The Response of Southwest Atlantic Storm Tracks to Climate Change in the Brazilian Earth System Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reanalysis of Data
2.3. Brazilian Earth System Model (BESM)
- Historical: simulation data covering the period between 1850 and 2005 based on observations of the CO concentration in the same period.
- RCP4.5 and RCP8.5: the model ran for 100 years throughout the 21st century, showing variations in the CO concentration according to Representative Concentration Projection Pathways 4.5 (RCP4.5) and 8.5 (RCP8.5).
2.4. Datasets
2.4.1. Baroclinic Instability
2.4.2. Kinetic Energy
2.4.3. Meridional Heat Flux
3. Results
3.1. ERA5–BESM Comparison
3.1.1. Baroclinic Instability
3.1.2. Kinetic Energy
3.1.3. Meridional Heat Flux
3.2. Comparison of Scenarios
3.2.1. Baroclinic Instability
3.2.2. Kinetic Energy
3.2.3. Meridional Heat Flux
4. Discussion
4.1. Comparison of ERA and BESM
4.2. Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992. [Google Scholar]
- Yin, J.H. The title of the cited contribution. In A Consistent Poleward Shift of the Storm Tracks in Simulations of 21st Century Climate; Geophysical Research Letters; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 32, pp. 32–58. [Google Scholar]
- Blackmon, M.L.; Wallace, J.M.; Lau, N.C.; Mullen, S.L. An observational study of the Northern Hemisphere Wintertime circulation. J. Atmos. Sci. 1977, 34, 1040–1053. [Google Scholar] [CrossRef]
- Lau, N.C. Variability of the Observed Midlatitude Storm Tracks in Relation to Low-Frequency Changes in the Circulation Pattern. J. Atmos. Sci. 1988, 45, 2718–2743. [Google Scholar] [CrossRef]
- Justino, F.; Timmermann, A.; Merkel, U.; Souza, E.P. Synoptic reorganization of atmospheric flow during the last glacial maximum. J. Clim. 2005, 18, 2826–2846. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Valdes, P.J. On the existence of storm-tracks. J. Atmos. Sci. 1990, 47, 1854–1864. [Google Scholar] [CrossRef]
- Berbery, E.H.; Vera, C.S. Characteristics of the southern hemisphere winter storm track with filtered and unfiltered data. J. Atmos. Sci. 1996, 53, 448–481. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology; Elsevier: Amsterdam, The Netherlands, 2004; 540p. [Google Scholar]
- Trenberth, K.E. Storm tracks in the southern hemisphere. J. Atmos. 1991, 48, 2159–2178. [Google Scholar] [CrossRef]
- Leung, Y.T.; Zhou, W. Direct and indirect ENSO modulation of winter temperature over the Asian-Pacific-American region. Sci. Rep. 2016, 6, 36356. [Google Scholar] [CrossRef] [Green Version]
- Eichler, T.; Higgins, W. Climatology and ENSO-related variability of North American extra-tropical cyclone activity. J. Clim. 2006, 19, 2076–2093. [Google Scholar] [CrossRef]
- Rao, V.B.; Carmo, A.M.C.; Franchito, S.H. Interannual Variations of storm tracks in the Southern Hemisphere and their connections with the Antartic oscillation. Int. J. Climatol. 2003, 23, 1537–1545. [Google Scholar]
- Carmo, A.M.C.; Souza, E.B. The role of sea surface temperature anomalies on the Storm Track behavior during southern hemisphere summer. J. Coast. Res. 2009, 1, 909–912. [Google Scholar]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T.; Gouveia, D.V. Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Clim. Dyn. 2015, 45, 19–29. [Google Scholar] [CrossRef]
- Machado, J.P.; Justino, F.; Souza, C.D. Influence of El Niño-Southern Oscillation on baroclinic instability and storm tracks in the Southern Hemisphere. Int. J. Climatol. 2020, 41, E93–E109. [Google Scholar] [CrossRef]
- Machado, J.P.; Justino, F.; Pezzi, L.P. Changes in the global heat transport and eddy mean flow interaction associated with weaker thermohaline circulation. Int. J. Climatol. 2012, 32, 2255–2270. [Google Scholar] [CrossRef]
- Machado, J.P.; Justino, F.; Pezzi, L.P. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation. Adv. Meteorol. 2015, 2016, 2089418. [Google Scholar] [CrossRef] [Green Version]
- Gramcianinov, C.B.; Campos, R.M.; Guedes Soares, C.; de Camargo, R. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean. Eng. 2020, 216, 108111. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; Guedes Soares, C.; Camargo, R. Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean. Eng. 2020, 212, 107745. [Google Scholar] [CrossRef]
- Freitas, R.A.P.; Casagrande, F.; Lindemann, D.S.; Machado, J.P.; Rodrigues, J.M.; Justino, F.B. Influence of the anthropogenic effect on the dominant patterns of extratropical cyclones activity in the Southern Hemisphere. IConjecturas 2020. [Google Scholar]
