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Abstract: Identifying the response of runoff changes to extreme climate evolution was of great
scientific significance for the rational regulation of watershed water resources and the prevention
of hydrological disasters. However, the time–frequency response relationships were not clear. The
Yinjiang River watershed, a typical watershed with karst trough valley areas, was chosen to identify
the impact of different climatic driving factors on runoff changes from 1984 to 2015. Continuous
wavelet transform (CWT), cross-wavelet transform (XWT), and wavelet coherence transform (WTC)
were performed to study the response relationship and time–frequency effect between runoff changes
and extreme climate change at different time scales. The main results showed that: (1) Twelve extreme
climate indices (ECIs) were detected to have a significant impact on runoff changes, mainly on a
6-year time scale; (2) The R10 and Rx1day in extreme precipitation index and SU34.4 and TNx in the
extreme temperature index were the main driving factors of runoff changes, which had relatively large
impacts on runoff changes in high and low energy vibration regions. However, the remaining eight
ECIs that passed the 0.05 confidence level showed relatively large impacts on runoff changes only in
low energy vibration regions; (3) The transition of the interaction between ECIs and runoff changes in
high and low time–frequency scales was related to the abrupt change characteristics of the ECIs. The
correlation of abrupt change was an important reason for the emergence of highly correlated regions
that trigger high and low energy vibrations; (4) As a whole, the extreme precipitation events were
ahead of runoff changes at the high time–frequency scale and exhibited small lag effects at the low
time–frequency scale, while extreme temperature events were mainly ahead of runoff changes. This
study has effectively revealed the impact of climate factors at different scales on runoff changes, and
provides a theoretical understanding for regulating and managing water resources in karst basins.
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1. Introduction

In the context of global warming, extreme climate change has become a major prob-
lem that restricts the development of human society [1]. Under the combined action of
various factors, extreme climate events have aroused widespread concern [2], especially
on matters concerning the intensification of the water cycle, the intensification of extreme
climate events, and the increase of drought and flood frequency. These events have se-
riously affected the rational regulation of watershed water resources and the prevention
of hydrological disasters. In recent years, the frequency of extreme precipitation has in-
creased along with the rising number of floods, droughts, and other disasters caused by
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extreme precipitation [3,4]. The frequency and amplitude of extreme temperature events
have generally increased, and they have compounded the responses of eco-hydrological
processes [5–11]. Runoff mainly manifests as the combined effects of climate change and
underlying surface conditions [12], and the most direct impact of climate change on runoff
is the change in runoff size and spatial and temporal distribution [13]. The generation of a
runoff is closely related to changes of PT, temperature, and evaporation. According to the
IPCC (Intergovernmental Panel on Climate Change) reports, the increase in temperature
has caused the spatial and temporal redistribution of regional water resources and the
evolution of extreme climate events [14], which greatly affects ecological hydrological
processes and regional water resources, and further seriously threatens the regulation and
safety management of water resources in karst basins. Therefore, a reliable assessment of
the response of runoff to extreme climate events is crucial in developing strategic plans for
the sustainable safety management of water resources in watersheds.

The spatiotemporal evolution process and driving mechanism of dry hot composite
extreme events and quantitative risk assessment of extreme climate change on temperature
and runoff have received significant attention in recent studies [15–18]. The existing
research on runoff and extreme climate is usually conducted at the administrative regional
level, but there is a lack of attention to watershed scale, especially in karst basins affected
by geological structure and geomorphic evolution where the time–frequency response
relationships are not clear [19–21]. In addition, most studies have focused on analyzing the
correlations among the influencing factors of extreme climate events or runoff evolution by
using linear trends and multiple linear or nonlinear regression [22–24], but these methods
cannot show the correlation and phase difference between runoff and extreme climate
evolution in the time domain. From the viewpoint of research content, these studies
have emphasised the following topics: the characteristics, causes, and mechanisms of the
evolution of the extreme temperature index (ETI) and the extreme precipitation index
(ERI) on multi-spatial scales [25,26], and the uncertainty of extreme climate evolution
and variability of time–space differences, occurrence frequency, amplitude, and instability,
among others [27–29]. Hydrological processes are extremely sensitive to climate change,
especially the response to extreme climate events [30]. However, little research has been
conducted on the multi-temporal correlation between runoff and extreme climate events.
Hydrologists have recently focused on the inter-annual and multi-decadal periodicities of
the largest rivers in the world through mouth-to-ocean discharge estimations, and their
relationship with global climate indices was explored along with the relationship of multi-
temporal scales of runoff changes and meteorological elements of basins [31,32]. Karst
watersheds are characterized by thin surface soil, high infiltration capacity, and complex
topography due to the special geologic condition and thus generally are distinct from non-
karst watersheds [33–35]. However, there is a lack of attention to the multi-scale coupling
study of extreme climate events and ecological hydrological processes at the watershed
scale. These challenges prevent government decision-makers from effectively regulating
the water resource security risks caused by extreme climate events.

