Characterization of Volatile Organic Compounds (VOCs) from Farms Effluents: Interest of HS-SPME-GC-MS Technique for Laboratory and Field Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cattle Dung and Slurry for Laboratory Assays
2.2. Poultry Droppings for Laboratory Assays
2.3. Wheat Straw and Litter for Laboratory Assays
2.4. Field Test: Cattle Production Facility and Effluent Treatment
2.5. Volatile Organic Compounds Analysis by HS-SPME-GC-MS
2.6. Post-Acquisition GC-MS Data Processing
3. Results and Discussion
3.1. Laboratory Test: VOC Profiling in Different Effluent Mixtures
3.2. Field Test: VOC Profiling in the Treated and Untreated Dairy Slurry
3.3. The Interest of HS-SPME-GC-MS for in Farm Effluent Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ch | Chicken droppings |
Ch + St | Mix of chicken droppings and straw |
Du | Cattle dung |
Du + Sl | Mix of cattle dung and slurry |
Du + Sl + St | Mix of cattle dung, slurry, and straw |
DVB/CAR/PDMS | Divinylbenzene/carboxen/polydimethylsiloxane |
EI | Electron impact ionization |
GC-FID | Gas chromatography-flame ionization detector |
GC-MS | Gas chromatography-mass spectrometry |
GC-MS-O | Gas chromatography-mass spectrometry olfactometry |
HS-SPME | headspace solid-phase microextraction |
MIMS | Membrane inlet mass spectrometry |
PTR-Qi-TOF-MS | Proton transfer reaction–quadrupole ion guide–time of flight–mass spectrometry |
PTR-MS | Proton transfer reaction-mass spectrometry |
Sl | Cattle slurry |
SPME | Solid phase microextraction |
St | Straw |
TD | Thermal desorption |
TD-GC-MS | Thermal desorption-gas chromatography-mass spectrometry |
VOCs | Volatile organic compounds |
References
- United States Environmental Protection Agency, Overview. Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 15 September 2022).
- Nie, E.; Zheng, G.; Ma, C. Characterization of Odorous Pollution and Health Risk Assessment of Volatile Organic Compound Emissions in Swine Facilities. Atmos. Environ. 2020, 223, 117233. [Google Scholar] [CrossRef]
- Toro, M.V.; Cremades, L.V.; Calbó, J. Relationship between VOC and NOx Emissions and Chemical Production of Tropospheric Ozone in the Aburrá Valley (Colombia). Chemosphere 2006, 65, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, P.J.; Atkinson, R. Kinetics, Products, and Mechanisms of Secondary Organic Aerosol Formation. Chem. Soc. Rev. 2012, 41, 6582–6605. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Koziel, J.A.; Banik, C.; Ma, H.; Lee, M.; Wi, J.; Meiirkhanuly, Z.; O’Brien, S.C.; Li, P.; Andersen, D.S.; et al. Mitigation of Odor, NH3, H2S, GHG, and VOC Emissions With Current Products for Use in Deep-Pit Swine Manure Storage Structures. Front. Environ. Sci. 2020, 8, 613646. [Google Scholar] [CrossRef]
- Blazy, V.; de Guardia, A.; Benoist, J.C.; Daumoin, M.; Guiziou, F.; Lemasle, M.; Wolbert, D.; Barrington, S. Correlation of Chemical Composition and Odor Concentration for Emissions from Pig Slaughterhouse Sludge Composting and Storage. Chem. Eng. J. 2015, 276, 398–409. [Google Scholar] [CrossRef]
- Wattiaux, M.A.; Uddin, M.E.; Letelier, P.; Jackson, R.D.; Larson, R.A. Invited Review: Emission and Mitigation of Greenhouse Gases from Dairy Farms: The Cow, the Manure, and the Field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Dunlop, M.W.; Blackall, P.J.; Stuetz, R.M. Odour Emissions from Poultry Litter—A Review Litter Properties, Odour Formation and Odorant Emissions from Porous Materials. J. Environ. Manag. 2016, 177, 306–319. [Google Scholar] [CrossRef]
