Response of Runoff Change to Extreme Climate Evolution in a Typical Watershed of Karst Trough Valley, SW China
Abstract
:1. Introduction
2. Study Site
3. Materials
4. Methodology
4.1. Selection and Threshold Determination of ECI
4.2. Wavelet Analysis
5. Result Analysis
5.1. Correlation between ECI and Runoff Change
5.2. Responses of Runoff to ECI Changes
5.2.1. Time Frequency Characteristics of Evolution Process of Runoff and ECIs
5.2.2. Phase Relation between Runoff and ETI
5.2.3. Phase Relation between Runoff and ERI
6. Discussions
6.1. Influence of Abrupt Change for ECIs on Runoff Change
6.2. Influence of Temperature and Precipitation on Runoff Change
6.3. Response Mechanism of Runoff Change to Different ECIs
6.4. Limitations and Future Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. Climate change and water: Technical paper VI. Environ. Policy Collect. 2008, 128, 343–355. [Google Scholar]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Kadari, A.; Mekala, S.R.; Wagner, N.; Malan, D.; Köth, J.; Doll, K. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar]
- Liu, L.; Xu, Z.X. Regionalization of precipitation and the spatiotemporal distribution of extreme precipitation in southwestern China. Nat. Hazards. 2016, 80, 1195–1211. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future change in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Raible, C.C. Climate change: Water cycle shifts gear. Nature 2005, 434, 830–833. [Google Scholar] [CrossRef]
- Xu, X.L.; Liu, W.; Rafique, R.; Wang, K.L. Revisiting continental US hydrologic change in the latter half of the 20th century. Water Resour. Manag. 2013, 27, 4337–4348. [Google Scholar] [CrossRef]
- Millan, M.M. Extreme hydro meteorological events and climate change predictions in Europe. J. Hydrol. 2014, 518 Pt B, 206–224. [Google Scholar] [CrossRef]
- Amin, M.Z.M.; Shaaban, A.J.; Ercan, A.; Ishida, K.; Kavvas, M.L.; Chen, Z.Q.; Jang, S. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology model. Sci. Total Environ. 2017, 575, 12–22. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, S.J.; Bai, X.Y.; Luo, W.J.; Tian, Y.C.; Luo, G.J.; He, S.Y. Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China. Sci. Total Environ. 2017, s601–s602, 1449–1465. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Chen, F.; Li, C.; Ran, C.; Zhang, S. Identifying the multi-scale influences of climate factors on runoff changes in a typical karst watershed using wavelet analysis. Land 2022, 11, 1284. [Google Scholar] [CrossRef]
- Burns, D.A.; Klaus, J.; Mchale, M.R. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol. 2007, 336, 155–170. [Google Scholar] [CrossRef]
- Chen, C.C.; Yang, Y.N.; Yang, Y.H.; Hao, X.M.; Shen, Y.P. Hydrology and water resources variation and its response to regional climate change in Xinjiang. J. Geogr. Sci. 2010, 20, 599–612. [Google Scholar]
- Core Writing Team; Pachauri, R.K.; Reisinger, A. Climate Change 2007: Synthesis Report-Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
- Min, R.Y.; Gu, X.H.; Guan, Y.S.; Zhang, X. Increasing likelihood of global compound hot-dry extremes from temperature and runoff during the past 120 years. J. Hydrol. 2023, 621, 129553. [Google Scholar]
- Labat, D.; Goddéris, Y.; Probst, J.L.; Guyot, J.L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 2004, 27, 631–642. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Singh, V.P.; Ouyang, W. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China. J. Geophys. Res. Atmos. 2017, 12, 9050–9059. [Google Scholar] [CrossRef]
- Banks, D.; Odling, N.E.; Skarphagen, H.; Rohr-Torp, E. Permeability and stress in crystalline rocks. Terra Nov. 1996, 8, 223–235. [Google Scholar] [CrossRef]
