Increasing NH3 Emissions in High Emission Seasons and Its Spatiotemporal Evolution Characteristics during 1850–2060
Abstract
:1. Introduction
2. Data and Methods
2.1. NH3 Emission Data
2.2. Temperature Data
2.3. Time-Series Feature Extraction Based on Bottom-Up Algorithm
2.4. NH3 Emission Prediction Based on KNN Regression Model
- The training set , where . Let a point of the test set be ;
- Compute the Euclidean distance between each point in the training set and a point X in the training set:
- Sort the distances by size and select the nearest neighbors in the training set with . Find the average value of these nearest neighbors and use it as the output prediction of , i.e.,
2.5. Spatial Feature Identification of NH3 Emission Based on K-Means Algorithm
2.6. Spatial and Temporal Transfer of NH3 Emissions Based on Transfer Matrix
3. Results
3.1. Seasonal Variation Characteristics of Global NH3 Emissions during Historical Periods
3.2. Temporal Evolution of NH3 Emissions in Six Continents over the Historical Period
- Increasing followed by decreasing type: Europe. Europe has always ranked first among the six continents in terms of average emissions, and its emission trends are characterized by a clear increase followed by a decrease. Emission rates increased very rapidly after 1950 and peaked at 78.52 mg m−2 in 1987, decreasing to 43.18 mg m−2 by 2014. This is almost consistent with the results of the European Environment Agency study (www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-3, accessed on 10 November 2022): since 1990, NH3 emissions in the EU-28 have been on a decreasing trend, with a total decrease of 24% by 2008, and subsequently reported NH3 emissions have been relatively stable, decreasing by 4% during 2008–2012. In addition, after 2000, we observed a significant decrease in the rate of NH3 emission reduction in Europe, which may be a consequence of the European emission limits for SO2 and NO2 [41].
- Rapidly increasing type: Asia. Asia’s NH3 emissions have always shown an increasing trend, with a relatively flat trend in the early part of the period and a rapidly fluctuating increasing trend after 1950. By about 2000, its emissions surpassed those of Europe to become the continent with the highest average emissions. By 2014, its NH3 emissions reached 64.34 mg m−2, about 50% higher than in Europe.
- Medium increasing type: South America, North America and Africa. Emissions in South America, North America and Africa show a continuous fluctuating increase from a lower base, and the trend is very similar in all three. NH3 emissions increased from 4.53, 4.29, and 6.25 mg m−2 in 1850 to 26.79, 21.28, and 26.23 mg m−2 in 2014, respectively.
- Slowly increasing type: Australia. The change in NH3 emissions in Australia has shown a uniform and slowly increasing trend compared to other continents, with a small increase. It increased from 1.53 mg m−2 in 1850 to 8.75 mg m−2 in 2014, consistently remaining in the lower emission range. According to national data on fertilizer use from 1961 to 2014 published by the Food and Agriculture Organization of the United Nations, the average fertilizer application intensity increased from 86.6 and 10.7 kg/hm2 to 207.3 and 127.5 kg/hm2 in the United States and Canada, respectively [42], while the fertilizer application intensity in Australia is almost one-third of that in the United States [43].
3.3. Characteristics of the Temporal Dynamics of Global NH3 Emissions over the Historical Period
3.4. Patterns of NH3 Emission Changes under Different Climate Change Scenarios in the Future Period
3.5. Spatial Transfer of NH3 Emissions
4. Discussion
4.1. Possible Reasons for the Increase in NH3 Emissions
4.2. Possible Causes of Transfer
4.3. Connection between Temperature and NH3 Emission
4.4. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.R.; Leach, A.M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Zhang, L.; Van Dingenen, R.; Vieno, M.; Van Grinsven, H.J.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 2021, 374, 758–762. [Google Scholar] [CrossRef]
- Trozzi, C.; Nielsen, O.K.; Hjelgaard, K.; Sully, J.; Woodfield, M. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016; European Environment Agency: Copenhagen, Denmark, 2016.