Wavelet analysis has become a powerful technique in studying geophysical processes
or signals [26–37]. This method can help researchers localise power variations within a time
series by decomposing data into time-scale space. Wavelet analysis is ideal for analysing
non-stationary signals and identifying short- and large-scale periodic phenomena. In
the field of hydrology, continuous wavelet transform (CWT) has been recently used to
determine the effect of climatic phenomena on stream flow regimes [10,11,38] or runoff
processes [39]. CWT has also been widely used for studying the hydrogeological behaviour
of karst systems [35]. Hydrogeological responses in the format of physicochemical time
series have also been explored to investigate transport properties, turbidity dynamics [40],
and temperature–runoff relationships during snowmel and groundwater variations in geo-
logical contexts [41]. Surface–groundwater interactions have been studied by using CWT
to improve the understanding of river flow components in karst environments [42]. Mean-
while, cross-wavelet transform (XWT), which has strong signal coupling and resolution
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ability, can show the common high energy time–frequency region and phase correlation of
two time-series data. However, XWT has a great unsolved shortcoming that cannot find
significant coherence when analysing the low energy time–frequency regions of two time
series data in the time–frequency domain, and its functional defects in the low energy area
must be compensated by wavelet coherence transform (WTC) [43]. The implications of
climate and anthropic pressures on the short- to long-term changes in the water resources
of a Mediterranean karst were assessed by using wavelet analysis [44]. The non-stationary
relationships of ocean and atmosphere mean conditions and freshwater discharge, which
were integrated at the continental scale, were studied by using cross-wavelet analysis [30].
The impacts of precipitation, air temperature, and evapotranspiration on an annual runoff
in the source region of the Yangtze River were investigated in the time domain by using
wavelet analysis and multiple regression [45]. Wavelet coherence analysis was used to
determine the overall and scale-dependent similarities of temporal patterns of soil moisture
in the karst catchments of south-western China [46]. CWT analysis was used to detect
the trends and periodicity in sediment discharge, whilst wavelet coherence analysis was
used to detect the temporal covariance between sediment discharge and water discharge,
precipitation, potential evapotranspiration, and vegetation index in two typical karst wa-
tersheds in southwest China [35]. However, the knowledge is generally lacking in terms
of the multiple time-scale effects of extreme climate events on runoff evolution in typical
basins of karst trough valleys.

The Yinjiang River watershed, which was a typical watershed with karst trough valley
areas located in southwest China, was chosen to firstly investigate the influence of extreme
climate events on runoff evolution at different time scales. Then, hydrometeorological
variables were used as input and output signals to diagnose the responses of runoff changes
to the extreme climate change of karst watershed, in which the input variables were extreme
climate index related to runoff change and the output variables were runoffs. Pearson
correlation, CWT, XWT, and WTC were performed to reveal the response relationship
between extreme climate change and runoff evolution in the Yinjiang River watershed
based on time scales. The study objectives were as follows: (1) to diagnose extreme
climatic events with significant impacts on runoff changes in a typical watershed of karst
trough valley areas; (2) to identify the response characteristics of runoff changes to extreme
temperature events and extreme precipitation events, respectively; and (3) to clarify the
coupling relationships, phase relations, and temporal variability between significantly
extreme climatic events and runoffs in common high and low energy time–frequency
regions at different time scales. This study can provide theoretical support for the optimal
regulation and safety management of water resources in karst basins and Guizhou Province
against the background of extreme climate change.

2. Study Site

The Yinjiang River watershed (108◦21′21′′–108◦47′27′′ E, 27◦53′17′′–28◦13′57′′ N) lo-
cated in the northeast of Guizhou Province (Figure 1a) was a typical karst valley watershed,
SW China. The watershed was an important branch of the Wujiang River with an area of
691.56 km2 in which the karst area was 376.77 km2 and the non-karst area was 314.79 km2,
accounting for 54.68% and 45.32% of the total watershed area, respectively. The water-
shed decreased from southeast to northwest, ranging in a large scope with an elevation
range of 439–2466 m above sea level and a mean elevation of 1033 m (Figure 1b). The
watershed was located in the humid subtropical monsoon climate zone with an annual
mean temperature of 17.14 ◦C (1984–2015); the maximum daily temperature was 40.4 ◦C,
and the minimum daily temperature of −4.1 ◦C. The annual average precipitation was
1103.44 mm/year with a maximum precipitation 151.5 mm/day and an annual average
evaporation of 667.01 mm/year based on the 32-year period (1984–2015).
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Figure 1. The location of study area in China (a), DEM (b), and lithology (c) in the Yinjiang
River watershed.

The centre of the watershed was a long strip shaped valley formed by flowing water,
with a syncline structure in the centre and steep slopes on both sides, which was mainly
controlled by karst structures and lithology. The drainage basin was a typical combination
of trough shaped landforms, with a narrow trough bottom, wide and high mountains on
both wings, and developed micro karst landforms such as stone gullies, stone buds, and
peak clusters on the slope surface. The basin was jointly constrained by eight geological
backgrounds and its surface topography was controlled by six lithological coupling factors.
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The karst area in the Yinjiang River basin was mainly controlled by homogenous dolomite,
clastic rock of limestone interlayer, and interbedded limestone and clastic rock (Figure 1c),
with controlled areas of 108.29 km2, 106.81 km2, and 69.12 km2, respectively, accounting for
15.66%, 15.44%, and 9.99% of the total area (Table 1). Therefore, its hydrological process
exhibited unique and significant differences compared to other karst basins. Its steep and
fragmented surface, numerous underground spaces with cracks, and undulating terrain
resulted in a small effective catchment area, low runoff coefficient, and serious losses of
underground runoff and rainfall. The mean annual runoff was only 4.62 × 108 m3/year
based on the 32-year period (1984–2015). The Yinjiang River, which was the only river
and the main channel that existed in the valley area and originated in Fanjing Mountain
with abundant water resources, flowed from the eastern part of the basin to the bottom of
the trough valley and eventually flowed out from the southwest of the watershed. Many
residential areas and farmlands with the largest intensity of human activities were located
on both sides of the river.

Table 1. Geological and lithological characteristics of the Yinjiang River watershed.