- Manoutsoglou, E.; Lazos, I.; Steiakakis, E.; Vafeidis, A. The geomorphological and geological structure of the Samaria Gorge, Crete, Greece—Geological models comprehensive review and the link with the geomorphological evolution. Appl. Sci. 2022, 12, 10670. [Google Scholar] [CrossRef]
- Lipar, M.; Ferk, M. Karst pocket valleys and their implications on Pliocene–Quaternary hydrology and climate: Examples from the Nullarbor Plain, southern Australia. Earth-Sci. Rev. 2015, 150, 1–13. [Google Scholar] [CrossRef]
- Lan, Y.; Shen, Y.; Zhong, Y.; Sufen, W.U.; Wang, G. Sensitivity of the mountain runoff of Urumqi River to the climate changes. J. Arid Land Resour. Environ. 2010, 24, 50–55. [Google Scholar]
- Duan, K.Q.; Yao, T.D.; Wang, N.L.; Liu, H.C. Numerical simulation of urumqi glacier No. 1 in the eastern Tianshan, central asia from 2005 to 2070. Sci. Bull. 2012, 57, 4505–4509. [Google Scholar]
- Cui, Y.H. The runoff simulations for the Glacier No.1 hydrologic section at the headwaters of the Urumqi River on the different timescales. J. Arid Land Resour. Environ. 2013, 27, 119–126. [Google Scholar]
- Alexander, L.V. Trends in Australia's climate means and extremes: A global context. Aust. Meteorol. Mag. 2012, 56, 1–18. [Google Scholar]
- Donat, M.G.; Alexander, L.V.; Herold, N.; Dittus, A.J. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res. Atmos. 2016, 121, 11174–11189. [Google Scholar]
- Jiang, Z.; Li, L.; Chen, W.; Wang, Z.; Wang, J. Extreme climate events in China: Ipcc-ar4 model evaluation and projection. Clim. Change 2012, 110, 385–401. [Google Scholar]
- Godoi, V.A.; Bryan, K.R.; Stephens, S.A.; Gorman, R.M. Extreme waves in New Zealand waters. Ocean Model. 2017, 117, 97–110. [Google Scholar]
- Wojtysiak, K.; Herman, A.; Moskalik, M. Wind wave climate of west spitsbergen: Seasonal variability and extreme events. Oceanologia. 2018, 60, 331–343. [Google Scholar]
- Labat, D. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. J. Hydrol. 2010, 385, 269–278. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph. 2004, 11, 561–566. [Google Scholar]
- Hao, Y.; Liu, G.; Li, H.; Li, Z.; Zhao, J.; Yeh, T.C.J. Investigation of karstic hydrological processes of niangziguan springs (north China) using wavelet analysis. Hydrol. Process. 2012, 26, 3062–3069. [Google Scholar] [CrossRef]
- Qin, L.Y.; Bai, X.Y.; Wang, S.J.; Zhou, D.Q.; Li, Y.; Peng, T. Major problems and solutions on surface water resource utilisation in karst mountainous areas. Agric. Water Manag. 2015, 159, 55–65. [Google Scholar] [CrossRef]
- Luo, G.J.; Wang, S.J.; Bai, X.Y.; Liu, X.M.; Cheng, A.Y. Delineating small karst watersheds based on digital elevation model and eco-hydrogeological principles. Solid Earth 2016, 7, 457–468. [Google Scholar] [CrossRef]
- Li, Z.W.; Xu, X.L.; Xu, C.H.; Liu, M.X.; Wang, K.L. Dam construction impacts on multiscale characterization of sediment discharge in two typical karst watersheds of southwest China. J. Hydrol. 2018, 558, 42–54. [Google Scholar] [CrossRef]
- Kumar, P.; Foufoula-Georgiou, E. Wavelet analysis for geophysical applications. Rev. Geophys. 1997, 35, 385–412. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. B. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Fu, G.B.; Viney, N.R.; Charles, S.P.; Liu, J.R. Long-term temporal variation of extreme precipitation events in australia: 1910-2006. J. Hydrometeorol. 2010, 11, 950–965. [Google Scholar] [CrossRef]
- Schaefli, B.; Maraun, D.; Holschneider, M. What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Adv. Water Resour. 2007, 30, 2511–2525. [Google Scholar] [CrossRef]
- Massei, N.; Dupont, J.P.; Mahler, B.J.; Laignel, B.; Fournier, M.; Valdes, D.; Ogier, S. Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J. Hydrol. 2006, 329, 244–257. [Google Scholar] [CrossRef]