- Szerb, J.C.; Butterworth, R.F. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog. Neurobiol. 1992, 39, 135–153. [Google Scholar] [CrossRef]
- Ritz, C.W.; Fairchild, B.D.; Lacy, M.P. Implications of ammonia production and emissions from commercial poultry facilities: A review. J. Appl. Poult. Res. 2004, 13, 684–692. [Google Scholar] [CrossRef]
- Coltart, I.; Tranah, T.H.; Shawcross, D.L. Inflammation and hepatic encephalopathy. Arch. Biochem. Biophys. 2013, 536, 189–196. [Google Scholar] [CrossRef]
- Cheng, M.; Jiang, H.; Guo, Z.; Zhang, X. Assessing nitrogen treatment efficiency in schima superba seedlings detected using hyperspectral reflectance. Tao Terr. Atmos. Ocean. Sci. 2014, 25, 369. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Liu, M.; Song, Y.; Huang, X.; Yao, H.; Cai, X.; Zhang, H.; Kang, L.; Liu, X.; Yan, X. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 2016, 16, 2043–2058. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.A.; Van Dijk, N.; Levy, P.E.; Jones, M.R.; Leith, I.D.; Sheppard, L.J.; Leeson, S.; Sim Tang, Y.; Stephens, A.; Braban, C.F. Alkaline air: Changing perspectives on nitrogen and air pollution in an ammonia-rich world. Philos. Trans. R. Soc. A 2020, 378, 20190315. [Google Scholar] [CrossRef] [PubMed]
- Van Zanten, M.C.; Kruit, R.W.; Hoogerbrugge, R.; Van der Swaluw, E.; Van Pul, W. Trends in ammonia measurements in the Netherlands over the period 1993–2014. Atmos. Environ. 2017, 148, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Saylor, R.; Myles, L.; Sibble, D.; Caldwell, J.; Xing, J. Recent trends in gas-phase ammonia and PM2.5 ammonium in the Southeast United States. J. Air Waste Manag. 2015, 65, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, J.; Zhang, W.; Tang, G.; Wang, Y. Atmospheric ammonia and its effect on PM2.5 pollution in urban Chengdu, Sichuan Basin, China. Environ. Pollut. 2021, 291, 118195. [Google Scholar] [CrossRef] [PubMed]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Lee, D.S.; Asman, W.A.; Dentener, F.J.; Van Der Hoek, K.W.; Olivier, J. A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycles 1997, 11, 561–587. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Atmos. 2003, 108, 3093. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W.; Behera, S.N.; Sharma, M.; Battye, W. Reactive nitrogen emissions from crop and livestock farming in India. Atmos. Environ. 2012, 47, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef] [PubMed]
- Heffer, P.; Prud Homme, M. Global Nitrogen Fertilizer Demand and Supply: Trend, Current Level and Outlook. In Proceedings of the International Nitrogen Initiative Conference, Melbourne, Australia, 4–8 December 2016. [Google Scholar]
- Speedy, A.W. Global production and consumption of animal source foods. J. Nutr. 2003, 133, 4048S–4053S. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xu, W.; Lu, X.; Zhong, B.; Guo, Y.; Lu, X.; Zhao, Y.; He, W.; Wang, S.; Zhang, X. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl. Acad. Sci. USA 2022, 119, e2121998119. [Google Scholar] [CrossRef]
- Reis, S.; Pinder, R.W.; Zhang, M.; Lijie, G.; Sutton, M.A. Reactive nitrogen in atmospheric emission inventories. Atmos. Chem. Phys. 2009, 9, 7657–7677. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, M.; Clarisse, L.; Franco, B.; Sutton, M.A.; Erisman, J.W.; Kruit, R.W.; Van Zanten, M.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environ. Res. Lett. 2021, 16, 55017. [Google Scholar] [CrossRef]
- Fu, H.; Luo, Z.; Hu, S. A temporal-spatial analysis and future trends of ammonia emissions in China. Sci. Total Environ. 2020, 731, 138897. [Google Scholar] [CrossRef] [PubMed]