- McIlroy, J.P.; McGeough, K.L.; Laughlin, R.J.; Carolan, R. Abatement of Ammonia Emissions from Dairy Cow House Concrete Floor Surfaces through Additive Application. Biosyst. Eng. 2019, 188, 320–330. [Google Scholar] [CrossRef]
- Nahm, K.H. Environmental Effects of Chemical Additives Used in Poultry Litter and Swine Manure. Crit. Rev. Environ. Sci. Technol. 2005, 35, 487–513. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Han, M.-F.; Jia, T.-P.; Hu, X.-R.; Zhu, H.-Q.; Tong, Z.; Lin, Y.-T.; Wang, C.; Liu, D.-Z.; Peng, Y.-Z.; et al. Emissions, Measurement, and Control of Odor in Livestock Farms: A Review. Sci. Total Environ. 2021, 776, 145735. [Google Scholar] [CrossRef]
- Klenbusch, M.R. Measurement of Gaseous Emission Rates from Land Surfaces Using an Emission Isolation Flux Chamber: User’s Guide; Radian Corp.: Austin, TX, USA, 1986. [Google Scholar]
- Zhou, Z.; Shen, G.; Xu, C.; Song, M.; Chen, X.; Wang, Z.; Fu, K.; Qian, X. Investigation into emission characteristics of odor pollutants in typical livestock and poultry farms in Shanghai. Acta Agric. Zhejiangensis 2019, 31, 790–797. [Google Scholar] [CrossRef]
- Kammer, J.; Décuq, C.; Baisnée, D.; Ciuraru, R.; Lafouge, F.; Buysse, P.; Bsaibes, S.; Henderson, B.; Cristescu, S.M.; Benabdallah, R.; et al. Characterization of Particulate and Gaseous Pollutants from a French Dairy and Sheep Farm. Sci. Total Environ. 2020, 712, 135598. [Google Scholar] [CrossRef] [PubMed]
- Laor, Y.; Koziel, J.A.; Cai, L.; Ravid, U. Chemical-Sensory Characterization of Dairy Manure Odor Using Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography Mass Spectrometry-Olfactometry. J. Air Waste Manag. Assoc. 2008, 58, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Hough, R.; Archer, D.; Probert, C. A Comparison of Sample Preparation Methods for Extracting Volatile Organic Compounds (VOCs) from Equine Faeces Using HS-SPME. Metabolomics 2018, 14, 19. [Google Scholar] [CrossRef]
- Kaikiti, K.; Stylianou, M.; Agapiou, A. Use of Biochar for the Sorption of Volatile Organic Compounds (VOCs) Emitted from Cattle Manure. Environ. Sci. Pollut. Res. Int. 2021, 28, 59141–59149. [Google Scholar] [CrossRef]
- Begnaud, F.; Pérès, C.; Berdagué, J.-L. Characterization of Volatile Effluents of Livestock Buildings by Solid-Phase Microextraction. Int. J. Environ. Anal. Chem. 2003, 83, 837–849. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Robarge, W.P.; Xiao, C.; Heber, A.J. Volatile Organic Compounds at Swine Facilities: A Critical Review. Chemosphere 2012, 89, 769–788. [Google Scholar] [CrossRef]
- Feilberg, A.; Liu, D.; Adamsen, A.P.S.; Hansen, M.J.; Jonassen, K.E.N. Odorant Emissions from Intensive Pig Production Measured by Online Proton-Transfer-Reaction Mass Spectrometry. Environ. Sci. Technol. 2010, 44, 5894–5900. [Google Scholar] [CrossRef]
- Yuan, B.; Coggon, M.M.; Koss, A.R.; Warneke, C.; Eilerman, S.; Peischl, J.; Aikin, K.C.; Ryerson, T.B.; de Gouw, J.A. Emissions of Volatile Organic Compounds (VOCs) from Concentrated Animal Feeding Operations (CAFOs): Chemical Compositions and Separation of Sources. Atmos. Chem. Phys. 2017, 17, 4945–4956. [Google Scholar] [CrossRef]
- Feilberg, A.; Adamsen, A.P.S.; Lindholst, S.; Lyngbye, M.; Schäfer, A. Evaluation of Biological Air Filters for Livestock Ventilation Air by Membrane Inlet Mass Spectrometry. J. Environ. Qual. 2010, 39, 1085–1096. [Google Scholar] [CrossRef]
- Theodoridis, G.; Koster, E.H.M.; de Jong, G.J. Solid-Phase Microextraction for the Analysis of Biological Samples. J. Chromatogr. B Biomed. Sci. Appl. 2000, 745, 49–82. [Google Scholar] [CrossRef] [PubMed]