- Slimani, S.; Massei, N.; Mesquita, J.; Valdés, D.; Fournier, M.; Laignel, B.; Dupont, J.P. Combined climatic and geological forcings on the spatio-temporal variability of piezometric levels in the chalk aquifer of Upper Normandy (France) at pluridecennal scale. Hydrogeol. J. 2009, 17, 1823–1832. [Google Scholar] [CrossRef]
- Salerno, F.; Tartari, G. A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. J. Hydrol. 2009, 376, 295–306. [Google Scholar] [CrossRef]
- Liu, Y.C.; Liu, Z.F.; Hao, Y.H.; Han, T.D.; Shen, Y.P.; Jiao, K.Q. Multi-time scale characteristics of the runoff in the upstream of Rümqi River, Tianshan mountains, based on cross-wavelet transformation. J. Glaciol. Geocryol. 2013, 35, 1564–1572. [Google Scholar]
- Charlier, J.B.; Ladouche, B.; Maréchal, J.C. Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. J. Hydrol. 2015, 523, 610–623. [Google Scholar] [CrossRef]
- Qian, K.; Wang, X.S.; Lv, J.; Wan, L. The wavelet correlative analysis of climatic impacts on runoff in the source region of Yangtze River, in China. Int. J. Climatol. 2014, 34, 2019–2032. [Google Scholar] [CrossRef]
- Li, Z.W.; Xu, X.L.; Xu, H.; Liu, X.; Wang, K.L.; Yi, R. Monthly sediment discharge changes and estimates in a typical karst catchment of southwest China. J. Hydrol. 2017, 555, 95–107. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.X.; Higgitt, D.L.; Chen, C.T.A.; Han, J.; Sun, H. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob. Planet. Change 2008, 60, 365–380. [Google Scholar] [CrossRef]
- Alexandersson, H.; Moberg, A. Homogenization of Swedish temperature data (Part I): A homogeneity test for linear trends. Int. J. Climatol. 1997, 17, 25–34. [Google Scholar] [CrossRef]
- Easterling, D.R.; Peterson, T.C. A new method for detecting and adjusting for undocumented discontinuities in climatological time series. Int. J. Climatol. 1995, 15, 369–377. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y. RHtestsV3 User Manual. 2010. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 13 April 2018).
- R Core Team. R: A language and environment for statistical computing. Computing 2014, 14, 12–21. [Google Scholar]
- Allen, M.R.; Smith, L.A. Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise. J. Clim. 1996, 9, 3373–3404. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Fan, Y.T.; Chen, Y.N.; Li, W.H. Impacts of temperature and precipitation on runoff in the Tarim River during the past 50 years. J. Arid Land 2011, 3, 220–230. [Google Scholar] [CrossRef]
- Karl, T.R.; Riebsame, W.E. The impact of decadal fluctuations in mean precipitation and temperature on runoff: A sensitivity study over the United States. Clim. Change 1989, 15, 423–447. [Google Scholar] [CrossRef]
- Li, Z.W.; Xu, X.L.; Yu, B.F.; Xu, C.H.; Liu, M.X.; Wang, K. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China. J. Hydrol. 2016, 542, 836–849. [Google Scholar] [CrossRef]
- Small, D.; Islam, S.; Vogel, R.M. Trends in precipitation and streamflow in the eastern US: Paradox or perception? Geophys. Res. Lett. 2006, 33, L03403. [Google Scholar] [CrossRef]
- Luce, C.H.; Holden, Z.A. Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophys. Res. Lett. 2009, 36, L16401. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Gao, J.; Xu, X.; Wang, C.; Tang, D.; Wang, T.; Wu, X. Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China. Sci. Total Environ. 2015, 536, 803–812. [Google Scholar] [CrossRef]
- Miao, C.; Ni, J.; Borthwick, A.G.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Change 2011, 76, 196–205. [Google Scholar] [CrossRef]
- Gao, G.; Ma, Y.; Fu, B. Multi-temporal scale changes of streamflow and sediment load in a loess hilly watershed of China. Hydrol. Process. 2016, 30, 365–382. [Google Scholar] [CrossRef]