- Kuttippurath, J.; Singh, A.; Dash, S.P.; Mallick, N.; Clerbaux, C.; Van Damme, M.; Clarisse, L.; Coheur, P.; Raj, S.; Abbhishek, K. Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Sci. Total Environ. 2020, 740, 139986. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.X.; Wei, Z.; Strow, L.L.; Dickerson, R.R.; Nowak, J.B. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmos. Chem. Phys. 2016, 16, 5467–5479. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Guo, X.; Pan, D.; Kelly, J.T.; Bash, J.O.; Sun, K.; Paulot, F.; Clarisse, L.; Van Damme, M.; Whitburn, S. Monthly patterns of ammonia over the contiguous United States at 2-km resolution. Geophys. Res. Lett. 2021, 48, e2020GL090579. [Google Scholar] [CrossRef]
- Turnock, S.T.; Allen, R.J.; Andrews, M.; Bauer, S.E.; Deushi, M.; Emmons, L.; Good, P.; Horowitz, L.; John, J.G.; Michou, M. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 2020, 20, 14547–14579. [Google Scholar] [CrossRef]
- Ti, C.; Han, X.; Chang, S.X.; Peng, L.; Xia, L.; Yan, X. Mitigation of agricultural NH3 emissions reduces PM2.5 pollution in China: A finer scale analysis. J. Clean. Prod. 2022, 350, 131507. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Zhang, S.; Zheng, G.; Zheng, H.; Chang, X.; Huang, C.; Wang, S.; Wu, Y.; Hao, J. Vehicular ammonia emissions significantly contribute to urban PM2.5 pollution in two Chinese megacities. Environ. Sci. Technol. 2023, 57, 2698–2705. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Z.; Duan, Q.; Huang, B. The performance of CMIP6 models in simulating surface energy fluxes over global continents. Clim. Dynam. 2022, 61, 579–594. [Google Scholar] [CrossRef]
- Zhang, K.; Duan, J.; Zhao, S.; Zhang, J.; Keeble, J.; Liu, H. Evaluating the ozone valley over the Tibetan Plateau in CMIP6 models. Adv. Atmos. Sci. 2022, 39, 1167–1183. [Google Scholar] [CrossRef]
- Lovrić, M.; Milanović, M.; Stamenković, M. Algoritmic methods for segmentation of time series: An overview. J. Contemp. Econ. Bus. Issues 2014, 1, 31–53. [Google Scholar]
- Chen, S.; Cheng, M.; Guo, Z.; Xu, W.; Du, X.; Li, Y. Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions. Environ. Pollut. 2020, 263, 114421. [Google Scholar] [CrossRef]
- Plocoste, T.; Laventure, S. Forecasting PM10 Concentrations in the Caribbean Area Using Machine Learning Models. Atmosphere 2023, 14, 134. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Qin, D.; Yin, D.; Dong, L.; He, J. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China. Atmos. Pollut. Res. 2019, 10, 374–385. [Google Scholar] [CrossRef]
- Sabaliauskas, K.; Jeong, C.; Yao, X.; Jun, Y.; Evans, G. Cluster analysis of roadside ultrafine particle size distributions. Atmos. Environ. 2013, 70, 64–74. [Google Scholar] [CrossRef]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Liu, X.; Xia, S.; Yang, Y.; Wu, J.; Zhou, Y.; Ren, Y. Spatiotemporal dynamics and impacts of socioeconomic and natural conditions on PM2.5 in the Yangtze River Economic Belt. Environ. Pollut. 2020, 263, 114569. [Google Scholar] [CrossRef] [PubMed]
- Aneja, V.P.; Roelle, P.A.; Murray, G.C.; Southerland, J.; Erisman, J.W.; Fowler, D.; Asman, W.A.; Patni, N. Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmos. Environ. 2001, 35, 1903–1911. [Google Scholar] [CrossRef]
- Mulder, C.; Hettelingh, J.; Montanarella, L.; Pasimeni, M.R.; Posch, M.; Voigt, W.; Zurlini, G. Chemical footprints of anthropogenic nitrogen deposition on recent soil C: N ratios in Europe. Biogeosciences 2015, 12, 4113–4119. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Sun, J.; Pu, L. Comparative study on fertilization intensity and integrated efficiency in China and Euro-American major countries. Trans. Chin. Soc. Agric. Eng. 2020, 36, 9–16. [Google Scholar]
- Motesharezadeh, B.; Valizadeh-Rad, K.; Dadrasnia, A.; Amir-Mokri, H. Trend of fertilizer application during the last three decades (Case study: America, Australia, Iran and Malaysia). J. Plant Nutr. 2017, 40, 532–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Krishnan, S.; Wang, K.; Queen, A.; Aneja, V.P.; Arya, S.P. Modeling agricultural air quality: Current status, major challenges, and outlook. Atmos. Environ. 2008, 42, 3218–3237. [Google Scholar] [CrossRef]
- Russel, D.A.; Williams, G.G. History of chemical fertilizer development. Soil Sci. Soc. Am. J. 1977, 41, 260–265. [Google Scholar] [CrossRef]