Geological Stratums Lithology Area (km2) Proportion (%)

Combined layer of Liangshan,
Qixia, and Maokou formation Homogenous limestone 23.79 3.44

Heshan formation Interbedded limestone
and clastic rock 69.12 9.99

Jialing River formation Clastic rock of
limestone interlayer 106.81 15.44

Combined layer from
Majuchong to

Xiushan formation
Non-carbonatite 317.72 45.94

Loushanguan formation Homogenous dolomite 108.29 15.66

Maotian formation Mixture of homegenous
limestone and dolomite 6.78 0.98

The extreme precipitation events occurred in summer and were accompanied by
extreme high-temperature events. July was the most serious month with a maximum
runoff of 155 m3/month and a maximum monthly rainfall of 588.1 mm/month. In addition,
the maximum monthly evaporation in August was as high as 164.1 mm/month. The
river network was mainly developed in karst area. Due to the lithological characteristics,
many tributaries developed into dry valley rivers, exhibiting drought in the autumn and
winter dry seasons and severe flooding in the spring and summer rainy seasons. It was
extremely easy to erode the bedding slope under the scouring of heavy rainfall or torrential
rain and this led to river blockage and deposition. The river formed at the bottom of the
trough valley was the only channel for drainage and there was no reservoir dam in the
main channel of the watershed. It was easy to form secondary runoff with large discharge
because of the special karst background, which posed a great threat to soil erosion on slopes
and farmland on both sides of the channel at the bottom of the trough valley.

3. Materials

In this study, the monthly runoff data of a hydrological station and daily precipita-
tion data with the same length of eight rainfall observation stations for the study area
were collected from the Guizhou Provincial Hydrology and Water Resources Bureau (http:
//www.gzswj.gov.cn/hydrology_gz_new/index.phtml) (accessed on 15 September 2016).
Some of the average daily precipitation data for the watershed were interpolated with
the Kriging method using ArcGIS 10 (ESRI 2010) with daily precipitation data of the
rainfall observation stations in the watershed together with those from the neighbour-
ing observation stations outside it. The daily data of maximum temperature, minimum

http://www.gzswj.gov.cn/hydrology_gz_new/index.phtml
http://www.gzswj.gov.cn/hydrology_gz_new/index.phtml
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temperature, average temperature, and rainfall in the Yinjiang River watershed from
1984 to 2015 were selected from the China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn/) (accessed on 1 March 2018). The missing data were less than
0.01%. The missing data were filled by the mean values of the data of the same station
in the same period. This treatment of missing data did not affect the long-term trend of
extreme climate [47]. Among them, the temperature data were homogenized and corrected
by SNHT [48] and TPR methods [49]. Data quality control was accomplished by using the
R software package “RClimDex” (http://etccdi.pacificclimate.org/software.shtml). All
meteorological data had high accuracy, long observation duration, and complete data value.
In addition, it was difficult to judge the breakpoint of heterogeneity in the homogeneity
test of rainfall data because of the large noise of daily rainfall. Therefore, we first tested
the homogeneity of monthly data after logarithmic transformation, and then judged the
homogeneity of daily rainfall data [50]. The test of uniformity was accomplished by using
the package “RHtestsV4” (http://etccdi.pacificclimate.org/software.shtml) (accessed on
13 April 2018). The result showed that there is no homogeneous breakpoint in all the data.
To facilitate calculation and comparison, all the time series of extreme climate indices (ECIs)
were standardized before analysis.

4. Methodology
4.1. Selection and Threshold Determination of ECI

The Expert Team for Climate Change Detection Monitoring and Indices (ETCCDMI)
had defined 11 extreme precipitation indices (EPIs) and 16 extreme temperature indices
(ETIs). On the basis of the climate characteristics of the Yinjiang River watershed, twenty-six
ECIs defined by ETCCDMI and five ECIs defined by threshold were calculated. Therefore,
the ECIs calculated in this study included 11 rainfall indices and 20 temperature indices.
The definitions of these indices are shown in Tables 2 and 3, respectively.

This study assumed that a temperature variable had n values. Then, the n records
were arranged in ascending order as x1, x2, . . . , xm, . . . xn. The percentile value was

x0 = (1− a)xj + axj+1 (1)

where j = [p(n + 1)] and α = p(n + 1) − j. j was the ordinal number of the air temperature
records in ascending order, p was the probability corresponding to the percentile value,
and n was a sequential sample size.

Table 2. Definitions of ETIs used in this study.

ETIs

Identification Indicator Name Definitions Unit

FD0 Frost days Annual count when TN(daily minimum) < 0 ◦C Day

FD0.6 Number of frost days
below 0.6 ◦C

Annual count when TN(daily minimum) < 0.6 ◦C,
0.6 ◦C is a user-defined threshold Day

SU25 Summer days Annual count when TX(daily maximum) > 25 ◦C Day

SU34.4 Number of summer
days above 34.4 ◦C

Annual count when TX(daily maximum) > 34.4 ◦C,
34.4 ◦C is a user-defined threshold Day

ID0 Ice days Annual count when TX(daily maximum) < 0 ◦C Day

ID6.4 Number of ice days
below 6.4 ◦C

Annual count when TX(daily maximum) < 6.4 ◦C,
6.4 ◦C is a user-defined threshold Day

TR20 Tropical nights Annual count when TN (daily minimum) > 20 ◦C Day

GSL Growing
season Length

Annual (1 January to 31 December in NH, 1 July to
30 June in SH) count between first span of at least
6 days with TG > 5 ◦C and first span after 1 July

(1 January in SH) of 6 days with TG < 5 ◦C

Day

TR23.8 Number of tropical
nights above 23.8 ◦C

Annual count when TN(daily minimum) > 23.8 ◦C,
23.8 ◦C is a user-defined threshold Day

http://cdc.cma.gov.cn/
http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
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Table 2. Cont.

ETIs

Identification Indicator Name Definitions Unit

DTR Diurnal
temperature range Monthly mean difference between TX and TN ◦C

TXx Max Tmax Monthly maximum value of daily maximum temp ◦C

TNx Max Tmin Monthly maximum value of daily minimum temp ◦C

TXn Min Tmax Monthly minimum value of daily maximum temp ◦C

TNn Min Tmin Monthly minimum value of daily minimum temp ◦C

WSDI Warm spell
duration indicator

Annual count of days with at least 6 consecutive
days when TX > 90th percentile Day

CSDI Cold spell
duration indicator

Annual count of days with at least 6 consecutive
days when TN < 10th percentile Day

TN10p Cool nights Percentage of days when TN < 10th percentile Day

TX10p Cool days Percentage of days when TX < 10th percentile Day

TN90p Warm nights Percentage of days when TN > 90th percentile Day

TX90p Warm days Percentage of days when TX > 90th percentile Day

Table 3. Definitions of EPIs used in this study.

