) points, respectively. For each passing
day, the air pollution of CO2 decreased by −4.469 (from GW1), −6.986 (from GW2), and
−1.558 (from GW3) points, respectively. In previous studies, many researchers pointed out
the same trends in the reduction of CH4 and CO2 emissions after landfill closure [23,26,42,50].

The results obtained are confirmed by the graphs on Figures 6 and 7, where the
observed and fitted (using the estimated parameters presented in Tables 7 and 8) time
series are presented together with the counterfactual predictions. The latter represent the
expected time series in the hypothetical scenario under which the Cell-1 was not still closed,
i.e., with no intervention and assuming that the time series was stationary after accounting
for time-varying confounders.

Figures 6 and 7 demonstrate an increase in the observed values between October
and December 2020, i.e., immediately after Cell-1 closure, which may be related to the
specific meteorological conditions in the area during that period, characterized by an
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abundance of precipitation (34.3% of total annual precipitation) and relatively high air
temperatures (especially in October (20.2 ◦C) and November (17.1 ◦C). In December, the
air temperature was lower (6.1 ◦C), as well as covering the Cell-1 with a layer of soil. The
surface layer of soil limits the access of oxygen and favors the anaerobic degradation of
waste organic matter. Moreover, the higher water content of the substrate acts as a diffusion
barrier for the methane and oxygen that can be utilized by the oxidizing bacteria, thereby
leading to increased emissions. In addition, the higher air temperatures positively affected
both methane production and oxidation as these were temperature-dependent microbial
processes [94]. Another study also found that CH4 and CO2 emissions during the wet
season were approximately 1.5 times higher compared to during the dry season as higher
moisture content facilitated nutrient transportation through waste layers and accelerated
waste decomposition to produce more LFG [86].

Table 9 presents the estimates of the ARMA coefficients. Time series were characterized
by the following temporal dynamics: an MA(2) structure was estimated for CH4 from GW1,
while an AR(1) was the best choice for CH4 from GW2 and GW3, and for CO2 from all
gas wells.

Table 9. Specification of the best ARMA model estimated for CH4 and CO2 emissions from each of
the three gas wells (GW1, GW2, and GW3).

GW1

CH4: MA(2) Model CO2: AR(1) Model

Estimate θ1= 0.594 θ2= 0.258 ϕ1= 0.127
p-value 0.585 × 10−5 *** 0.064 * 0.061 *

GW2

CH4: AR(1) Model CO2: AR(1) Model

Estimate ϕ1= 0.532 ϕ1= 0.607
p-value 0.315 × 10−5 *** 0.678 × 10−10 ***

GW3

CH4: AR(1) Model CO2: AR(1) Model

Estimate ϕ1= 0.525 ϕ1= 0.378
p-value 0.406 × 10−7 *** 0.002 **

Note: *, ** and *** presents significance level at 10%, 1% and 0.1%, respectively.

Figures 8 and 9 show the time plots, the ACF plots, and the histogram of the residuals
from the ARMA models. The time plots show some variation over time but are other-
wise relatively unremarkable. The histograms suggest that the residuals are normally
distributed. The ACF plots of the residuals show that all autocorrelations were within the
threshold limits. Therefore, we concluded that the residuals behaved similarly to white
noise. A Ljung–Box test returned the following statistic and p-value for the residuals
from CH4 ARMA models: 17.566 (p-value = 0.541), 21.038 (p-value = 0.103), and 15.585
(p-value = 0.138), respectively; and from CO2 ARMA models: 25.729 (p-value = 0.187),
13.643 (p-value = 0.343), and 14.360 (p-value = 0.245), respectively. These large p-values
suggested that the residuals were white noise. The correlations between predicted and
observed values from obtained ARMA models were strong, positive, and ranged from
0.739 to 0.896.
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1 
 

 
Figure 8. Residual plots for the ITS ARMA models for CH4.

Future investigations of landfills, using the Interrupted Time Series ARMA model
could reveal the local differences and point out the relevant factors affecting the dynamics of
CH4 and CO2 emissions during active (before cover) and closed (after cover) phases of the
landfills. That knowledge will contribute to forming effective LFG emissions management
policies, aimed at air quality improvement and human health protection.
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4. Conclusions

The management of greenhouse gas emissions from MSW landfills is of great impor-
tance in seeking solutions to reduce their impact on global warming and the Earth’s climate.
In Bulgaria, 53 landfills for non-hazardous MSW waste are currently in operation, so the
study of the processes generating greenhouse gas emissions from them will contribute to
the formation of an adequate policy and the implementation of environmentally friendly
solutions for the sustainable management of the landfills. This study was the first of its
kind in the country to assess the CH4 and CO2 emissions from three gas wells (GW1, GW2,
and GW3) of a landfill cell (Cell-1) during the active and closed phases (2.5 years duration
for each of them) of a regional non-hazardous waste landfill—Harmanli—based on in situ
measurement of the concentrations of the two gases.