- Reboita, M.S. South Atlantic Ocean Cyclogenesis Climatology Simulated by Regional Climate Model (RegCM3); Springer: Berlin/Heidelberg, Germany, 2009; Volume 35, pp. 1331–1347. [Google Scholar]
- Pezzi, L.P.; Souza, R.B.; Lentini, C.A.D. Variabilidade de mesoescala e interação oceano-atmosfera no Atlântico Sudoeste. Tempo E Clima No Bras. 2009, 1, 385–405. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Veiga, S.F.; Nobre, P.; Giarolla, E.; Capistrano, V.; Baptista, M., Jr.; Marquez, A.L.; Figueroa, S.N.; Bonatti, J.P.; Kubota, P.; Nobre, C.A. The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: Evaluation of its CMIP5 historical simulation. Geosci. Model Dev. 2019, 12, 1613–1642. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, S.N.; Bonatti, J.P.; Kubota, P.Y.; Grell, G.A.; Morrison, H.; Barros, S.R.M.; Fernandez, J.P.R.; Ramirez, E.; Siqueira, L.; Luzia, G.; et al. The Brazilian global atmospheric model (BAM): Performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather Forecast. 2016, 31, 1547–1572. [Google Scholar] [CrossRef]
- Nobre, P.; Siqueira, L.S.P.; de Almeida, R.A.F.; Malagutti, M.; Giarolla, E.; Castelão, G.P.; Bottino, M.J.; Kubota, P.; Figueroa, S.N.; Costa, M.C.; et al. Climate simulation and change in the Brazilian climate model. J. Clim. 2013, 26, 6716–6732. [Google Scholar] [CrossRef]
- Griffies, S.M.; Schmidt, M.; Herzfeld, M. Elements of MOM4P1; GFDL Ocean Group Technical Report No. 6; Geophysical Fluid Dynamics Laboratory: Princeton, NJ, USA, 2009. [Google Scholar]
- Blackmon, M.L. A Climatological Spectral Study of the 500 mb Geopotencial Height of Northern Hemisphere. J. Atmos. Sci. 1976, 1602–1623. [Google Scholar]
- Simmonds, I.; Lim, E.P. Biases in the calculations of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Farrell, B. A Simparticlele Approximate Result for the Maximum Growth Rate of BarocliniBaroclinic instabilityc Instabilities. J. Atmos. Sci. 1980, 37, 1648–1654. [Google Scholar] [CrossRef]
- Paciorek, C.J.; Risbey, J.S.; Ventura, V.; Rosen, R.D. Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Clim. 2002, 15, 1573–1590. [Google Scholar] [CrossRef]
- Carmo, A.C.M. Os Storm Tracks No Hemisferio Sul. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, Sao Paulo, Brazil, 2004. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Dal Piva, E.; Gan, M.A.; Rao, V.B. An objective study of 500-hPa moving troughs in the Southern Hemisphere. Mon. Weather Rev. 2008, 136, 2186–2200. [Google Scholar] [CrossRef] [Green Version]
- Raupp, C.F.M.; da Silva Dias, P.L.; da Silva Dias, M.A.F. Estudo de caso de um sistema convectivo ocorrido próximo à costa leste do nordeste do Brasil. In Proceedings of the Anais do XIII Congresso Brasileiro de Meteorologia; SBMET: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Reboita, M.S. Ciclones Extratropicais sobre o Atlântico Sul: Simulação Climática e Experimentos de Sensibilidade, 3rd ed.; Universidade de São Paulo: São Paulo, Brazil, 2008; pp. 154–196. [Google Scholar]
- Reboita, M.S.; da Rocha, R.P.; Souza, M.R.; Llopart, M. Extratropical cyclones over the Southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int. J. Climatol. 2018, 38, 1–14. [Google Scholar] [CrossRef]
- Menéndez, C.G.; Serafini, H.; Le Treut, H. The Storm Tracks and the Energy Cycle of the Southern Hemisphere: Sensitivity to sea-ice boundary conditions. Ann. Geophys. 1999, 17, 1478–1492. [Google Scholar] [CrossRef]
- Wu, Y.; Seager, R.; Ting, M.; Naik, N.; Shaw, T.A. Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part I: Model Experiments and Transient Thermal Response in the Troposphere. J. Clim. 2012, 25, 2862–2879. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos Santos, J.D.; Machado, J.P.; Saraiva, J.M.B. The Response of Southwest Atlantic Storm Tracks to Climate Change in the Brazilian Earth System Model. Atmosphere 2023, 14, 1055. https://doi.org/10.3390/atmos14071055
Dos Santos JD, Machado JP, Saraiva JMB. The Response of Southwest Atlantic Storm Tracks to Climate Change in the Brazilian Earth System Model. Atmosphere. 2023; 14(7):1055. https://doi.org/10.3390/atmos14071055
Chicago/Turabian StyleDos Santos, Juliana Damasceno, Jeferson Prietsch Machado, and Jaci Maria Bilhalva Saraiva. 2023. "The Response of Southwest Atlantic Storm Tracks to Climate Change in the Brazilian Earth System Model" Atmosphere 14, no. 7: 1055. https://doi.org/10.3390/atmos14071055
APA StyleDos Santos, J. D., Machado, J. P., & Saraiva, J. M. B. (2023). The Response of Southwest Atlantic Storm Tracks to Climate Change in the Brazilian Earth System Model. Atmosphere, 14(7), 1055. https://doi.org/10.3390/atmos14071055