EPIs

Identification Indicator Name Definitions Unit

CDD Consecutive dry days Maximum number of consecutive days with
RR < 1 mm Day

CWD Consecutive wet days Maximum number of consecutive days with
RR ≥ 1 mm Day

R10 Number of heavy
precipitation days Annual count of days when PRCP ≥ 10 mm Day

R17.3
Number of very heavy

precipitation days
above 17.3 mm

Annual count of days when PRCP ≥ 17.3 mm,
17.3 mm is a user-defined threshold Day

R20 Number of very heavy
precipitation days Annual count of days when PRCP ≥ 20 mm Day

SDII Simple daily
intensity index

Annual total precipitation divided by the
number of wet days (defined as

PRCP ≥ 1.0 mm) in the year
mm/day

R95p Very wet days Annual total PRCP when RR > 95th percentile mm

R99p Extremely wet days Annual total PRCP when RR > 99th percentile mm

PRCPTOT Annual total
wet-day precipitation Annual total PRCP in wet days (RR ≥ 1 mm) mm

Rx1day Max 1-day
precipitation amount Monthly maximum 1-day precipitation mm

Rx5day Max 5-day
precipitation amount

Monthly maximum consecutive
5-day precipitation mm

The “RClimDex” package was used to calculate the ECIs under the R platform [51],
and the Mann–Kendall method was applied to calculate the change trend of them. Through
detection, the percentile values of extreme temperature events in this study were 90% (10%)
and 95% (5%), respectively. The upper threshold of daily maximum temperature was
34.4 ◦C and the lower threshold of daily maximum temperature was 6.4 ◦C. The upper
threshold of daily minimum temperature was 23.8 ◦C and the lower threshold of daily
minimum temperature was 0.6 ◦C. This study defined the minimum threshold that met the
highest rainfall as 17.3 mm.
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4.2. Wavelet Analysis

In this study, the Pearson correlation coefficient method was firstly used to identify
extreme climatic events which had significant relationship with runoff variation; CWT was
used to reveal the energy relationship between ECI and runoff evolution over multiple
time scales [31,52]. XWT and WTC were used to reveal the energy distribution differ-
ences and phase relations between ECIs and runoff over a common high energy and low
energy vibration region [37,53]. Although wavelet analysis was a kind of statistical rela-
tionship, it could reveal the internal relationship between various variables more deeply.
So, it was an effective method with which to study the relationship between meteorolog-
ical and hydrological factors with a strong physical mechanism. In this study, wavelet
analyses (CWT, XWT, and WTC) were carried out using a free Matlab software package
(Math works, Nat-ick, MA, USA) kindly provided by Grinsted et al. [31] (accessed on
12 September 2021) at http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence.
The package includes code originally written by C. Torrence and G. Compo, available
at: http://paos.colorado.edu/research/wavelets/ (accessed on 12 March 2018), and by
Breitenberger E. of the University of Alaska. In order to avoid the boundary effect and
high frequency false information of the wavelet, the region within the wavelet-influenced
vertebra body was the effective spectral value. The region surrounded by the black thick
solid line represented the energy vibration that passed the test of the red noise standard
spectrum at the 0.05 significance level. Phase change reflected the difference of response
time of runoff to extreme climatic factors, indicating that regional climate has a certain
sustainability on runoff.

5. Result Analysis
5.1. Correlation between ECI and Runoff Change

The influence of extreme climate on runoff in river basin systems could be evaluated
according to the correlations between ECI and runoff. On the basis of the number of study
samples for the Pearson correlation, 0.35 and 0.45 were determined as the critical coefficient
values at the confidence levels of 0.05 and 0.01, respectively. For the ETIs (Table 4), only
SU34.4, TNx, and TX90p passed the 0.05 confidence level. However, for the ERIs, R99p
and Rx1day passed the 0.05 confidence level, whereas PRCPTOT, R10, R17.3, R20, R95p,
Rx5day, and SDII passed the 0.01 confidence level. Among them, relatively high correlation
coefficients were detected for PRCPTOT and R10 with runoff changes. These results
indicated that extreme temperature events had a low impact on runoff, whereas extreme
precipitation events could greatly affect runoff changes.

Table 4. The correlation characteristics of ECIs and runoff.

ECIs R Sig ECIs R Sig

CDD 0.01 N ID6.4 0.03 N
CWD −0.14 N SDII 0.57 0.01

PRCPTOT 0.68 0.01 SU25 −0.24 N
R10 0.67 0.01 SU34.4 −0.38 0.05

R17.3 0.49 0.01 TN10p 0.03 N
R20 0.53 0.01 TN90p −0.26 N

R95p 0.55 0.01 TNn −0.13 N
R99p 0.4 0.05 TNx −0.37 0.05

Rx1day 0.38 0.05 TR20 −0.07 N
Rx5day 0.51 0.01 TR23.8 −0.32 N

CSDI −0.02 N TX10p 0.13 N
DTR −0.09 N TX90p −0.35 0.05

FD0.6 0.13 N TXn −0.12 N
FD0 0.1 N TXx −0.28 N
GSL 0.14 N WSDI −0.27 N
ID0 0.22 N

Note: ‘N’ represents that a significant correlation between ECI and runoff does not pass the significance test at the
0.5 or 0.01 confidence levels. ‘R’ represents the correlation coefficient. ‘Sig’ represents the level of significance.

http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence
http://paos.colorado.edu/research/wavelets/
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5.2. Responses of Runoff to ECI Changes

Many rivers in karst areas were rain-fed rivers, and the change in runoff was closely
related to climatic factors. Extreme climate events, especially extreme precipitation events,
had considerable effects on the hydrological processes of basins. To study the time–frequency
response of runoff towards the extreme climate factors, the ECIs that passed the 0.05 confi-
dence level were selected on the basis of the Pearson correlation analyses, including three
ETIs (SU34.4, TNx, and TX90p) and nine EPIs (SDII, PRCPTOT, R10, R17.3, R20, R95p, R99p,
Rx1day, and Rx5day). Time–frequency and phase correlation analyses were conducted to
identify the areas in which the correlated climate factors and runoff (denoted by Q) played
strong roles in commonly high and low energy time–frequency regions.