The results show that the CH4 and CO2 concentrations varied widely by gas wells,
months, and years (2.06–15.1% v/v). During most of the monitored period, the CH4 values
of gas wells were 1.14–1.54 times higher than the CO2 values but opposite results were
also observed, although less often and to a lesser extent. The monthly CH4 and CO2
concentrations by gas wells across individual years varied within narrower limits than
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among individual gas wells within the same year, which determines the month within a
year as a factor with a greater impact on the concentration of both gases than the factor
year. From 2018 to 2022, the concentrations of the produced LFG decreased, especially after
the Cell-1 closure in June 2020, by 43.6% for CH4 and 38.4% for CO2 on average, indicating
the rapid biodegradation of the deposited waste. The results obtained for the two gases
were significantly lower than those cited in this paper, which may be affected by many
factors, two of which are of key importance—the amount of MSW deposited in the landfill
and the content of organic matter in the deposited waste. With respect to both parameters,
the studied landfill cell ranks below the landfills from other studies.

The CH4/CO2 volumetric ratio values reflect the biodegradation (methanogenesis) of
the deposited waste. The parameters demonstrate high variability by gas wells, months,
and years (0.68–2.01), which made it a suitable indicator for assessing the level of the
methane phase of organic waste decomposition in different areas of the cell. Predominantly
higher values of that ratio were established during Phase 1—active cell (>1.24) compared
to Phase 2—closed cell (<1.18). This is logical and corresponds with the results for CH4 and
CO2 concentrations and emissions.

The CO2 emissions from all GWs were greater than the CH4 emissions and could be
explained by the differences in the masses of the two gases (44.01 vs. 16.04). The conversion
of the values from volumetric percentages (% v/v) to mg/m3 resulted in higher values
in mg/m3, i.e., in kg/y for CO2, compared to those of CH4 emissions. The emissions of
both gases demonstrated significant variability by gas wells, months, and years but, on
the whole, the emission rates by gas wells were higher in the colder months (December–
February) and partly in spring (March–May) compared to the warmer months of the year
(June–November). Despite the spatial variability of the emissions in the zones of the three
GWs, the quantity emitted from GW2 dominated over that from GW1 and GW3, giving
a reason to determine the GW2 zone as a hotspot of Cell-1. A general trend of change in
the emissions of the two gases was observed—during the active phase of the Cell-1, the
emissions drastically increased by about 58% and, after the Cell-1 closure, they drastically
decreased by 46–50%. This phenomenon can be explained by the different activities and the
different processes that take place in the cell. During the active cell, daily new amounts of
MSW are added, including new amounts of organic matter, which stimulate the generation
of gas emissions. Closing the cell stops this activity and, as a result, the organic matter in
the waste is decomposed and emissions decrease. The high rates of increase and decrease
of the emissions are probably due to the relatively small amount of the deposited MSW
as well as the specific environmental conditions in the area of Cell-1. The CH4 and CO2
emissions, presented as equivalent amounts of carbon dioxide (CO2-eq), show that, for the
five tested years, the three gas wells of Cell-1 emitted between 25.96 t CO2-eq/y and 52.26 t
CO2-eq/y. The emitted amounts are relatively small and the production of energy from
such quantities is not profitable. Therefore, flaring of the generated biogas is performed.

Finally, the results obtained from the Interrupted Time Series ARMA model (after
adjusting for some meteorological factors and the non-winter effect) confirmed the negative
and significant effect on CH4 and CO2 emissions immediately after the closure of Cell-1,
with the exception of the CO2 emissions from GW1. The correlations between the predicted
and observed values obtained by the ARMA model were strong, positive, and ranged from
0.739 to 0.896. The Interrupted Time Series ARMA model was shown to be suitable for
use in similar investigations. Therefore, the main findings of this research may become
an important part of further deeper investigations and the analysis of the LFG emitted by
landfills in Bulgaria.
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EU European Union
RNHWL regional non-hazardous waste landfill
HDPE high-density polyethylene
ITS Interrupted Time Series
NWMP National Waste Management Plan
BDS Bulgarian State Standard
Cv Coefficients of variation.

References
1. Hannan, M.A.; Abdulla Al Mamun, M.; Hussain, A.; Basri, H.; Begum, R.A. A review on technologies and their usage in solid

waste monitoring and management systems: Issues and challenges. Waste Manag. 2015, 43, 509–523. [CrossRef] [PubMed]
2. Njoku, P.O.; Odiyo, J.O.; Durowoju, O.S.; Edokpayi, J.N. A Review of Landfill Gas Generation and Utilisation in Africa. Open

Environ. Sci. 2018, 10, 1–15. [CrossRef]
3. Duan, Z.; Scheutz, C.; Kjeldsen, P. Trace gas emissions from municipal solid waste landfills: A review. Waste Manag. 2021, 119,

39–62. [CrossRef]
4. Hoornweg, D.A.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development Series; Knowledge

Papers No. 15; World Bank: Washington, DC, USA, 2012; Available online: https://openknowledge.worldbank.org/handle/1098
6/17388 (accessed on 20 April 2022).

5. Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. At a Glance: A Global Picture of Solid Waste Management. In What a Waste
2.0: A Global Snapshot of Solid Waste Management to 2050; Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., Eds.; World Bank
Report; World Bank: Washington, DC, USA, 2018; pp. 17–38. Available online: http://hdl.handle.net/10986/30317 (accessed on
20 September 2022).

6. Ricci-Jürgensen, M.; Gilbert, J.; Ramola, A. Global Assessment of Municipal Organic Waste Production and Recycling; International
Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020; pp. 6–7. Available online: https://www.altereko.it/wp-
content/uploads/2020/03/Report-1-Global-Assessment-of-Municipal-Organic-Waste.pdf (accessed on 9 December 2021).
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