- Xue, T.; Ma, C.; Wei, G.; Yang, J.; Xiang, X.U. Swat runoff simulation and predictions in Liyuan River basin of Gansu Province. J. Water Resour. Water Eng. 2011, 22, 61–65. (In Chinese) [Google Scholar]
- Li, Y.; Bai, X.Y.; Wang, S.J.; Qin, L.Y.; Tian, Y.C.; Luo, G.J. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China. Solid Earth 2017, 8, 661–669. [Google Scholar] [CrossRef]
- Budyko, M.L. Climate and Life; Academic: San Diego, CA, USA, 1974. [Google Scholar]
- Roderick, M.L.; Farquhar, G.D.A. Simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Hu, Y.D.; Liu, Z.H.; Zhao, M.; Zeng, Q.R.; Zeng, C.; Chen, B. Using deuterium excess, precipitation and runoff data to determine evaporation and transpiration: A case study from the Shawan Test Site, Puding, Guizhou, China. Geochim. Cosmochim. Acta 2018, 242, 21–33. [Google Scholar] [CrossRef]
- Xiong, L.; Bai, X.Y.; Zhao, C.W.; Li, Y.B.; Tan, Q.; Luo, G.J.; Wu, L.; Chen, F.; Li, C.; Ran, C.; et al. High-resolution data sets for global carbonate and silicate rock weathering carbon sinks and their change trends. Earth’s Feature 2022, 10, e2022EF002746. [Google Scholar] [CrossRef]
- Zhang, S.R.; Bai, X.Y.; Zhao, C.W.; Tan, Q.; Luo, G.J.; Cao, Y.; Deng, Y.; Li, Q.; Li, C.; Wu, L.; et al. Limitations of soil moisture and formation rate on vegetation growth in karst areas. Sci. Total Environ. 2021, 810, 151209. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Bai, X.Y.; Tan, Q.; Zhao, C.W.; Luo, G.J.; Wu, L.H.; Chen, F.; Xi, H.P.; Luo, X.L.; Ran, C.; et al. High-resolution mapping of the global silicate weathering carbon sink and its long-term changes. Glob. Change Biol. 2022, 28, 4377–4394. [Google Scholar] [CrossRef]
Geological Stratums | Lithology | Area (km2) | Proportion (%) |
---|---|---|---|
Combined layer of Liangshan, Qixia, and Maokou formation | Homogenous limestone | 23.79 | 3.44 |
Heshan formation | Interbedded limestone and clastic rock | 69.12 | 9.99 |
Jialing River formation | Clastic rock of limestone interlayer | 106.81 | 15.44 |
Combined layer from Majuchong to Xiushan formation | Non-carbonatite | 317.72 | 45.94 |
Loushanguan formation | Homogenous dolomite | 108.29 | 15.66 |
Maotian formation | Mixture of homegenous limestone and dolomite | 6.78 | 0.98 |
ETIs | |||
---|---|---|---|
Identification | Indicator Name | Definitions | Unit |
FD0 | Frost days | Annual count when TN(daily minimum) < 0 °C | Day |
FD0.6 | Number of frost days below 0.6 °C | Annual count when TN(daily minimum) < 0.6 °C, 0.6 °C is a user-defined threshold | Day |
SU25 | Summer days | Annual count when TX(daily maximum) > 25 °C | Day |
SU34.4 | Number of summer days above 34.4 °C | Annual count when TX(daily maximum) > 34.4 °C, 34.4 °C is a user-defined threshold | Day |
ID0 | Ice days | Annual count when TX(daily maximum) < 0 °C | Day |
ID6.4 | Number of ice days below 6.4 °C | Annual count when TX(daily maximum) < 6.4 °C, 6.4 °C is a user-defined threshold | Day |
TR20 | Tropical nights | Annual count when TN (daily minimum) > 20 °C | Day |
GSL | Growing season Length | Annual (1 January to 31 December in NH, 1 July to 30 June in SH) count between first span of at least 6 days with TG > 5 °C and first span after 1 July (1 January in SH) of 6 days with TG < 5 °C | Day |
TR23.8 | Number of tropical nights above 23.8 °C | Annual count when TN(daily minimum) > 23.8 °C, 23.8 °C is a user-defined threshold | Day |
DTR | Diurnal temperature range | Monthly mean difference between TX and TN | °C |
TXx | Max Tmax | Monthly maximum value of daily maximum temp | °C |
TNx | Max Tmin | Monthly maximum value of daily minimum temp | °C |
TXn | Min Tmax | Monthly minimum value of daily maximum temp | °C |
TNn | Min Tmin | Monthly minimum value of daily minimum temp | °C |
WSDI | Warm spell duration indicator | Annual count of days with at least 6 consecutive days when TX > 90th percentile | Day |