5.2.1. Time Frequency Characteristics of Evolution Process of Runoff and ECIs

As shown in Figure 2, the changes in energy distribution since 1994 that appeared
with high energy periods at 4- to 8-year scales peaked in 2006, after which the energy
distribution weakened. The low energy time–frequency region mainly appeared in the
high time frequency at a 3-year time scale before 2004. Energy distribution was increased to
a high time frequency after 2004, and shifted from a low frequency to a high time frequency
after 2006 and finally decreased.
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Figure 2. Continuous wavelet power spectra of runoff (Q) changes. The thick black contour designates
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As shown in Figure 3, PRCPTOT, R99p, Rx1day, Rx5day, and TNx did not pass the
red-noise standard spectral test at the 0.05 significance level, whereas the other ECIs passed
the same test for some periods. For the ERI, high energy time–frequency regions mainly
appeared at 1- to 2-year time scales, in which the years concentrated around 1995 and 1998,
and then slightly weakened after 2000. For the ETI, the regions greatly varied over the
entire period. Energy distribution was enhanced after 2000, and significant high energy
areas mainly appeared around 2010. Over time, the energy distribution of Rx1day was
shifted from high to low frequency in a decreasing trend until reaching the lowest time
and frequency at a 6-year time scale around 2007. The energy distribution of R95p from
1993 to 1998 was concentrated in the high frequency region for the years depicted prior to
the 5-year time scale. The energy distributions of SU34.4, TNx, and TX90p changed from
low time frequency to high time frequency over time, whereas the energy distributions
of the other EPIs (except Rx1day) tended to change from a high time frequency to a low
time frequency in varying degrees. The tested results were not significant for the ECI in the
entire period of continuously high and low time frequency regions, which indicated that
the ECI varied greatly.
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5.2.2. Phase Relation between Runoff and ETI

Figure 4 shows that SU34.4 was ahead of runoff change by 1–2 years at all time scales.
SU34.4 and Q appeared in the high energy oscillation region at 4- to 5-year time scales from
2003 to 2006, and the phase angle was 45◦, indicating that the variation of SU34.4 was ahead
of the variation of runoff by approximately 1.5 years. After 2005, high energy oscillation
regions appeared at 1- to 2-year time scales. The initial phase angle had increased gradually
from 0◦ to 45◦, indicating that the time–frequency relationship of SU34.4–Q had changed
from being consistent to one that was ahead by approximately 1.5 years. The comparative
results of WTC with XWT indicated a consistent correlation between high energy and low
energy vibration regions at 4- to 5-year time scales (Figure 5). The obvious correlations
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between common low energy time frequency regions were detected and had passed the
red-noise standard spectral test at the 0.05 significance level.
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Figure 4. The wavelet power spectrum for ECIs and runoff (Q) in the Yinjiang River watershed from
1984 to 2015. The thick black contour designated the 5% significance level for red noise, and the cone
of influence (COI) where edge effects might distort the picture was shown as a lighter shade. Phase
change reflected the difference in response time of primary variables to influence factors. The phase
relationship between influence factors and primary variables was indicated by arrows. The arrows
from left to right indicated that the influencing factors and primary variables were in the same phase,
which implied a positive correlation; the arrows from right to left indicated an inverse phase, which
implied a negative correlation; the downward arrows indicated that influencing factors were 90◦

ahead of primary variables, and the upward arrows indicated that influence factors were 90◦ behind
primary variables.
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Figure 5. The wavelet condensation spectrum for ECIs and runoff (Q) in the Yinjiang River watershed
from 1984 to 2015. The thick black contour designated the 5% significance level for red noise, and the
cone of influence (COI) where edge effects might distort the picture was shown as a lighter shade.
Phase change reflected the difference in response time of primary variables to influence factors. The
phase relationship between influence factors and primary variables was indicated by arrows. The
arrows from left to right indicated that the influencing factors and primary variables were in the
same phase, which implied a positive correlation; the arrows from right to left indicated an inverse
phase, which implied a negative correlation; the downward arrows indicated that influencing factors
were 90◦ ahead of primary variables, and the upward arrows indicated that influence factors were
90◦ behind primary variables.

The time–frequency relationship with different phase correlation characteristics in
high and low energy time frequency regions of TNx-Q and SU34.4-Q were consistent in
terms of year and time scales. The phase correlation of TNx–Q was positive, and the phase
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angle was approximately 60◦, indicating that TNx was ahead of runoff by nearly 2 years in
both high and low energy time frequency regions. In addition, the vibration relationship
was relatively consistent at 1- to 2-year time scales after 2000, especially in the low energy
time–frequency region. Moreover, the correlation was prominent, and the time scale range
had expanded, which indicated a negative correlation. The phase angle increased from 0◦

in 2000 to 45◦ in 2007 and then gradually decreased to 0◦ in 2007.
The high energy time–frequency region of TX90p–Q was mainly concentrated in the

high time–frequency scales at 1–2 year time scales, whereas the low energy time–frequency
region was apparent in some high time–frequency and low time–frequency scales. It had
found that no significant high energy vibration relation of TX90p–Q was detected at a
4-year time scale, but the low energy vibration relation was extremely significant. The
phase angle of 60◦ suggested that the change in TX90p was ahead of the change in runoff
by 2 years.