- Cohen, J.E. Human population: The next half century. Science 2003, 302, 1172–1175. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ouyang, X.; Gu, Y.; Cheng, K.; Smith, P.; Sun, J.; Li, Y.; Pan, G. Climate change may interact with nitrogen fertilizer management leading to different ammonia loss in China’s croplands. Glob. Chang. Biol. 2021, 27, 6525–6535. [Google Scholar] [CrossRef]
- Chen, Z.; Song, W.; Hu, C.; Liu, X.; Chen, G.; Walters, W.W.; Michalski, G.; Liu, C.; Fowler, D.; Liu, X. Significant contributions of combustion-related sources to ammonia emissions. Nat. Commun. 2022, 13, 7710. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P. Industrial and agricultural ammonia point sources exposed. Nature 2018, 564, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Q.; Cai, X.; Zhang, H.; Lin, H.; Zheng, C.; Guo, Z.; Hu, S.; Chen, L.; Tao, S. Rapid increase in China’s industrial ammonia emissions: Evidence from unit-based mapping. Environ. Sci. Technol. 2022, 56, 3375–3385. [Google Scholar] [CrossRef]
- Liao, W.; Liu, M.; Huang, X.; Wang, T.; Xu, Z.; Shang, F.; Song, Y.; Cai, X.; Zhang, H.; Kang, L. Estimation for ammonia emissions at county level in China from 2013 to 2018. Sci. China Earth Sci. 2022, 65, 1116–1127. [Google Scholar] [CrossRef]
- Schiferl, L.D.; Heald, C.L.; Van Damme, M.; Clarisse, L.; Clerbaux, C.; Coheur, P.; Nowak, J.B.; Neuman, J.A.; Herndon, S.C.; Roscioli, J.R. Interannual variability of ammonia concentrations over the United States: Sources and implications. Atmos. Chem. Phys. 2016, 16, 12305–12328. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Nair, A.A.; Luo, G. Long-term trend of gaseous ammonia over the United States: Modeling and comparison with observations. J. Geophys. Res. Atmos. 2018, 123, 8315–8325. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.X.; Dickerson, R.R.; Wei, Z.; Strow, L.L.; Wang, Y.; Liang, Q. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 2017, 44, 2875–2884. [Google Scholar] [CrossRef]
- Riddick, S.; Ward, D.; Hess, P.; Mahowald, N.; Massad, R.; Holland, E. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 2016, 13, 3397–3426. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, L.; Bai, Z.; Xu, W.; Zhang, F.; Zhang, X.; Liu, X.; Xie, Y. Comprehensive quantification of global cropland ammonia emissions and potential abatement. Sci. Total Environ. 2022, 812, 151450. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, J.S.; Drake, J.B.; Lamarque, J.; Liu, Y. The impact of emission and climate change on ozone in the United States under representative concentration pathways (RCPs). Atmos. Chem. Phys. 2013, 13, 9607–9621. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Zhao, J.; Liu, Y.; Huang, X.; Zhang, Y.; Zhou, D.; Ding, A.; Nielsen, C.P.; Wang, H. Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030. Nat. Commun. 2022, 13, 1008. [Google Scholar] [CrossRef] [PubMed]
- Goldewijk, K.K. Three centuries of global population growth: A spatial referenced population (density) database for 1700–2000. Popul. Environ. 2005, 26, 343–367. [Google Scholar] [CrossRef]
- Raza, S.; Zhou, J.; Aziz, T.; Afzal, M.R.; Ahmed, M.; Javaid, S.; Chen, Z. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: A challenge not challenged (1961–2013). Environ. Res. Lett. 2018, 13, 34012. [Google Scholar] [CrossRef]
- Shahzad, A.N.; Qureshi, M.K.; Wakeel, A.; Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2019, 2, 1106–1114. [Google Scholar] [CrossRef]
- Xu, R.T.; Pan, S.F.; Chen, J.; Chen, G.S.; Yang, J.; Dangal, S.; Shepard, J.P.; Tian, H.Q. Half-century ammonia emissions from agricultural systems in Southern Asia: Magnitude, spatiotemporal patterns, and implications for human health. Geohealth 2018, 2, 40–53. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Brightling, J. Ammonia and the fertiliser industry: The development of ammonia at Billingham. Johns. Matthey Technol. 2018, 62, 32–47. [Google Scholar] [CrossRef]