CSDI | Cold spell duration indicator | Annual count of days with at least 6 consecutive days when TN < 10th percentile | Day |
TN10p | Cool nights | Percentage of days when TN < 10th percentile | Day |
TX10p | Cool days | Percentage of days when TX < 10th percentile | Day |
TN90p | Warm nights | Percentage of days when TN > 90th percentile | Day |
TX90p | Warm days | Percentage of days when TX > 90th percentile | Day |
EPIs | |||
---|---|---|---|
Identification | Indicator Name | Definitions | Unit |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | Day |
CWD | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | Day |
R10 | Number of heavy precipitation days | Annual count of days when PRCP ≥ 10 mm | Day |
R17.3 | Number of very heavy precipitation days above 17.3 mm | Annual count of days when PRCP ≥ 17.3 mm, 17.3 mm is a user-defined threshold | Day |
R20 | Number of very heavy precipitation days | Annual count of days when PRCP ≥ 20 mm | Day |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | mm/day |
R95p | Very wet days | Annual total PRCP when RR > 95th percentile | mm |
R99p | Extremely wet days | Annual total PRCP when RR > 99th percentile | mm |
PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
Rx1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
Rx5day | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation | mm |
ECIs | R | Sig | ECIs | R | Sig |
---|---|---|---|---|---|
CDD | 0.01 | N | ID6.4 | 0.03 | N |
CWD | −0.14 | N | SDII | 0.57 | 0.01 |
PRCPTOT | 0.68 | 0.01 | SU25 | −0.24 | N |
R10 | 0.67 | 0.01 | SU34.4 | −0.38 | 0.05 |
R17.3 | 0.49 | 0.01 | TN10p | 0.03 | N |
R20 | 0.53 | 0.01 | TN90p | −0.26 | N |
R95p | 0.55 | 0.01 | TNn | −0.13 | N |
R99p | 0.4 | 0.05 | TNx | −0.37 | 0.05 |
Rx1day | 0.38 | 0.05 | TR20 | −0.07 | N |
Rx5day | 0.51 | 0.01 | TR23.8 | −0.32 | N |
CSDI | −0.02 | N | TX10p | 0.13 | N |
DTR | −0.09 | N | TX90p | −0.35 | 0.05 |
FD0.6 | 0.13 | N | TXn | −0.12 | N |
FD0 | 0.1 | N | TXx | −0.28 | N |
GSL | 0.14 | N | WSDI | −0.27 | N |
ID0 | 0.22 | N |
ECIs | Change Trend | Abrupt Change Time | Variation Time of High Energy and Significant Correlation Regions | |
---|---|---|---|---|
XWT | WTC | |||
PRCPTOT | + | 1994 2010 | 2009 | 2009 |
R10 | + | 1993 2004 2013 | 2001 2010 | 1995 2013 |
R17.3 | + | 1992 2008 | 2011 | 1996 2007 |
R20 | + | 1992 2004 | - | 1993 2002 2008 |
R95p | – | 1994 2002 2013 | - | 1993 |
R99p | – | 1997 2004 2013 | - | - |
Rx1day | – | 1990 2004 2013 | 2001 2009 | 1993 2013 |
Rx5day | + | 1987 2013 | 2011 | 1993 2002 |
SDII | – | 1994 2004 | 2005 | 1993 2013 |
SU34.4 | + | 2004 2013 | 2006 | 2000 2010 |
TNx | + | 1991 2004 | 2006 2010 | 2000 2011 |
TX90p | + | 2001 | 2003 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Chen, D.; Yang, D.; Luo, G.; Wang, J.; Chen, F. Response of Runoff Change to Extreme Climate Evolution in a Typical Watershed of Karst Trough Valley, SW China. Atmosphere 2023, 14, 927. https://doi.org/10.3390/atmos14060927
Wu L, Chen D, Yang D, Luo G, Wang J, Chen F. Response of Runoff Change to Extreme Climate Evolution in a Typical Watershed of Karst Trough Valley, SW China. Atmosphere. 2023; 14(6):927. https://doi.org/10.3390/atmos14060927
Chicago/Turabian StyleWu, Luhua, Dan Chen, Dongni Yang, Guangjie Luo, Jinfeng Wang, and Fei Chen. 2023. "Response of Runoff Change to Extreme Climate Evolution in a Typical Watershed of Karst Trough Valley, SW China" Atmosphere 14, no. 6: 927. https://doi.org/10.3390/atmos14060927
APA StyleWu, L., Chen, D., Yang, D., Luo, G., Wang, J., & Chen, F. (2023). Response of Runoff Change to Extreme Climate Evolution in a Typical Watershed of Karst Trough Valley, SW China. Atmosphere, 14(6), 927. https://doi.org/10.3390/atmos14060927