5.2.3. Phase Relation between Runoff and ERI

The PRCPTOT–Q effect was relatively weak. The high energy vibration that mainly
appeared at the 6-year time scale was concentrated in 1995–2005, but the correlation was
not significant. The mutation year of PRCPTOT in 1995 represented the beginning year of
high energy vibration, and its influence on low energy vibration at the 6-year time scale was
apparent. The phase correlation between high energy vibration and low energy vibration
was positive, and the phase angle was approximately 30◦. This finding indicated that
PRCPTOT had a lag effect on runoff changes, with a lag time of approximately 1 year. The
runoff change before 1990 was mainly affected by the early rainfall in 1.5–2 years.

R10 and Q showed a significant relationship with the same phases and positive
correlations between high and low energy vibrations at 1- to 2-year time scales in 2010–2015
and at a 6-year time scale in 2000–2010. The results indicated that R10 lagged behind runoff
variation by 1.5 years at 1-, 2- and 6-year scales. R10 was mainly affected by rainfall from
the previous 2 years before 2005–2010.

No significantly correlated region was observed for the effective spectral value of
R17.3–Q high energy vibration region. Obvious high energy vibration zones and extremely
significant low energy vibration zones had appeared since 1992. The low energy vibration
zones at 5- to 7-year time scales from 1996 to 2007 passed the red-noise standard spectral
test at the 0.05 significance level, showing a positive correlation in the same phase. The
phase angle was approximately 30◦ at the 4-year time scale, 0◦ at the 5-year time scale,
and 30◦ at 5- to 7-year time scales. On the basis of the results, the significant correlation in
the low energy time–frequency region represented the impact of R17.3 on runoff change
decreasing with time scale, from leading to consistent and then to lagging. The phase angle
at 1- to 2-year time scales in 1992–2000 was approximately 30◦ in the effective spectrum
value of the wavelet-affecting vertebrae. This finding indicated that R17.3 was 1 year ahead
of the effect on runoff change at 1- to 2-year time scales. Moreover, obvious differences
could be derived for the influence of R17.3 on runoff change at different time scales, and
they mainly represented the low energy vibration effect.

The time–frequency relationship in the high energy zone of R20–Q was not significant,
but it was significant in the low energy zone. It was found that low energy oscillation
regions appeared at 4- to 7-year time scales, and all passed the red-noise standard spectral
tests at the 0.05 significance level. The low energy oscillation region cantered in 1992
showed a negative correlation in the inverse phase with a phase angle of approximately 60◦,
indicating that the variation of R20 lagged behind that of runoff change by approximately
2 years. The low energy vibration region cantered in 2005 showed a positive correlation in
the same phase with the phase angle ranging from 30◦ to 60◦. The phase angle decreased
with the year and increased with the time scale. The results showed that the lag time
increased with time scales by approximately 1–2 years, and the variation of R20 and runoff
tended to be consistent for a specific year. However, before the 2000s, runoff change at high
time–frequency scales was affected by early rainfall for 1–2 years.
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The significant correlation of R95p–Q vibration was weak, and no significantly corre-
lated high energy time–frequency region was observed, whereas the significantly correlated
low energy time–frequency region was not obvious. Only the regions at 4- to 5-year time
scales from 1990 to 1995 passed the red-noise standard spectral test at the 0.05 significance
level, and the positive correlation was depicted within the same phase. The phase angle
increased from 0◦ in the initial year to 60◦ at this time scale, which indicated that the
variation of R95p lagged behind the variation of runoff change by 0–3 years. It showed that
a relatively obvious high and positive correlation region with the phase angle of 60◦ was
observed at a 1-year time scale from 2004 to 2008, which indicated that the change in R95p
lagged behind the change in runoff by approximately 3 years. Before the mid-2000s, the
runoff change in high time–frequency was affected by early rainfall for 1–2 years.

The R99p–Q correlation in the high and low energy time–frequency regions did not
pass the red-noise standard spectral test at the 0.05 significant level. According to the results
of XWT, the correlation showed the positive correlations with different time–frequency
effects at 4- and 6-year time scales. It exhibited a leading effect at the 4-year time scale, but a
lagging effect at the 6-year time scale. After the 2000s, the runoff in the high time–frequency
was affected by early rainfall for 1–2 years.

The Rx1day–Q correlation appeared in the significantly correlated region with an
effective spectrum value and showed an inverse correlation at 5- to 6-year time scales
from 2000 to 2010. The phase angle increased from 0◦ to 90◦ with the decrease of time
scale. Rx1day lagged behind runoff change by approximately 3 years in the significantly
correlated region, as shown by the positive correlation at the 4-year scale. In addition, the
two changes had essentially the same characteristics. According to the results of WTC, the
positive correlation appeared around 2005 at the 6-year time scale, and the phase angle
gradually decreased along with the effect increases. The correlation area from 1990 to 2000
was much more obvious at the 4-year time scale, which indicated a positive correlation
in the same phase. The phase angle gradually increased from 0◦ to 60◦, as shown by the
leading effect of 0–2 years.

The high energy time–frequency region of the Rx5day–Q correlation tested by XWT
did not pass the red-noise standard spectral test at the 0.05 significance level. Within the
effective spectral value of WTC, a local correlation area appeared at the 4-year time scale
before and after 1998. However, the phase relationship of Rx5day–Q manifested a positive
correlation with the phase angle of 45◦, which indicated that the change in Rx5day lagged
behind the change in runoff by 1.5 years. The invalidated spectral correlation value was
highly significant outside the region after 2010. The Rx5day change was ahead of the runoff
change by approximately 1.5 years according to phase identification, but the leading effect
showed a gradual weakening trend. After the 2000s, the runoff variation at the 4-year time
scale was mainly affected by rainfall in the previous 2 years, and it occurred mainly in the
common high energy time–frequency region.