- Paulot, F.; Jacob, D.J.; Pinder, R.W.; Bash, J.O.; Travis, K.; Henze, D.K. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 2014, 119, 4343–4364. [Google Scholar] [CrossRef]
- Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Pitchford, M.L. Particulate sulfate ion concentration and SO 2 emission trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys. 2012, 12, 10353–10365. [Google Scholar] [CrossRef] [Green Version]
- Whitburn, S.; Van Damme, M.; Kaiser, J.W.; van der Werf, G.R.; Turquety, S.; Hurtmans, D.; Clarisse, L.; Clerbaux, C.; Coheur, P. Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories. Atmos. Environ. 2015, 121, 42–54. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Tian, H.; Pan, S.; Prior, S.A.; Feng, Y.; Batchelor, W.D.; Chen, J.; Yang, J. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Chang. Biol. 2019, 25, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Tian, H.; Pan, S.; Dangal, S.R.; Chen, J.; Chang, J.; Lu, Y.; Skiba, U.M.; Tubiello, F.N.; Zhang, B. Increased nitrogen enrichment and shifted patterns in the world’s grassland: 1860–2016. Earth Syst. Sci. Data 2019, 11, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Hu, Q.; Huang, W.; Ho, C.; Li, R.; Tang, Z. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Glob. Planet Chang. 2014, 112, 41–52. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Geels, C. The effect of climate and climate change on ammonia emissions in Europe. Atmos. Chem. Phys. 2013, 13, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Clay, D.E.; Malzer, G.L.; Anderson, J.L. Ammonia volatilization from urea as influenced by soil temperature, soil water content, and nitrification and hydrolysis inhibitors. Soil Sci. Soc. Am. J. 1990, 54, 263–266. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130166. [Google Scholar] [CrossRef] [PubMed]
Time/Continent | Africa/mg m−2 | Asia/mg m−2 | Australia/mg m−2 | Europe/mg m−2 | North America/mg m−2 | South America/mg m−2 |
---|---|---|---|---|---|---|
March–MAY | 9.20 | 26.35 | 4.00 | 41.96 | 8.41 | 10.47 |
June–August | 12.12 | 21.21 | 3.66 | 36.00 | 9.62 | 10.49 |
March–August | 10.66 | 23.78 | 3.83 | 38.98 | 9.02 | 10.48 |
Level (mg m−2) /Period | 1850–1964 | 1965–1988 | 1989–2014 | Average |
---|---|---|---|---|
Light | 0~21.558 | 0~40.222 | 0~55.736 | 0~39.172 |
Medium | 21.558~66.048 | 40.222~124.398 | 55.736~199.244 | 39.172~129.897 |
Heavy | >66.048 | >124.398 | >199.244 | >129.897 |
Time/Level | Light/km2 | Light Proportion/% | Medium/km2 | Medium Proportion/% | Heavy/km2 | Heavy Proportion/% |
---|---|---|---|---|---|---|
1850–1964 | 124,036,126.27 | 92.84 | 9,333,362.14 | 6.99 | 232,641.38 | 0.17 |
1965–1988 | 102,190,550.42 | 76.49 | 24,542,742.41 | 18.37 | 6,868,836.95 | 5.14 |
1989–2014 | 93,450,204.83 | 69.94 | 30,453,921.74 | 22.80 | 9,703,396.76 | 7.26 |
2015–2030 (RCP4.5) | 93,509,153.76 | 69.99 | 29,758,813.49 | 22.27 | 10,339,556.07 | 7.74 |
2015–2030 (RCP8.5) | 93,209,356.68 | 69.76 | 30,053,307.17 | 22.49 | 10,344,859.47 | 7.74 |
2031–2060 (RCP4.5) | 93,094,035.80 | 69.68 | 30,075,929.36 | 22.51 | 10,437,558.16 | 7.81 |
2031–2060 (RCP8.5) | 92,712,388.89 | 66.93 | 30,442,729.10 | 24.95 | 10,452,405.33 | 7.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wang, Z. Increasing NH3 Emissions in High Emission Seasons and Its Spatiotemporal Evolution Characteristics during 1850–2060. Atmosphere 2023, 14, 1056. https://doi.org/10.3390/atmos14071056
Li T, Wang Z. Increasing NH3 Emissions in High Emission Seasons and Its Spatiotemporal Evolution Characteristics during 1850–2060. Atmosphere. 2023; 14(7):1056. https://doi.org/10.3390/atmos14071056
Chicago/Turabian StyleLi, Tong, and Zhaosheng Wang. 2023. "Increasing NH3 Emissions in High Emission Seasons and Its Spatiotemporal Evolution Characteristics during 1850–2060" Atmosphere 14, no. 7: 1056. https://doi.org/10.3390/atmos14071056
APA StyleLi, T., & Wang, Z. (2023). Increasing NH3 Emissions in High Emission Seasons and Its Spatiotemporal Evolution Characteristics during 1850–2060. Atmosphere, 14(7), 1056. https://doi.org/10.3390/atmos14071056