- Hwang, O.; Lee, S.-R.; Cho, S.; Ro, K.S.; Spiehs, M.; Woodbury, B.; Silva, P.J.; Han, D.-W.; Choi, H.; Kim, K.-Y.; et al. Efficacy of Different Biochars in Removing Odorous Volatile Organic Compounds (VOCs) Emitted from Swine Manure. ACS Sustain. Chem. Eng. 2018, 6, 14239–14247. [Google Scholar] [CrossRef]
- Laor, Y.; Shabtay, A.; Ravid, U.; Baybikov, R.; Eitam, H. Changes in VOCs Emissions from Fecal Manure throughout the Life Cycle of Beef Cattle. In Proceedings of the 2007 ASABE Annual International Meeting, Minneapolis, Minnesota, 17–20 June 2007; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2007. [Google Scholar]
- Ciganek, M.; Neca, J. Chemical Characterization of Volatile Organic Compounds on Animal Farms. Vet. Med. 2008, 53, 641–651. [Google Scholar] [CrossRef]
- Zhu, F.; Pan, Z.; Hong, C.; Wang, W.; Chen, X.; Xue, Z.; Yao, Y. Analysis of Volatile Organic Compounds in Compost Samples: A Potential Tool to Determine Appropriate Composting Time. Waste Manag. 2016, 58, 98–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Zheng, Y.; Chen, Y.; Yin, F.; Zhang, W.; Dong, H.; Xin, H. Characterization of Volatile Organic Compound (VOC) Emissions from Swine Manure Biogas Digestate Storage. Atmosphere 2019, 10, 411. [Google Scholar] [CrossRef]
- Scheftelowitz, M.; Thrän, D. Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany. Agriculture 2016, 6, 20. [Google Scholar] [CrossRef]
- Bhattacharya, A.N.; Taylor, J.C. Recycling Animal Waste as a Feedstuff: A Review. J. Anim. Sci. 1975, 41, 1438–1457. [Google Scholar] [CrossRef]
- van der Hoeven-Hangoor, E.; Rademaker, C.J.; Paton, N.D.; Verstegen, M.W.A.; Hendriks, W.H. Evaluation of Free Water and Water Activity Measurements as Functional Alternatives to Total Moisture Content in Broiler Excreta and Litter Samples. Poult. Sci. 2014, 93, 1782–1792. [Google Scholar] [CrossRef]
- Dunlop, M.W.; Blackall, P.J.; Stuetz, R.M. Water Addition, Evaporation and Water Holding Capacity of Poultry Litter. Sci. Total Environ. 2015, 538, 979–985. [Google Scholar] [CrossRef]
- Miles, D.M.; Rowe, D.E.; Cathcart, T.C. Litter Ammonia Generation: Moisture Content and Organic versus Inorganic Bedding Materials1. Poult. Sci. 2011, 90, 1162–1169. [Google Scholar] [CrossRef]
- Miles, D.M.; Rowe, D.E.; Owens, P.R. Winter Broiler Litter Gases and Nitrogen Compounds: Temporal and Spatial Trends. Atmos. Environ. 2008, 42, 3351–3363. [Google Scholar] [CrossRef]
- Morse, D.; Nordstedt, R.A.; Head, H.H.; Van Horn, H.H. Production and Characteristics of Manure from Lactating Dairy Cows in Florida. Trans. ASAE 1994, 37, 275–279. [Google Scholar] [CrossRef]
- Pereira, J.; Fangueiro, D.; Misselbrook, T.H.; Chadwick, D.R.; Coutinho, J.; Trindade, H. Ammonia and Greenhouse Gas Emissions from Slatted and Solid Floors in Dairy Cattle Houses: A Scale Model Study. Biosyst. Eng. 2011, 109, 148–157. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, J.; Luijsterburg, M.S. VolcaNoseR Is a Web App for Creating, Exploring, Labeling and Sharing Volcano Plots. Sci. Rep. 2020, 10, 20560. [Google Scholar] [CrossRef]
- Meiirkhanuly, Z.; Koziel, J.A.; Chen, B.; Białowiec, A.; Lee, M.; Wi, J.; Banik, C.; Brown, R.C.; Bakshi, S. Mitigation of Gaseous Emissions from Swine Manure with the Surficial Application of Biochars. Atmosphere 2020, 11, 1179. [Google Scholar] [CrossRef]
- Trabue, S.; Scoggin, K.; Tyndall, J.; Sauer, T.; Hernandez-Ramirez, G.; Pfeiffer, R.; Hatfield, J. Odorous Compounds Sources and Transport from a Swine Deep-Pit Finishing Operation: A Case Study. J. Environ. Manag. 2019, 233, 12–23. [Google Scholar] [CrossRef]