The results of XWT showed that the SDII–Q correlation appeared in the high energy
oscillation region at the 6-year time scale before and after 2005 with an effective spectrum
value. From a phase perspective, the phase angle that appeared at the same stage gradually
increased to 45◦ over time, indicating that the impact of SDII on runoff was gradually
lagging. According to the results of WTC (Figure 5), the high correlation region of low
energy time–frequency zones was mainly concentrated at 4- to 8-year time scales after
1990, and passed the red-noise standard spectral test at the 0.05 significance level. From
the phase perspective, the phase angle was reduced from 60◦ to 45◦ and had a positive
correlation in the same phase, which indicated that the time lag of SDII behind that of
runoff had gradually decreased and that the correlation between these two variables was
enhanced. In addition, the characteristics of their changes at the 4-year time scale were
relatively consistent and showed a positive correlation. In the high time–frequency scale
before the 2000s, runoff change was mainly affected by early rainfall for 1–2 years.

In summary, the EPIs of R10 and Rx1day and the ETIs of SU34.4 and TNx were the
main driving factors of runoff changes, which showed relatively large impacts on runoff
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changes in high and low energy vibration regions. The changes of PRCPTOT, R17.3, R20,
R95p, R99p, Rx5day, TX90p, and SDII had relatively large impacts on runoff changes
only in low energy vibration regions. Overall, extreme precipitation events were ahead
of runoff changes at the high time–frequency scale and exhibited a small lag effect at
the low time–frequency scale, while extreme temperature events were mainly ahead of
runoff changes.

6. Discussions
6.1. Influence of Abrupt Change for ECIs on Runoff Change

The high energy level of PRCPTOT, which was significantly higher than that for the
surrounding time periods and time scales, was observed in 1994. A peak value appeared in
the high energy time–frequency region in 2004, but it was not significant at the 0.05 con-
fidence level. The significant interaction of R10, Rx1day, and SDII with runoff started to
appear in the high energy time–frequency region around 2003, which was the abrupt change
year of runoff change in the Yinjiang River watershed. Rainfall had abruptly changed in
1994 and 2004 [10], and the intensity of the interaction between rainfall and runoff had also
changed accordingly. This finding indicated that runoff was greatly affected by rainfall.

This study further detected the high energy time–frequency region and the signifi-
cantly correlated region of the interaction between ECIs and runoff change before and after
the abrupt change (Table 5). The time of ECIs leading and lagging runoff changes was
affected by the abrupt time. The vibration-related regions of the interaction between ECIs
and runoff shifted between high and low time–frequency. Abrupt change transformed the
scale of the region where ECIs interacted with runoff, which then led to abrupt change
in runoff.

Table 5. Change trend and abrupt change times of ECIs calculated by Mann–Kendall method.

ECIs Change Trend Abrupt Change Time
Variation Time of High Energy and

Significant Correlation Regions

XWT WTC

PRCPTOT + 1994 2010 2009 2009
R10 + 1993 2004 2013 2001 2010 1995 2013

R17.3 + 1992 2008 2011 1996 2007
R20 + 1992 2004 - 1993 2002 2008

R95p – 1994 2002 2013 - 1993
R99p – 1997 2004 2013 - -

Rx1day – 1990 2004 2013 2001 2009 1993 2013
Rx5day + 1987 2013 2011 1993 2002

SDII – 1994 2004 2005 1993 2013
SU34.4 + 2004 2013 2006 2000 2010

TNx + 1991 2004 2006 2010 2000 2011
TX90p + 2001 2003 -

In addition, SU34.4 and TNx were significant in high energy time–frequency regions
after 2004. The high energy time–frequency regions of TX90p also appeared in this period,
and the values were significantly higher than those of the surrounding periods and time
scales. The year 2004 represented the sudden-change year of SU34.4 and TNx, whilst 2005
represented the sudden-change year of temperature. After 2006, the effect of temperature
on runoff changed significantly and showed an advanced effect.

6.2. Influence of Temperature and Precipitation on Runoff Change

The findings fully demonstrated that extreme climate change was the main driving
factor of the runoff increase, and the transition of the interaction between ECIs and runoff
in high and low frequency scales was related to the catastrophic characteristics of ECI. The
energy of the high energy time–frequency region in which R10 and Rx1day interacting with
runoff was high for the significantly extreme precipitation, and the range of the significantly
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correlated region was relatively large. The influence of R17.3 and R20 was relatively small,
mainly under the action of low energy vibration. In terms of the ETIs, SU34.4 and TNx
had a relatively large impact on runoff change. The variation characteristics of extreme
precipitation were obviously more intense than those of ETI. However, the issue of which
had the greater impact—extreme precipitation or extreme temperature—on runoff change
had been the subject of little research. The previous studies mainly focused on climate
change (e.g., rainfall, evaporation, and temperature) and the impact of human activities on
runoff change, but their results were quite different.

The previous studies had also shown that rainfall and temperature played significant
roles in runoff change. Variations in temperature and precipitation had significant effects on
runoff in the four headstreams of the Tarim River. In particular, precipitation had a positive
impact on water flow in Aksu River, Hotan River, and Kaidu River, whilst temperature had
a positive impact on water flow in Yarkant River [54].

However, other studies argued that the main cause of runoff change was rainfall rather
than temperature. A correlation existed between rainfall change and runoff change, as
depicted by a linear multiple regression equation, which also indicated that changes in
annual runoff were contributed to by the changes in annual PT rather than by changes in air
temperature [45]. The effects of recent temperature fluctuations on stream flow were minimal,
but the impact of relatively small fluctuations in precipitation (approximately 10%) was often
amplified by two or more factors and depending on basin and climate characteristics [55].
Model outputs were used to examine the separate effects of total precipitation and temperature
on runoff variability in the conterminous United States, and modelling results showed that
water–year runoff had increased in this region, in which precipitation accounted for nearly
all water–year runoff variability in the past century. By contrast, temperature effects on
runoff had been negligible for most locations in the United States, even during periods when
temperatures increased significantly. The extant watershed research showed that runoff and
precipitation were well-synchronized with abrupt change features and stage characteristics,
and they exhibited consistent multi-timescale characteristics. The contribution of precipitation
to runoff change was 50%–60% and was considered high but stable in the Yinjiang River
watershed [10,11]. Meanwhile, the extant karst basin research showed that changes in water
discharge were mainly controlled by variations in precipitation [56]. The detected trends in
water discharge had been mainly attributed to the climate change in the eastern and north-
western Pacific sides of the United States [57,58]. Climate oscillations could cause precipitation
changes that further affected annual variations in water discharge [47,59]. Evidently, the
correlations between annual regional precipitation and water discharge were all significant,
which implied that total precipitation exerted substantial influence on water discharge [60,61].
All these previous studies indicated that rainfall was an important factor affecting runoff
change. However, some studies had presented contrasting results. For instance, runoff in
non-karst areas was reportedly more sensitive to temperature, which might be an important
factor affecting rainfall. A SWAT model was used to analyse the impacts of climate change
and land cover on runoff and predict future runoff trends in river basins [62], and finally
found that runoff was more sensitive to temperature than precipitation.

6.3. Response Mechanism of Runoff Change to Different ECIs

The effects of different ECIs on runoff change were markedly different. The energy of
the high energy time–frequency region, in which R10 and Rx1day interacted with runoff
during significantly extreme precipitation, was higher than that of other EPIs, and the range
of the significantly correlated region was relatively large. For the ETIs, the effects of SU34.4
and TNx on runoff change were relatively larger. R10 occurred frequently and intensively
at a maximum of 44 days/year with a minimum of 18 days/year, and each rainfall was
greater than 10 mm. The maximum of Rx1day was 151.5 mm/day with a minimum of
39.8 mm/day. Given its distinctive lithological background, surface runoff was unlikely to
occur in the condition with a single weak rainfall due to the highly fragmented surface,
exposed and prominent bedrock, and low runoff coefficient in karst area. Moreover, most
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of the rainfall was transformed into underground runoff through karst fractures during
rainfall, which rendered it difficult for weak rainfall to affect surface runoff. The frequency
of R10 was very high compared with the others, and the corresponding rainfall intensity
was larger. As such, a cumulative fine path flow could be generated. The maximum
daily rainfall in most years could be directly attributed to Rx1day. The effects of R10
and Rx1day on runoff change were direct. Meanwhile, the effects of R17.3 and R20 on
runoff change were relatively small, and the main effect could be represented by a single
rainfall that produced slope runoff that affected runoff change under low energy vibrations.
The frequencies of R17.3 and R20 were lesser than those of R10 and, thus, their effects
on runoff change were also smaller. This finding could be explained by the presence of
relatively scarce karst surface water and relatively small soil moisture covered on the karst
basement [63]. Furthermore, the instantaneous slope runoff formed by rainfall was initially
needed to satisfy soil moisture saturation requirements. This resulted in the initial rainfall
being first absorbed by the soil, preventing timely formation of river runoff.

Rainfall and temperature represented available water and energy in basins, which
in turn controlled the distribution of runoff and evaporation [64,65]. Runoff change was
strongly affected by changes in evaporation [10,11]. Temperature changes the effects of
evaporation and rainfall intensity on runoff. The previous studies had shown that the water
cycle was mainly controlled by transpiration in vegetation-developed karst watersheds,
suggesting that evaporation plays an important role in runoff variation [66–69]. According
to the direction of phase angles, SU34.4 and runoff change represented a negative phase, as
shown by their negative correlation. This finding indicated that the significant increase of
SU34.4 increased evaporation, and it exhibited a negative effect on runoff change. TNx was
positively correlated with runoff change, indicating that the increase of TNx might increase
rainfall to produce marked effects on runoff change. Therefore, changes in ETIs, including
sudden changes, did not necessarily have a direct impact on runoff changes, but indirectly
affected runoff by changing the frequency and intensity of rainfall and evaporation.

6.4. Limitations and Future Prospects

This study focused on the impact of extreme climatic events on runoff variation. The
extreme climatic events, which were significantly related to runoff variation, were quali-
tatively discussed at an inter-annual scale, and their correlation with temporal variability
of runoff variation was presented. However, the study only indirectly presented the com-
prehensive effects of these impacts through the intensity of rainfall and evaporation, but it
did not quantify the impact of specific extreme events, which might not be sufficient for
showing the magnitude of the effects of certain extreme climatic events on runoff changes.
In the future, it will be necessary to quantitatively evaluate the impact and contribution of
extreme climatic events on and to runoff changes, further predict potential hydrological
processes and hazards that may occur in the future, and provide decision-making support
for hydrological regulation and water resource security management in karst basins.

7. Conclusions

In this study, the multi-scale influences of extreme climatic events on runoff changes in
the Yinjiang River watershed were identified by using wavelet analysis based on a 32-year
hydrometeorological time series, and time–frequency response relationships between runoff
changes and ECIs with significant impact were further revealed at different time scales.
The main results were as follows:

(1) Twelve ECIs were detected to have a significant impact on runoff changes, including
three ETIs (SU34.4, TNx, and TX90p) and nine EPIs (SDII, PRCPTOT, R10, R17.3, R20, R95p,
R99p, Rx1days, and Rx5days), mainly at a 6-year time scale.

(2) The R10 and Rx1day in ERI and SU34.4 and TNx in ETI were the main driving
factors for recent runoff changes, which exhibited relatively large impacts on runoff changes
in high and low energy vibration regions. However, the remaining eight ECIs that passed
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the 0.05 confidence level showed relatively large impacts on runoff changes only in low
energy vibration regions.

(3) The transition of the interaction between ECIs and runoff changes in high and
low time–frequency scales was related to the abrupt change characteristics of the ECIs.
The correlation of abrupt change was an important reason for the emergence of highly
correlated regions that trigger high and low energy vibrations.

(4) As a whole, the extreme precipitation events were ahead of runoff changes at
the high frequency scale and exhibited small lag effects at the low frequency scale, while
extreme temperature events were mainly ahead of runoff changes.
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