- Hernandez, G.; Trabue, S.; Sauer, T.; Pfeiffer, R.; Tyndall, J. Odor Mitigation with Tree Buffers: Swine Production Case Study. Agric. Ecosyst. Environ. 2012, 149, 154–163. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Sánchez-García, M.; Alburquerque, J.A.; Cayuela, M.L. Biochar Reduces Volatile Organic Compounds Generated during Chicken Manure Composting. Bioresour. Technol. 2019, 288, 121584. [Google Scholar] [CrossRef]
- Beck, J.; Heutelbeck, A.; Dunkelberg, H. Volatile Organic Compounds in Dwelling Houses and Stables of Dairy and Cattle Farms in Northern Germany. Sci. Total Environ. 2007, 372, 440–454. [Google Scholar] [CrossRef]
- Hafner, S.D.; Howard, C.; Muck, R.E.; Franco, R.B.; Montes, F.; Green, P.G.; Mitloehner, F.; Trabue, S.L.; Rotz, C.A. Emission of Volatile Organic Compounds from Silage: Compounds, Sources, and Implications. Atmos. Environ. 2013, 77, 827–839. [Google Scholar] [CrossRef]
- Mackie, R.I.; Stroot, P.G.; Varel, V.H. Biochemical Identification and Biological Origin of Key Odor Components in Livestock Waste. J. Anim. Sci. 1998, 76, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Thibodeaux, L.J.; Scott, H.D. (Eds.) Air/Soil Exchange Coefficients. In Environmental Exposure From Chemicals; CRC Press: Boca Raton, FL, USA, 1991; ISBN 978-1-351-07178-9. [Google Scholar]
- Zhang, H.; Lindberg, S.E.; Barnett, M.O.; Vette, A.F.; Gustin, M.S. Dynamic Flux Chamber Measurement of Gaseous Mercury Emission Fluxes over Soils. Part 1: Simulation of Gaseous Mercury Emissions from Soils Using a Two-Resistance Exchange Interface Model. Atmos. Environ. 2002, 36, 835–846. [Google Scholar] [CrossRef]
- Hales, K.E.; Parker, D.B.; Cole, N.A. Potential Odorous Volatile Organic Compound Emissions from Feces and Urine from Cattle Fed Corn-Based Diets with Wet Distillers Grains and Solubles. Atmos. Environ. 2012, 60, 292–297. [Google Scholar] [CrossRef]
- Hales, K.; Parker, D.B.; Cole, N.A. Volatile Organic Compound Flux from Manure of Cattle Fed Diets Differing in Grain Processing Method and Co-Product Inclusion. Atmos. Environ. 2015, 100, 20–24. [Google Scholar] [CrossRef]
- de Gouw, J.A.; Howard, C.J.; Custer, T.G.; Baker, B.M.; Fall, R. Proton-Transfer Chemical-Ionization Mass Spectrometry Allows Real-Time Analysis of Volatile Organic Compounds Released from Cutting and Drying of Crops. Environ. Sci. Technol. 2000, 34, 2640–2648. [Google Scholar] [CrossRef]
- Zhu, J. A Review of Microbiology in Swine Manure Odor Control. Agric. Ecosyst. Environ. 2000, 78, 93–106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joguet, N.; Jing, L.; Jamois, F.; Dumargue, P. Characterization of Volatile Organic Compounds (VOCs) from Farms Effluents: Interest of HS-SPME-GC-MS Technique for Laboratory and Field Test. Atmosphere 2023, 14, 928. https://doi.org/10.3390/atmos14060928
Joguet N, Jing L, Jamois F, Dumargue P. Characterization of Volatile Organic Compounds (VOCs) from Farms Effluents: Interest of HS-SPME-GC-MS Technique for Laboratory and Field Test. Atmosphere. 2023; 14(6):928. https://doi.org/10.3390/atmos14060928
Chicago/Turabian StyleJoguet, Nicolas, Lun Jing, Frank Jamois, and Philippe Dumargue. 2023. "Characterization of Volatile Organic Compounds (VOCs) from Farms Effluents: Interest of HS-SPME-GC-MS Technique for Laboratory and Field Test" Atmosphere 14, no. 6: 928. https://doi.org/10.3390/atmos14060928
APA StyleJoguet, N., Jing, L., Jamois, F., & Dumargue, P. (2023). Characterization of Volatile Organic Compounds (VOCs) from Farms Effluents: Interest of HS-SPME-GC-MS Technique for Laboratory and Field Test. Atmosphere, 14(6), 928. https://doi.org/10.3390/atmos14060928